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Abstract

Identification of lexical borrowings, transfer
of words between languages, is an essential
practice of historical linguistics and a vital
tool in analysis of language contact and cul-
tural events in general. We seek to improve
tools for automatic detection of lexical bor-
rowings, focusing here on detecting borrowed
words from monolingual wordlists. Starting
with a recurrent neural network lexical model
and competing entropies approach, we incor-
porate a more current Transformer based lex-
ical model. From there we experiment with
several different models and approaches in-
cluding a lexical donor model with augmented
wordlist. The Transformer model reduces ex-
ecution time and minimally improves borrow-
ing detection, and the augmented donor model
shows some promise. A substantive change in
approach or model seems necessary for signif-
icant gains in detection of lexical borrowings.

1 Introduction

When words shows striking similarity between lan-
guages, they may be inherited from a common
ancestor, borrowed from one contact language into
the other, or less frequently, similar by chance or
common creative process, e.g., onomatopoeia.

Identification of lexical borrowings, transfer
of words between languages, is an integral step
in the comparative method of historical linguis-
tics (Campbell, 2013) and a vital tool for investiga-
tions of language contact, and cultural influences.
Automated or assisted detection of lexical borrow-
ings is one of many important and difficult tasks
remaining in historical linguistics (List, 2019a).

We use neural network lexical language models
of the phonology and phonotactics of a language to
identify lexical borrowings. While language mod-
els refer generally to “any system trained only on
the task of string prediction” (Bender and Koller,

2020), our lexical language models operate on
monolingual wordlists limited to common or es-
sential concepts, with vocabularies limited to lan-
guage sound segments (phonemes, allophones). A
fixed vocabulary of typically less than 100 coded
sound segments eliminates the out-of-vocabulary
problem, and a limited wordlist size of at most a
few thousand lexical entries, reduces the practical
model complexity.

We use the recurrent neural network model and
competing lexical entropies approach of Miller et al.
(2020) as a jumping off point, and incorporate a
light-weight forward direction Transformer model
from Vaswani et al. (2017) into this approach. We
demonstrate our light-weight Transformer model
over 41 different languages from the World Loan
Database (Haspelmath and Tadmor, 2009) and con-
trast performance versus the recurrent model of
Miller et al. (2020).

We perform several experiments expanding both
the technical and application scope of our light-
weight Transformer model: 1. develop a direct
model approach that discriminates between inher-
ited and borrowed words directly without the need
to model inherited and borrowed word entropies
separately, 2. enhance competing entropies and di-
rect approaches to account for borrowed words by
individual donor language, 3. train multiple bor-
rowed and inherited models, and base decisions on
majority vote of model combinations, 4. perform
search for best model parameters using experimen-
tal sequences of randomly assigned parameter val-
ues, 5. explore a limited multi-lingual approach of
using an additional donor language table to supple-
ment borrowed words from the recipient language.

Results are evaluated for borrowing detection
and, secondarily, execution time. Our light-weight
Transformer minimally improves borrowing detec-
tion and reduces execution time versus the baseline.
Direct detection of borrowed words performs less
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well than the competing entropies approach. Multi-
ple model combinations and parameter search show
little improvement over the Transformer model,
each with increased execution time. Adding a
donor language wordlist minimally improves bor-
rowing detection.

Our contributions are:
• Incorporation of Transformer model and di-

rect approach into the borrowing detection
problem,

• Demonstration that the competing entropies
approach offers better borrowing detection
than the direct approach,

• Demonstration that the multiple models ap-
proach and parameter search do not improve
borrowing detection,

• Prototyped a way to improve detection perfor-
mance via added donor wordlists.

2 Related Work

Approaches to Borrowed Word Detection

When words are borrowed into a language, initially,
they may retain the phonology, phonotactics, or
other features of the donor language. But over time
the borrowed words will adapt to the recipient lan-
guage – making borrowing detection more difficult
(Kiparsky, 2014).

Our monolingual wordlist approach gambles that
some remnant of the phonology or phonotactics of
the donor language will still be perceptible long
after the word is borrowed, and that competing
entropies lexical models can be used to detect bor-
rowed words. This is the approach taken by Miller
et al. (2020) where curated monolingual wordlists
of inherited and borrowed words are modeled with
Markov chain and recurrent neural network lex-
ical models, and then inherited versus borrowed
word decisions are made based on which model
estimates the minimum entropy. The approach is
modestly successful, yet not sufficient as a tool to
determine lexical borrowing. Professional linguists
also take into account substantial multilingual and
cross-linguistic lexical and contextual information.

An ambitious and complex borrowed word detec-
tion approach by Mi et al. (2020, 2018) identifies
borrowed words by Uyghur from Turkish, Arabic,
Russian and Chinese donors. Word embeddings
are calculated using monolingual language models
from corpora of Uyghur and donor languages, and

then cross-lingual embeddings are constructed be-
tween Uyghur and donor languages with the help
of bilingual dictionaries. The cross-lingual em-
beddings are used to identify candidate borrowed
words between Uyghur and donor languages. Can-
didate words are tested as borrowed or inherited
based on sound similarity and other language fea-
tures. This approach is not limited to curated
wordlists indexed by concepts. Future research
planning will consider (Mi et al., 2020, 2018).

List and Forkel (2021) and List (2019b) re-
purpose lexical cognate identification methods
from multilingual wordlists to the task of identify-
ing borrowed words on a newly developed dataset
of South-East Asian languages. Cognate detection,
by searching for full or partial cognates based on
sound similarity, is applied to identify language
family internal cognate sets, and then “cognate sets
are compared across language families and clus-
tered into sets of potentially borrowed words” (List
and Forkel, 2021, pg 4). We hope to integrate this
approach into future research.

Another approach to borrowed word detection is
to construct phylogenetic models of language fami-
lies based on wordlists, including also intruder lan-
guages that are not necessarily part of the language
family. Observed discrepancies in the model, in
particular lexical items that detract from hierarchi-
cal family relations and contribute instead to lateral
transfers, are likely due to borrowed words (List
et al., 2014; Delz, 2014).

Neural Network Language Models

Use of recurrent neural networks to model tex-
tual language was popularized by Bengio et al.
(2003). The language model is relatively sparse
and still useful today with the incorporation of long
short-term memory (LSTM) or gated recurrent unit
(GRU) cells. Miller et al. (2020) employed a lexical
language version of this model.

The attention module by Bahdanau et al. (2015),
paired with a recurrent layer, explicitly takes into
account the differential contribution of language
elements on the position or element being modeled.
Vaswani et al. (2017) realized that attention doesn’t
require a recurrent layer, “all you need is attention”,
resulting in reduced complexity and cost. They
constructed a standard Transformer module of at-
tention, add and normalization, and feed forward
layers, and incorporated it into their state of the art
translation system. Our lexical language models
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incorporate a light-weight Transformer module.

Recent advances include Bi-directional Encoder
Representations from Transformers (BERT) (De-
vlin et al., 2018) and many others such as GPT,
ElMo, and RoBERT which use millions or billions
of parameter language models. This seems overkill
since the number of parameters is orders of magni-
tude greater than a typical wordlist size. However,
the method used by BERT of bi-directional training
with a masked language model avoids the problem
of model dependencies, and similarly the model of
Wada et al. (2020) with independent bi-directional
models. Both merit further consideration.

3 Materials and Methods

3.1 Materials

Wordlists extracted from all 41 language tables of
the World Loan Database (Haspelmath and Tadmor,
2009) are used in our experiments. Tables docu-
ment concept, value, borrowed status, language
donor, etc., and consist of 800 to 2,000 words
representing some 1,400 concepts from the Inter-
continental Dictionary Series (Key and Comrie,
2015). Tables have recently been updated to add
International Phonetic Alphabet (IPA) (Moran and
Cysouw, 2018) representations of sound segments
for all lexical entries (Tresoldi et al., 2019). A snip-
pet from the Imbabura Quechua language table is
shown in Table 1.

Concept Value Segments Borrowed Donor
World pacha mama p a tS a + m a m a False
Valley yunga j u N g a False
Foam putsuju p u ts u x u False
Knife kuchillo k u tS i Z u True Spanish

Table 1: Snippet of Imbabura Quechua table.

In the experiment, where an additional Spanish
donor wordlist is used in training, the Spanish word
table from IDS is used as source, since Spanish is
not among the 41 WOLD languages. However,
the Spanish language word table from IDS was
orthographic, so we transcribed the Spanish to seg-
mented IPA, using the Easy Pronunciation portal
(Baytukalov, 2019) to produce a phonetic repre-
sentation of the Spanish wordlist, and then LingPy
(List et al., 2018) with cross-linguistic transcription
(List et al., 2021) module and a transcription profile
to construct segmented IPA.

3.2 Methods

3.2.1 Neural models and experiments

Recurrent model Miller et al. (2020)’s lexical
language model, based on Bengio et al. (2003), was
adapted to work with sound segments and estimate
lexical entropies using appropriate dropout and reg-
ulation (Figure 1). An innovative aspect of their
borrowed word detection approach was to train sep-
arate models for inherited and borrowed words and
have the models compete for which word is inher-
ited or borrowed. Words belong to the model which
estimates the lesser entropy for them.
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Figure 1: Recurrent Lexical Model

Light-weight Transformer Our technology im-
provement over the baseline model replaces the
recurrent layer with a light-weight Transformer
module (Vaswani et al., 2017) which includes At-
tention (Bahdanau et al., 2015) and Transformer
features of adding and normalization layers, and
a feed forward layer (Figure 2). The model uses
a forward only (left-to-right) causal model — this
reduces model complexity and avoids unintended
dependencies between inputs and outputs.
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Figure 2: Light-weight Transformer Lexical Model

Direct model - experiment We developed a
light-weight Transformer to predict inherited ver-
sus borrowed words directly from wordlists without
the intermediate calculation of inherited and bor-
rowed word entropies. This model flattens Trans-
former outputs and optionally merges embeddings
(see connector on right of Figure 2) before connect-
ing to the softmax layer.

Word donor - experiment We broadened the
problem definition to include donor source of the
borrowed words. Inputs include indication of word
donor instead of simply inherited versus borrowed,
where d = 0 designates an inherited word, and
d ∈ [1, D] designates which is the borrowed word
donor. A minimum donor wordlist size of 75 words
was used to assure enough data to fit donor models;
less than 75 word donor sources were combined.

For competing entropy models this results in D+
1 individual entropy models per language — one
for inherited words and one for each donor source.
In the decision procedure, all models compete for
which has the lowest entropy to select the word.
For the direct model, only one model is created and
it directly discriminates between donors.

Multiple word models - experiment With com-
peting entropy models, inherited word models are
paired with borrowed word models to compete for
which estimates the lower entropy for a word and
so claims that word. With M inherited and bor-
rowed word models each, there are M ×M model
pairs competing to claim words as inherited or bor-
rowed. We developed the multiple models capabil-
ity, which determines whether a word is inherited
or borrowed based on majority vote of the model
combinations. Model training and calculation of
entropies is much more costly than entropy compar-
isons, C � c, so cost of training multiple models
and taking majority vote on all entropy compar-
isons is approximately (M +M)× C.

Parameter search - experiment Each language
is unique whether considering the entire language
or just phonology and phonotactics in a wordlist.
Each lexical model for computing entropy will be
different and maybe each configuration of light-
weight Transformer parameter settings should be
different as well. We developed the capability to
run experiments on each training dataset, to deter-
mine optimal training parameters based on mini-
mum validation cross-entropy for a lexical model,
and then train multiple instances M of each model
at the optimal training parameters. Majority vote
from combinations of models trained at optimal
conditions determine inherited versus borrowed
word status.

This experiment is costly. For each training set,
there are E experiments; for each experiment, there
are I iterations of samples from the training set;
for each iteration there are R replicate runs which
return validation cross-entropies. Optimal training
parameters for inherited and for borrowed words
are used to train R model replicates on inherited
and borrowed words training data. The resulting
R×R model combinations predict inherited versus
borrowed word status based on majority vote, as
for multiple word models. So the cost per train-test
partition or fold is 2× (E × I ×R+R).
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Additional donor wordlist - experiment Lack
of sufficient borrowed words for training was a de-
tractor so we enhanced our data methods to permit
an additional donor wordlist source. This was a
limited experiment where we include a Spanish
wordlist from IDS (Key and Comrie, 2015), tran-
scribe it to IPA (§3.1), and combine it with Spanish
donor borrowed words for target languages where
Spanish is the primary donor language: Imbabura
Quechua, Mapudungun, Otomi, Q’eqchi’, Wichí,
Yaqui, and Zinacantán Tzotzil. We applied our en-
hanced data methods with both competing entropy
and direct models for these seven languages.

3.2.2 Decision and Evaluation procedures
Test F1 score for the borrowed word category is the
primary evaluation metric, with precision and recall
reported as well. Total time duration of execution,
combined training and testing, is a secondary mea-
sure.

Experiments ran 10-fold cross-validations over
all 41 WOLD language tables except for the ad-
ditional donor wordlist experiment which used
just seven language tables. In the 10-fold cross-
validation, wordlists are partitioned into 10 differ-
ent folds of 9/10 training and 1/10 testing data.
Models train on training data, predict borrowing on
testing data, and summarize detection results from
testing as F1 score, precision and recall over all
folds. Results are reported here as the average of
F1 score, precision, and recall, plus the execution
time, over cross-validations and language tables.

Experiments were run under Windows 10 on an
Intel portable with 6 cores (12 logical) and 16 GB
of memory. TensorFlow 2.4 was configured to use
8 parallel threads; other user tasks were curtailed.

4 Experiments

4.1 Competing Entropies and Direct Models

Parameter settings specific to the recurrent model
and constant parameter settings for the light-weight
Transformer are shown in Table 2. Typical number
of parameters per neural model are also reported.
Results of the recurrent neural network competing
entropies approach from (Miller et al., 2020) and
our replication of that analysis are shown in Ta-
ble 3. Note that Table 3 also reports Transformer
parameter values that vary over experiments.

F1 score measures are similar for original and
replicate recurrent neural studies. Execution time
for the recurrent model is 1 hr and 57 minutes.

Parameter Recurrent Transformer
cell_type GRU LSTM
N_layers 1 1
embedding_len 32 32
hidden_internal_len 32 32
merge_embedding True True
learning_rate_schedule Decay Transformer
decay_factor 0.95
recurrent_l2 0.001
recurrent_output_dropout 0.2
merge_embedding_dropout 0.2
number of parameters ≈ 13, 000 ≈ 10, 000

Table 2: Recurrent and Transformer Model Parameters

Light-weight Transformer
Results for the light-weight Transformer with the
competing entropies approach on inherited versus
borrowed words are shown in Table 3. Trials at 50
and 80 training epochs are reported with learning
rate and dropouts held constant. A split settings for
inherited and borrowed models is also shown with
inherited, 50, and borrowed, 80, epochs. F1 scores
are 1 percentage point greater for the greater num-
ber of epochs. Performance of the light-weight
Transformer is on par or minimally better than
the recurrent neural model. Adoption of the light-
weight Transformer model reduced execution time.

Inherited versus donor Since borrowed words
can vary substantially by word donor, we specu-
lated that fitting an entropy model on borrowed
words by donor language could result in better fit-
ting donor models with a commensurate improve-
ment in overall borrowed word prediction. Results
for this experiment at 50 and 80 training epochs,
and the split 50, 80 epochs settings, are reported for
the competing entropies approach in Table 3. De-
tection performance remains essentially unchanged
or slightly reduced for donor models while execu-
tion time increased slightly.

Direct neural model
The approach of competing entropy models, may
be more complicated than necessary. All the data is
available for a direct neural model to use in discrim-
inating between inherited and borrowed words.

Results of our experiment with a light-weight
Transformer model to directly discriminate be-
tween inherited and borrowed words are reported
in Table 3. All trials used 120 training epochs and
the same learning rate and dropout parameters. For
the competing entropies approach, embeddings are
merged with recurrent or light-weight Transformer
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output before calculating segment probabilities and
word entropies. This improved model detection
performance. We tested this explicitly with our
flattened direct model with merge and no-merge of
embeddings.

The direct model scores 5 percentage points
lower F1 score than the competing entropies model
and takes half again as much time to execute. There
is no difference between merge and no-merge of
embeddings with the Transformer output.

The direct model for inherited versus donor
shows no difference in borrowing detection be-
tween inherited versus borrowed and inherited ver-
sus donor approaches. Execution times are similar
between all experiments on the direct model, and
are a litter longer than those for the competing en-
tropies model when training for 80 epochs.

4.2 Multiple Models and Search

An advantage of the competing entropy models
approach is that when there are several entropy
models, they can be combined with any of their
opposite inherited or borrowed word models. In
particular, with three models each of inherited and
word models, nine competing entropy model pairs
can be formed to make borrowed word decisions.

Table 4 reports results for two experiments on
competing entropy models where three models
each for inherited and borrowed were trained at
the same set of conditions and then a majority vote
taken over the nine model combinations for bor-
rowed word decisions. The experiment with 80
training epochs, used different learning rates and
embedding dropouts for inherited versus borrowed
word models, while the experiment at 50 epochs
used constant learning rates and dropouts. Detec-
tion results are on par with those reported previ-
ously for the single competing entropies approach
(Table 3). Execution times are increased by a little
more than three times that for the single competing
entropies approach.

Since the phonology, phonotactics, language cul-
ture and contact situation are different for each
language, maybe different training parameters are
required for each language wordlist. Table 4 re-
ports results of an experiment on competing en-
tropy models where eight experiments on three
parameters are performed. Per the experimental
method in §3.2.1 one iteration with three replicates

1Precision and Recall, in error in the Original "Baseline -
recurrent" model, is corrected here.

each are performed for each randomly chosen ex-
perimental condition for each fold of the cross-
validation. Parameter settings were randomly sam-
pled from the parameter ranges shown in Table 4.
Resulting optimal parameter settings are used to
perform three replicate trials on their correspond-
ing inherited or borrowed word model. The nine
combinations of inherited and borrowed models
take a majority vote on borrowed word decisions.

Parameter search does no better than using mul-
tiple inherited and borrowed word models trained
at fixed parameter settings, which does no better
than a single pair of inherited and borrowed models
trained at fixed settings. Execution times have ex-
ploded to about a day due to the quantity of model
training for search models.

4.3 Added Spanish Donor Table

Several of the Latin American languages in
WOLD (Imbabura Quechua, Mapudungun, Otomi,
Q’qechi’, Wichí, Yaqui, Zinacantán Tzotzil) have
Spanish as the primary and only significant lan-
guage donor. For each of these languages we
added the Spanish wordlist in segmented IPA to
the existing borrowed words of the training set,
and then trained the models and evaluated test per-
formance for these seven languages in a 10-fold
cross-validation. This was a crude attempt to take
advantage of data quantity with the hope that Span-
ish phonotactics would translate sufficiently into
Spanish borrowed word phonotactics via our light-
weight Transformer model.

Table 5 shows detection results using this
method. Also shown are the average of detection
results over these same seven languages from the
light-weight Transformer with competing entropies
and direct approaches. We find at best a slight
improvement in F1 score by using the Spanish lan-
guage wordlist. Recall suffers and precision im-
proves as a result of using the Spanish wordlist.
Direct model results remain noncompetitive.

5 Discussion

The purpose of this study was to develop and im-
prove tools for automatic or assisted identification
of lexical borrowings in monolingual wordlists. We
replicated the recurrent lexical model and compet-
ing entropies approach of Miller et al. (2020) for
detecting borrowed words, producing similar de-
tection results and capturing a baseline execution
time.
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Experiment Epochs Learning Embed Attention Transform F1 score Precision Recall Time
rate dropout dropout dropout hr:min

Baseline - recurrent
Original1 45 0.01 0.603 0.546 0.697
Replicated 45 0.01 0.604 0.546 0.699 1:57

Competing entropies - Transformer
Borrowed 50/80 .0075/.0035 0.4/0.2 0.2 0.1 0.616 0.559 0.713 1:12
Borrowed 50 0.0055 0.3 0.2 0.1 0.606 0.548 0.701 1:08
Borrowed 80 0.0055 0.3 0.2 0.1 0.614 0.557 0.706 1:33
Donor 50/80 .0075/.0035 0.4/0.2 0.2 0.1 0.599 0.527 0.724 1:29
Donor 50 0.0055 0.3 0.2 0.1 0.605 0.536 0.720 1:21
Donor 80 0.0055 0.3 0.2 0.1 0.606 0.533 0.730 1:35

Direct - Transformer - flattened
Borrowed(nomerge) 120 0.0025 0.3 0.3 0.3 0.559 0.480 0.726 1:49
Borrowed(merge) 120 0.0025 0.3 0.3 0.3 0.557 0.506 0.659 1:53
Donor(nomerge) 120 0.0025 0.3 0.3 0.3 0.544 0.447 0.766 1:47
Donor(merge) 120 0.0025 0.3 0.3 0.3 0.552 0.479 0.694 1:52

Table 3: Competing Entropies and Direct Model Experiments - 10 Fold Cross-validation

Epochs Learning Embed Attention Transform F1 score Precision Recall Time
rate dropout dropout dropout d:hr:min

Multiple entropy models
80 .0075/.0035 0.4/0.2 0.2 0.1 0.615 0.559 0.710 4:22
50 0.0055 0.3 0.2 0.1 0.617 0.561 0.708 4:08

Parameter search
50-100 .0025-.0075 0.1-0.5 0.2 0.1 0.621 0.563 0.715 23:53

Table 4: Parameter Search and Multiple Models Experiments - 10 Fold Cross-validation

We developed a light-weight Transformer
model (Bahdanau et al., 2015; Vaswani et al., 2017)
and observed that it performed minimally better
than par versus the recurrent model in borrowed
word detection, and was more responsive with re-
duced execution times. The light-weight Trans-
former offers a viable base for exploring different
lexical borrowing detection approaches.

5.1 Competing Entropies and Direct Models

Our meta-level design and analysis, contrasts Trans-
former with recurrent model results, and forms a
2-factor design of: competing entropies versus di-
rect approaches, and inherited and borrowed versus
inherited and word donor approaches.

The light-weight Transformer with competing
entropies approach performed five percentage
points better than the light-weight Transformer
with a direct approach. Competing entropies seems
a useful approach to test for lexical borrowings,
more so than fitting a larger but less meaningful
direct neural model.

With inherited versus donor models, we tested
whether modeling donors separately would result
in better prediction performance, thinking that treat-
ing donors individually might give more coherent
training and test subsets. Resulting performance
was just on par with the corresponding borrowed
word approach; no benefit was conveyed by mod-
eling donors separately. This suggests that any
benefit due to modeling more coherent language
subsets is offset by the reduced sample size for such
subsets. This result seems more likely a problem
of insufficient data rather than a dismissal of the
utility of modeling donors separately.

5.2 Multiple Models and Search

With multiple models and the competing entropies
approach, we took the cross product of inherited
with borrowed word models and used majority vote
to indicate borrowed words. The multiple models
approach conferred no advantage. Modeling in-
herited versus borrowed words seems sufficiently
consistent that voting has nothing to add.
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Experiment Epochs Learning Embed Attention Transform F1 score Precision Recall Time
rate dropout dropout dropout min

Results for Languages with Additional Donor Language Table
Entropies 100/150 0.0055 0.1 0.1 0.1 0.789 0.841 0.752 52
Direct 120 0.0035 0.3 0.3 0.3 0.735 0.743 0.742 41
Results for Languages without Donor Language Table
Replicated Baseline - Recurrent 0.777 0.719 0.855
Competing Entropies Borrowed - Transformer 0.775 0.713 0.855
Direct Borrowed - Transformer 0.704 0.632 0.830

Table 5: Additional Spanish Donor Language Table Experiments - 10 Fold Cross-validation - Over Languages:
Imbabura Quechua, Mapudungun, Otomi, Q’qechi’, Wichí, Yaqui, Zinacantán Tzotzil

Performing parameter search for training of in-
herited and borrowed word models, was ineffective
and costly. Detection results were no better than
for multiple models, and execution time over all
41 WOLD languages was about a day. The single
competing entropies approach with light-weight
Transformer gives almost as good detection results
with just 1.5 hours execution time. Again modeling
seems sufficiently consistent within the given pa-
rameter sampling ranges that no benefit is gained.

5.3 Added Spanish Donor Table

Lack of sufficient data is a major detractor in ob-
taining good model fits and reproducibility on test
cases; this is especially true for highly parameter-
ized models where the parameter counts equal or
exceed the data counts. We added training data
from a Spanish language wordlist as though they
were borrowed words, fake borrowed words, for
each of the seven WOLD language tables where
Spanish is the primary donor language.

Transformer models learned from actual and
fake borrowed words, and produced F1 scores
slightly better than par versus the competing en-
tropies approach without data augmentation. Re-
call decreased and precision increased. This indi-
cates that the Transformer model learned the Span-
ish wordlist so well that it no longer detected bor-
rowed words that were better adapted to the recip-
ient language. Similarly the better learning pre-
vented inherited words from being confused with
Spanish borrowed words. This suggests that with a
table of fake borrowed words that conforms more
faithfully to word adaption to each language, we
could see a meaningful improvement in detection
of borrowed words. We observed an improvement
for direct detection too, but still with poorer perfor-
mance versus the competing entropies approach.

6 Conclusion

We constructed an effective and responsive light-
weight Transformer model as a lexical language
model for use in the competing entropies approach
for detection of lexical borrowings. Detection per-
formance was on par to minimally better than that
using a recurrent neural network model; execu-
tion times were reduced. A direct detection model
using a light-weight Transformer showed poorer
detection of lexical borrowings than the competing
entropy models approach. Entropy seems to cap-
ture important evidence about lexical items that our
direct model does not.

Incorporation of language donor into detection
models performed on par with the the correspond-
ing borrowed word models. Lack of sufficient data
detracts more from the model than within language
coherence contributes. Majority vote over the cross
product of inherited and borrowed word models,
and parameter search via random experimental trial
design, offer no benefit. This vouches for the rela-
tive consistency of model results for current param-
eter ranges and model architecture.

Addition of a donor language wordlist, as though
borrowed words, reduced recall and increased pre-
cision. With better simulated borrowed words,
rather than simple adoption of the donor wordlist,
recall and precision should improve. This offers a
promising avenue of investigation.
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