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Abstract

The Semantic Verbal Fluency Task (SVF) is
an efficient and minimally invasive speech-
based screening tool for Mild Cognitive Im-
pairment (MCI). In the SVF, testees have to
produce as many words for a given semantic
category as possible within 60 seconds. State-
of-the-art approaches for automatic evaluation
of the SVF employ word embeddings to an-
alyze semantic similarities in these word se-
quences. While these approaches have proven
promising in a variety of test languages, the
small amount of data available for any given
language limits the performance. In this pa-
per, we for the first time investigate multilin-
gual learning approaches for MCI classifica-
tion from the SVF in order to combat data
scarcity. To allow for cross-language general-
isation, these approaches either rely on trans-
lation to a shared language, or make use of
several distinct word embeddings. In evalua-
tions on a multilingual corpus of older French,
Dutch, and German participants (Controls=66,
MCI=66), we show that our multilingual ap-
proaches clearly improve over single-language
baselines.

1 Introduction

Mild Cognitive Impairment (MCI) is a medical con-
dition (Petersen et al., 2014) that often precedes
Alzheimer’s Disease (AD). The development of
cost-effective and scaleable screening approaches

for MCI is crucial for the early treatment and man-
agement of AD (Dubois et al., 2016). The Semantic
Verbal Fluency Task (SVF) is a promising screen-
ing approach as it combines a time-efficient testing
procedure with the possibility of remote and au-
tomatic evaluation (Tröger et al., 2018). In this
task, the testee is asked to name as many words as
possible from a given semantic category (e.g. ani-
mals) in a given time (e.g. 60-seconds). Tradition-
ally, the number of named within-category items
is used to detect cognitive impairment. However,
recent research has shown that in-depth analysis
of the underlying cognitive strategies used for the
SVF (e.g. semantic memory retrieval, executive
control) enables a more fine-grained differential
diagnosis (Tröger et al., 2019).

To harness the diagnostic power of the SVF, cur-
rent automatic evaluation approaches identify se-
mantic clusters in the participants’ word sequences,
based on semantic word embeddings (Woods et al.,
2016; Linz et al., 2017b; Paula et al., 2018). As
the word embeddings used in these approaches
are language-specific, training diagnostic machine
learning approaches for target languages with small
available datasets of SVF tests is challenging. De-
spite the potential of improving MCI classification
by training on larger, multilingual data, all exist-
ing approaches for automatic MCI diagnosis are
trained and evaluated on data from a single lan-
guage.



831

In this paper, we for the first time investigate
multilingual learning approaches for MCI screen-
ing from the SVF. To train a joint model that gen-
eralises across test languages we evaluate two ap-
proaches: (1) translation to a common language,
and (2) the application of several distinct embed-
ding resources to the same SVF productions. In
line with the state of the art (Paula et al., 2018), we
evaluate qualitative embedding-based approaches
through an extrinsic quantitative downstream NLP
application (Wang et al., 2018): classification be-
tween controls (HC) versus MCI from qualitative
SVF features. In evaluations on French, Dutch,
and German corpora we show clear improvements
of the multilingual learning approaches over the
single-language baselines. Our results show that
the the performance of classical single-language,
single-embedding approaches heavily depends on
the combination of embedding and language, hin-
dering generalizability. In contrast, by extracting
features from several embeddings simultaneously
and training over several languages, we achieve
improved and more consistent classification perfor-
mances across several test languages.

2 Related Work

Our work is related to clinical Evaluation, semantic
word embeddings, as well as the automatic qualita-
tive evaluation of verbal fluency tasks.

2.1 Clinical Evaluation

During an SVF trial, a person is asked to name
as many words from a semantic category (e.g. an-
imals) as they can in one minute. The person’s
response is then scored as the number of unique
words named excluding any repetitions. Typically,
this word count is then used to determine if the
person shows signs of cognitive impairment.

In addition to the word count, qualitative mea-
sures to evaluate underlying strategy—clustering
and switching—have been proposed (Troyer et al.,
1997). For this evaluation, consecutive words that
have a discernible semantic relationship are con-
sidered to be in a cluster. For instance, in the SVF
response ”cat, dog, whale, dolphin...”. ”Cat” and
”dog” are common pets where as ”whale” and ”dol-
phin” are marine mammals. The process of going
from one cluster to the next is called switching.

Computing these additional metrics by hand is
time-consuming and subjective. This has lead to
developing automated methods of clustering and

switching based on distributional semantics, or se-
mantic word embeddings (Linz et al., 2017a; Clark
et al., 2016).

2.2 Semantic Word Embeddings

Semantic word embeddings map words to a vec-
tor space encoding their semantic meaning. Words
with high semantic similarity are mapped to vectors
close in this semantic space, semantically dissimi-
lar words to distant vectors. These semantic vectors
are learned through a variety of algorithms on any
large corpora of text with two main varieties of
embeddings: contextual and non-contextual (Mi-
aschi and Dell’Orletta, 2020). In a non-contextual
word embedding, the vector representation is static,
whereas, in a contextual embedding, the surround-
ing words are considered. For example, if we had
’cutting paper’ and ’cutting class’, a non-contextual
word embedding would assign the same vector to
’cutting’ in both phrases whereas a contextual em-
bedding would take into account the difference of
meaning.

Given the nature of the verbal fluency task, a
non-contextual list of animals, this paper focuses
on using different types of non-contextual word
embeddings to investigate how to model a persis-
tent underlying cognitive structure while combin-
ing data from multiple languages. To keep results
comparable and reproducible, pre-trained publicly
available models that are available in a range of
languages are investigated namely, FastText (Bo-
janowski et al., 2016a), Spacy (Honnibal et al.,
2020), and Wikipedia2Vec (Yamada et al., 2020a).

As semantic vectors are learned from large
amounts of text corpora (usually Wikipedia and
OSCAR common crawl), embedding quality heav-
ily depends on the quantity of the available training
data. While French, German and Dutch are rel-
atively well-supported Indo-European languages,
they are at a large disadvantage in comparison to
English model resources. For instance, Wikipedia
offers 6,317,662 articles for English but much
fewer for French(2,337,481) , German(2,586,965)
or Dutch(2,058,488)1.

This presents a trade-off for approaching mul-
tilingual learning with semantic embeddings for
clinical applications between maintaining the nu-
ance of verbal fluency response in its native lan-
guage or translating the response to English to take
advantage of larger resources. In this paper, we

1https://en.wikipedia.org/wiki/List of WikipediasDetails table
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French German Dutch

HC MCI p HC MCI p HC MCI p

N 27 27 - 23 23 - 16 16 -
Age 69.9(3.5) 71.4(3.0) 0.16 70.1(4.5) 71.9(4.4) 0.26 66.4(4.4) 68.1(5.8) 0.46
Education 12.0 (3.5) 11.6 (3.4) 0.28 14.0(3.0) 13.6(3.2) 0.51 13.9(2.7) 13.7(2.2) 0.71

Table 1: Demographic information for French, German and Dutch populations. Age and education in years. Sta-
tistically significant differences between the population reported as p. Statistical significance is set to p ≤0.05.
Healthy Controls (HC). Mild Cognitive Impairment (MCI). Number of Samples (N).

investigate both scenarios of multilingual machine
learning for clinical models.

2.3 Automatic Qualitative Evaluation of VF
Tasks

Verma and Howard (2012) showed that pathologi-
cal semantic organization of speech is an effective
proxy for underlying cognitive impairment in early
AD—MCI. As a result, MCI screening from the
SVF has leveraged a variety of computational mod-
els of semantic coherence across many languages.
Early approaches for automatic semantic model-
ing of the SVF relied on classic co-occurrence
measures for capturing AD-related semantic SVF
markers (Clark et al., 2016; Pakhomov et al., 2012),
graph-based measures (Lerner et al., 2009), or em-
ployed latent semantic analysis (Pakhomov and
Hemmy, 2014; Pakhomov et al., 2015).

Most recently, semantic word embeddings have
been used for automatic evaluation of verbal flu-
ency tasks, including the SVF (Linz et al., 2017b;
Paula et al., 2018; Kim et al., 2019; Lindsay et al.,
2021a). For MCI screening, encouraging results
were obtained with a variety of semantic NLP re-
sources including word2vec (Linz et al., 2017b;
König et al., 2018), WordNet (Paula et al., 2018),
and Wikipedia backlink vector space models (Kim
et al., 2019); Paula et al. (2018) and Linz et al.
(2017a) reported classification performances of
AUC 0.71 with a random forest classifier and F1
0.77 with a support vector machine, respectively.

While the type of embedding was found to signif-
icantly influence classification performance (Linz
et al., 2017b; Paula et al., 2018), an approach
combining different embedding types was not pre-
sented. Similarly, studied languages include French
(Linz et al., 2017a), Korean (Kim et al., 2019), En-
glish (Pakhomov and Hemmy, 2014) and Brazilian
Portuguese (Paula et al., 2018), but to our knowl-
edge, no multilingual classification was investi-
gated.

We argue that by extracting qualitative SVF fea-

tures with multiple language-specific resources,
we can train machine learning models across lan-
guages. Overcoming the issue of small clinical
data sets and possibly building more robust mod-
els that generalize cognitive impairment that is not
language-specific.

3 Methodology

3.1 Data

This study included SVF data from clinical datasets
in three languages; French collected at Nice Insti-
tut Claude Pompidou Memory Clinic in France;
German collected at the University Medical Cen-
tre Freiburg, Germany; and Dutch from Maastricht
University Clinic, Netherlands. All participants
performed a 60-second SVF for the category “an-
imals” in their native language—in addition to a
battery of cognitive tests—administered by a clin-
ician. The recordings were manually corrected
according to the CHAT protocol (MacWhinney,
1991; Karakostas et al., 2017; Tröger et al., 2017).

For all corpora, participants were excluded if
they presented with comorbidities (e.g. apathy or
depression). To control for confounding cognitive
factors, samples from healthy controls (HC) and
those with mild cognitive impairment (MCI) were
matched for age and education in each language us-
ing the MatchIt package in R (Ho et al., 2011). The
resulting demographic information for each corpus
is listed in Table 1. A wilcoxon non-parametric test
is reported to check for differences in age and edu-
cation between HC and MCI. All described studies
were approved by national ethical committees and
conform to the Declaration of Helsinki.

3.2 Embedding Resources

As the SVF does not evaluate language abilities but
rather underlying processes of executive function
and memory, we made use of non-contextual word
embeddings. To keep results comparable and gener-
alizable for future studies, we used pretrained mod-
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Figure 1: Overview of our Multi-Embedding Multilingual Learning framework. The training data consists of SVF
productions with MCI labels in different languages (French, German, Dutch). For each training sample, features
are extracted using multiple embedding resources (FastTest, Spacy, Wiki2Vec). With this training data, we learn
a SVM classifier that is able to predict MCI versus HC at test time on SVF productions from any of the three
languages.

els that did not require fine-tuning and were avail-
able in French, German and Dutch. Concretely, our
approach integrated three different semantic word
embeddings: FastText (Bojanowski et al., 2016b),
Spacy (Honnibal et al., 2020), and Wiki2Vec (Ya-
mada et al., 2020b). FastText models were trained
using character n-gram models making them robust
against out of vocabulary words. However, words
shorter than the window of five characters could
still go unrecognized. Spacy models used the same
algorithm and training data as FastText models but
contained much fewer key pairs (2,000,000 versus
500,000). Wiki2Vec combined three jointly opti-
mized submodels; a word-based model and two
models that represent semantic association using
links between wikipedia pages which could inform
the semantic relationships of the SVF task (Yamada
et al., 2018). For semantic embedding parameters,
please see the supplementary materials.

3.3 Clustering-Based Features

The implementation for determining clusters using
semantic embeddings followed Linz et al. (2017a).
Each participant’s SVF production was transcribed
and preprocessed into a sequence of only animal
words represented by a1, ..., an. A base threshold
Tp is determined for each participant p by aver-
aging the semantic similarity between all pairs of
animal words in p’s production.

Tp =
1

n(n− 1)

∑
i,j=1...n,i 6=j

sim(ai, aj)

Semantic similarity sim was measured by the
cosine distance between semantic embedding vec-
tors ei extracted from words ai, i.e. sim(ai, aj) =
cos(ei, ej). Clusters were determined by compar-
ing the semantic similarity of consecutive words
sim(ai, ai+1) in the production to Tp. If the con-
secutive words were more similar than the base
similarity threshold they were considered to belong
to the same cluster. If the consecutive words were
less similar than the base similarity threshold they
introduced a cluster boundary, also referred to as a
switch.

Based on the clusters obtained from a given par-
ticipant with a given embedding, we computed the
following features based on Linz et al. (2017a):

Mean cluster size computed as the average
number of words in a cluster, number of switches
calculated as the number of clusters minus 1, mean
cluster distance computed as the average semantic
distance between all words in a cluster, and mean
switch distance as the average semantic distance
between centroids of adjacent clusters.

3.4 Multilingual Approaches

To combine multilingual data, we investigate two
approaches. Section 3.4.1 proposes a method us-
ing available language-specific resources for each
language and the section 3.4.2 translates all of the
data to a common language, English.
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3.4.1 Untranslated Multilingual,
Multi-Embedding Approach

The central idea underlying the untranslated multi-
lingual, multi-embedding approach is to maximize
the available clinical data by using generalizable
semantic features that robustly model cognitive
impairment. To mitigate the possibility of fluctuat-
ing performance between language and embedding
type, we propose using multiple embeddings for
untranslated, multilingual data.

3.4.2 Translated to Common Language
Approach

An alternative way to make use of training data
from several source languages is to translate all
SVF productions to a common language prior to
feature extraction. We follow the methodology
in (Paula et al., 2018) and translate all SVF pro-
ductions to English before extracting word em-
beddings. For translation we first used Google
translation API2 and then manually checked and
post-edited any words where the source word was
identical to the target word. Due to privacy re-
strictions on medical data, a set of all mentioned
animal names was extracted from the transcripts
and a look-up dictionary was created mapping the
animals of each language to its English equivalent.

3.5 Classification Experiments
From each of the French, Dutch and German pro-
ductions as well as their English translations, the
four described clustering-based features are ex-
tracted using each respective embedding resource.

3.5.1 Multilingual, Multi-embedding
(ML-ME)

Figure 1 gives an overview of the multilingual,
multi-embedding framework. For both the untrans-
lated and translated approaches, the four features
of underlying cognition are extracted. Each of the
features vectors are concatenated into a single fea-
ture vector. This is the new representation of the
SVF production that is then used to train the model
and predict a label of HC or MCI.

3.5.2 Baseline Comparisons
Single Language, Single Embedding (SL-SE)
To test how well each embedding resource models
each language, we trained on each combination of
language and embedding resource individually.
Multilingual, Single Embedding (ML-SE) To

2https://cloud.google.com/translate

investigate how each embedding resource behaves
in a multilingual training scenario, we trained a
separate model for each embedding resource using
all the language corpora.

3.5.3 Out-of-Vocabulary (OOV) Rate
In addition to the classification experiments, the
out of vocabulary rate for each language for each
embedding is considered. This is used as a quality
control test to ensure words are not being dropped
from the transcript when the features are being com-
puted. The OOV rate is calculated as the unique
number of word that are not in the semantic model
divided by total produced animal words.

3.6 Evaluation

In line with previous work (König et al., 2018), clas-
sification was performed by a Support Vector Ma-
chine (SVM) with Radial Basis Function kernel im-
plemented in sci-kit learn3 (Pedregosa et al., 2011),
using default parameters for γ and C. To maxi-
mize the amount of available data, testing for each
model was done via leave-one-out cross-validation.
Model performance was measured as area under
the receiver operator curve (AUC). In the multilin-
gual cases, a language-specific AUC was reported,
where the multilingual model is evaluated sepa-
rately on each target language. To compare the
multilingual methods to the other approaches, AUC
scores were averaged across the languages.

To nullify the effects of random initialization of
the SVM optimization, we averaged AUC values
obtained from 50 random initializations. To further
test quality of the word embeddings, the rate of
out of vocabulary words (OOV Rate) was reported
as the percentage of words that did not have an
emebedding vector in the specific model.

4 Results

All results described in Section 3.6 are in Table 2
and Table 3. Table 2 displays the OOV rate analysis
and Table 3 contains classification results.

A baseline was created using single language,
single embedding (SL-SE) classifications. In the
untranslated approach, Dutch had the lowest av-
erage across embeddings with an average AUC
of 0.29, then French with 0.58, and finally Ger-
man with 0.55. Similarly, Dutch had the lowest
value (average AUC=0.38) across resources in the

3sci-kit learn version 0.24.0 for Python 3.7
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Embedding French German Dutch English Lang AVG

FastText 0.0 0.04 0.0 0.0 0.01
OOV Rate Spacy 0.0 0.07 0.0 0.0 0.018

Wiki2Vec 0.0 0.001 0.0 0.0 ≤ 0.001

Table 2: Out of Vocabulary Rate across embeddings

Untranslated Translated

Approach Embedding French German Dutch Lang AVG French German Dutch Lang AVG

FastText 0.52 0.64 0.24 0.47 0.44 0.35 0.48 0.42
SL-SE Spacy 0.59 0.63 0.38 0.53 0.45 0.38 0.31 0.38

Wiki2Vec 0.64 0.39 0.24 0.42 0.60 0.51 0.36 0.49

FastText 0.63 0.68 0.52 0.61 0.59 0.52 0.48 0.53
ML-SE Spacy 0.68 0.68 0.46 0.61 0.60 0.57 0.53 0.57

Wiki2Vec 0.62 0.56 0.59 0.59 0.63 0.60 0.69 0.64

ML-ME All 0.66 0.68 0.63 0.66 0.62 0.59 0.64 0.62

Table 3: Averaged AUC results for the Multilingual, Multi-embedding model and Baseline approaches. Single
Embedding (SE), Multi-emebedding (ME), Single Language (SL), Multilingual (ML), Average (AVG), Out of
Vocabulary (OOV). Cross-Language AVG is the average AUC performance for the values in the row.

translated approach, then German (0.41) and fi-
nally French (0.50). No single embedding type
showed consistent best performances. In the un-
translated approach, French and Dutch performed
best with Spacy, and German performed best with
FastText. In the translated approach, French and
German achieved their best performance with En-
glish Wiki2Vec embeddings, whereas the Dutch
data worked best with FastText embeddings. The
overall finding from the SL-SE baseline showed
that no single embedding type performed best over
the setting.

In a next step, we combine the datasets to cre-
ate a multilingual training scenario for each of the
embedding types (ML-SE). In both approaches, ev-
ery classification improves with the multilingual
data with the exception of the French Wiki2Vec em-
beddings in the untranslated case. To make more
meaningful comparisons to the SL-SE and ML-SE
cases, we aggregate over the languages for each
embedding type and report a cross-language aver-
age (shown in the table as Lang AVG). We then
compare the cross language averages in the single
language and multilingual scenarios. In both the
untranslated and translated scenarios we see over-
all improvement. In the untranslated case, we see
an average improvement of 12 AUC points, with
the largest improvement coming from Wiki2Vec
(16 AUC points). In the translated case, using the
combined data, we see an average improvement of
almost 15 AUC points.

In the case of the untranslated data, we see the

largest overall improvement in the multilingual,
multi-embedding scenario. Averaging over the
cross language averages (Lang AVG) of the ML-
SE scenario produces an AUC of 0.60, while the
ML-ME average reaches an AUC of 0.66. For
the ML-ME scenrios in the translated case, by av-
eraging across the ML-SE models we achieve a
comparable AUC of 0.58 which is outperformed
by the ML-ME model (0.62). However, in the
translated case, the best results are produced in the
multilingual scenario using Wiki2Vec embeddings
(0.64).

In addition to the classification analysis, we in-
vestigated the Out-of-Vocabulary (OOV) rate for
each of the embeddings in each of the languages
as a form of quality control. The results in Table 2
show that our embeddings were suited for the task.
Overall, we had no OOV words for French, English
and surprisingly Dutch. However, German animals
seem to be lacking from models of equivalent size.
This could also be due to language-specific differ-
ences in morphology.

5 Discussion

In this study we investigate two different methods
of combining multilingual data to build clinical
models to distinguish between healthy controls and
early signs of Alzheiemer’s Disease (MCI); un-
translated and translated.

While the multi-embedding method is best for
when data is kept multilingual, if the data is trans-
lated and no longer in need of multilingual re-
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sources, a single embedding type did emerge with
the best performance, Wiki2Vec. Given this, in
the case where a common language (especially En-
glish) can be achieved, according to our data, it
may be best to find and use one embedding type.

In addition, we found that embedding type does
make a difference in classification performance.
Therefore, caution should be used when deciding
on semantic resources. For instance, in the un-
translated case, if we were to build a multilingual
model and only use Spacy emebeddings, we would
have relatively good performing classifier in French
and German but the Dutch classification would not
exceed chance performance. While combining em-
beddings may not yield the best results for each
individual language, it results in the most uniform
improvement in a multilingual—versus translated—
setting.

However, translating the data to English, dras-
tically improved Dutch performance, specifically
with the Wiki2Vec models. Speculatively, the im-
proved overall performance of the English transla-
tions with Wiki2Vec could be due to the backlink
model where relationships are modeled through
linked wikipedia page, situating Wiki2Vec to be
very useful in modelling these semantic relation-
ship from a cognitive standpoint in verbal Fluency
tasks. However, based on these results, it seems
that these relationships are mainly found in the En-
glish Wiki2Vec model, most likely due to the large
discrepancy in the amount of available training data
between the languages.

Beyond just the brand of embedding, there are
pros and cons that come with each the untranslated
and translated approach. By translating the data
to English, we introduce possible errors based on
how the data is translated. In this study, we chose
to combine an automatic approach with a manual
post-editing step, making the translated approach
not fully automatic. From a clinical perspective,
we do not know if the previous work on cognition
applies to data that is translated to another language
and then assessed. However, from a computational
standpoint, if a reliable translation service for the
source language to English exists, using the mono-
lith of English resources presents as a reliable and
effective alternative.

There are many challenges that arise when try-
ing to concatenate data from multiple sources, thus
specific caution should be taken on how to model
data that has health implications. Our investigation

of the two approaches (untranslated and translated)
shows that SVF speech data can be combined to
achieve results comparable to previous models. As
no unified benchmark exists for HC vs. MCI detec-
tion from the SVF, our results can only cautiously
be compared with previous work. However, we
noticed that our best results from our best models
for French(0.66), German(0.68) and Dutch (0.69)
are in line with reported AUC values for French
(0.76 (König et al., 2018)) and Spanish (0.75 (Paula
et al., 2018)). It is worth noting, that these results
are achieved without using the overall word count,
which typically the strongest indicator for MCI
detection from the SVF task.

6 Conclusion

Using multilingual cognitive data in both a un-
translated multilingual, multi-embedding approach
and translated to a common language approach
improved classification over single language base-
lines.

This is promising not only for the feasibility
of increasing the size of small clinical datasets in
quick and cost-effective way, but it also opens the
door for methodology on how we can use multi-
lingual data to build more robust understanding
of underlying cognitive conditions (Lindsay et al.,
2021b; Fraser et al., 2019).

Future work should look at exploratory analysis
for the compatibility of features computed from
translated transcripts in the current clinical under-
standing. This could present translation as viable
option for low-resource languages, or taking advan-
tage of larger resources, while still presenting ex-
plainable clinical solutions and improved classifica-
tion performance.While the languages in this study
are all in the same language family, this method-
ology should be tested with data from different
language families to test for robustness of the solu-
tion.

As such, our proposed methodology provides in-
sight into the effect of NLP resources for classifica-
tions on cognition as well as a tentative solution to
the problem of combining multiple clinical datasets.
This addresses the issue of small clinical data sets
as well as opens the door for building robust mod-
els of cognition for clinically actionable solutions
leveraging multilingual data, paving the way to-
wards reaching the societal goal of cost-effective
early AD detection.
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