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Abstract

In this paper, we propose a system combi-
nation method for grammatical error correc-
tion (GEC), based on nonlinear integer pro-
gramming (IP). Our method optimizes a novel
F score objective based on error types, and
combines multiple end-to-end GEC systems.
The proposed IP approach optimizes the se-
lection of a single best system for each gram-
matical error type present in the data. Ex-
periments of the IP approach on combining
state-of-the-art standalone GEC systems show
that the combined system outperforms all stan-
dalone systems. It improves F0.5 score by
3.61% when combining the two best participat-
ing systems in the BEA 2019 shared task, and
achieves F0.5 score of 73.08%. We also per-
form experiments to compare our IP approach
with another state-of-the-art system combina-
tion method for GEC, demonstrating IP’s com-
petitive combination capability.

1 Introduction

Grammatical Error Correction (GEC) is the task of
detecting and correcting grammatical errors of all
types present in sentences in an essay, and generat-
ing a corrected essay (Ng et al., 2014).

Most of the latest GEC systems rely on pre-
training with synthetic data and fine-tuning with
task-specific data, and employ deep neural net-
works with attention mechanisms (Bryant et al.,
2019). Single GEC systems can be highly effec-
tive in capturing a wide range of grammatical error
types (Ng et al., 2014), but each individual system
differs in its strengths and weaknesses in correcting
certain error types, and the differences could result
from the synthetic data used in pre-training a GEC
system (Bryant et al., 2019). Two main categories
of synthetic data generation approaches have been
introduced, including directly injecting noise into
grammatically correct sentences according to error
distributions (Zhao et al., 2019; Choe et al., 2019),
or by back-translation (Sennrich et al., 2016; Xie

et al., 2018; Kiyono et al., 2019). While both cat-
egories could help a system achieve a high recall
across many error types, it is hard to obtain a single
uniform GEC system that is good at correcting all
error types.

Presented with this difficulty and the strengths of
individual systems, combining single GEC systems
is thus a promising and efficient way to further im-
prove precision and recall. Creating an ensemble
of multiple systems is a common approach when it
comes to combining multiple models, and the work
of Junczys-Dowmunt et al. (2018) has shown its
effectiveness when combining single GEC models
with different random initializations and configura-
tions. However, this mode of combination requires
altering the component systems to achieve a tight
integration.

In contrast, we focus on combination methods
that need to consider only the outputs of individual
systems. State-of-the-art system combination ap-
proaches working in this manner include Susanto
et al. (2014) and Kantor et al. (2019). The ap-
proach in Susanto et al. (2014) adopts the MEMT
system combination technique of Heafield and
Lavie (2010) and learns a combined corrected sen-
tence which is made up of different parts of multi-
ple system outputs. The work by Kantor et al.
(2019) has proposed a system combination ap-
proach based on convex optimization. It treats
single GEC systems as black boxes, rounding sys-
tem weights to 0 or 1, and iteratively combines two
systems at a time.

In this paper, we propose a novel system combi-
nation method based on nonlinear integer program-
ming (IP). Our method optimizes an F score objec-
tive based on error types, and combines multiple
component GEC systems simultaneously with bi-
nary selection variables. In Section 2, we present re-
lated work on system combination for GEC. Then,
our proposed IP approach is described in detail
in Section 3. We present experimental setup and
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results in Section 4, provide analysis of results
in Section 5, and conclude in Section 6. Our
source code is available at https://github.com/
nusnlp/gec_ip.

2 Related Work

System combination approaches for GEC are based
on pipelining, confusion networks, error types,
or optimization. Pipelining approaches, such as
the CAMB system (Felice et al., 2014), adopt a
pipeline of simpler to more complex GEC systems
for correction, but they suffer from error propaga-
tion. Confusion networks, especially the MEMT
approach for GEC (Susanto et al., 2014), learn the
optimal word choice at a sentence location via a de-
coding scheme. The error type-based approaches
aim at edit selection per error type and per sys-
tem. The LAIX system (Li et al., 2019) employs
a confidence table and a rule-based conflict solver
to select the optimal edits from component sys-
tems. Past work using integer linear programming
(ILP) for GEC includes (Rozovskaya and Roth,
2013; Wu and Ng, 2013). Moving on to using
optimization-based selection variables, the IBM
approach (Kantor et al., 2019) combines edits for a
pair of systems at a time, based on error types and
subsets of corrections. Continuous selection vari-
ables are learned by maximizing the subset-based
F0.5 objective. The IBM approach is most related
to our proposed IP approach, and we highlight the
key differences in Section 3.3.

3 System Combination

We combine systems based on the strengths of indi-
vidual systems in terms of error types, and optimize
directly the F score evaluation metric (van Rijs-
bergen, 1974) to obtain error type-based selection
variables for each system. Compared to Kantor
et al. (2019), we make several major changes to
achieve good precision and recall while making the
combination more efficient. An overview of our
proposed IP approach is illustrated in Figure 1.

3.1 An Integer Programming-Based
Approach

First, we observe that the selection variables
learned by convex optimization in Kantor et al.
(2019) are rounded to their nearest integers, either
0 or 1, for simplicity. This approximation of con-
tinuous variables raises the question of why binary
variables were not directly used in the first place.

A more direct solution is to adopt binary variables.
Let

xij =

{
1 if Si is used to correct Tj
0 otherwise

where Si refers to system i in a set of M systems
S = {S1, . . . , SM} and Tj refers to error type j in
a set of N error types T = {T1, . . . , TN}. Taking
F score, the evaluation metric of GEC systems,
as our objective function to maximize, we can for-
mulate the GEC system combination problem as a
nonlinear 0-1 integer programming (IP) problem
as follows:

maxFα(X) =

(1 + α2) · TPsum
(1 + α2) · TPsum + FPsum + α2 · FNsum

s.t. ∑
i∈S

xij = 1,∀j ∈ T (1)

xij ∈ {0, 1},∀i ∈ S, j ∈ T (2)

where
TPsum =

∑
i∈S

∑
j∈T

λTPij xij (3)

FPsum =
∑
i∈S

∑
j∈T

λFPij xij (4)

FNsum =
∑
i∈S

∑
j∈T

λFNij xij (5)

Equation (1) imposes the constraint that each error
type is corrected by exactly one system. Equation
(2) is the integer constraint, resulting in a 0-1 inte-
ger programming model. In Equations (3), (4), and
(5), λTPij , λFPij , and λFNij respectively denote the
true positive count, false positive count, and false
negative count for system i and error type j. In
this paper, we set α = 0.5 and optimize F0.5, the
standard evaluation metric in GEC.

Moreover, the combination method in Kantor
et al. (2019) uses the intersection of the edits of
multiple systems, which can be too sparse to be
useful when many systems are combined. Their
iterative combination approach may alleviate the
sparsity problem, but high computational cost is
incurred when the number of component systems is
large, due to the inherent combinatorial explosion
of finding the optimal order of combination. In con-
trast, our approach requires no subset splitting, and
optimizes all component systems simultaneously
as indicated in Equations (3), (4), and (5).

https://github.com/nusnlp/gec_ip
https://github.com/nusnlp/gec_ip
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Figure 1: An overview of our proposed IP approach.

3.2 Combination Procedure

The input to the IP approach is M corrected sen-
tences (of the same ungrammatical sentence) given
by GEC systems S1, . . . , SM . The output is a cor-
rected sentence, after applying edit selection. The
combination procedure consists of an optimization
step followed by a correction (inference) step. De-
tails are as follows.

Optimization Step. We compute the true posi-
tive, false positive, and false negative counts for
each error type and component system on a train-
ing dataset. Utilizing these counts, the 0-1 inte-
ger programming model defined in Section 3.1 is
solved using the commercial optimization software
LINGO10.01 to compute the optimal solutions for
xij . In LINGO10.0, we adopt the INLP (integer
nonlinear programming) model. For the experi-
ments in this paper, the runtime for the LINGO
solver to compute an optimal solution is 2 to 10
seconds.

Correction Step. During correction (inference),
the system applies an edit (by system i to correct
an error of type j) to an input sentence if xij = 1
as determined by the LINGO solver. Conflicts of
candidate edits from multiple systems (under dif-
ferent error types) can occur in the same location
in a sentence. In other words, although a single
system is used for each error type, a conflict can

1https://www.lindo.com/index.php/
products/lingo-and-optimization-modeling

occur when two systems perceive an error in the
same location to be of different error types, caus-
ing the location to have multiple candidate edits.
When this happens, we set IP to randomly choose
a candidate edit.

3.3 Key Differences from the IBM approach

Since the IBM approach (Kantor et al., 2019) is the
most related work, we summarize the key differ-
ences of our IP approach from the IBM approach.

1. The IP approach directly combines all systems
at once, as opposed to iteratively combining
two systems at a time in the IBM approach,
where the order of combination affects the
outcome and there is a need to search for the
best order of combination. In contrast, our
approach avoids the problem of searching for
the best order of combination.

2. Binary (0-1) integer selection variables are
directly used, in contrast to approximation by
integers in the IBM approach.

3. In the IP approach, we avoid having to per-
form subset splitting during optimization, in
contrast to the IBM approach. For subset split-
ting, corrections from two systems are split
into an intersection subset and subsets con-
taining per system-only corrections, which
can result in data sparsity.

https://www.lindo.com/index.php/products/lingo-and-optimization-modeling
https://www.lindo.com/index.php/products/lingo-and-optimization-modeling
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4 Experiments

4.1 Component Systems
To apply the IP combination method on GEC, we
choose three state-of-the-art GEC systems as com-
ponent systems. They are the systems UEdin-MS
(Grundkiewicz et al., 2019) and Kakao (Choe et al.,
2019) (the top two systems from the restricted track
of the BEA 2019 shared task), as well as Tohoku
(Kiyono et al., 2019).

The three GEC systems share interesting com-
monalities and exhibit salient differences. The ma-
jor commonalities are the use of the Transformer
Big architecture (Vaswani et al., 2017) (the Kakao
system uses a variant, the copy-augmented Trans-
former (Zhao et al., 2019)), pre-training on 40M to
100M synthetic parallel data, ensemble of multiple
models, and re-ranking. They differ in the syn-
thetic data generation methods, the monolingual
sources, the implementation of the architecture, and
re-ranking features. These characteristics lead to
individual strengths in correcting different types of
errors, allowing room for improvements via system
combination.

4.2 Training and Evaluation
We use the official BEA 2019 shared task datasets
for training and evaluation. We learn our selection
variable values based on the output sentences of
the component systems on the official validation
set. At inference time, we apply combination on
the output sentences of the component systems
on the official blind test set of BEA 2019. The
resulting output sentences are sent to the shared
task leaderboard for evaluation, where P , R, and
F0.5 scores are the evaluation metrics. The official
scorer is the ERRANT evaluation toolkit v2.0.0
(Bryant et al., 2017).

4.3 Experimental Results
Besides our proposed IP method, we compare with
the MEMT-based system combination approach for
GEC. We follow the work of Susanto et al. (2014)
to use the open source MEMT toolkit (Heafield and
Lavie, 2010) for experiments.

MEMT system combination performs two ma-
jor steps to combine edits: pairwise alignment and
confusion network decoding with feature weight
tuning. Pairwise alignment is first performed using
METEOR (Banerjee and Lavie, 2005) to form a
search space for combination. The alignment rec-
ognizes exact matches, words with the same stem,

System P R F0.5

1. UEdin-MS 72.28 60.12 69.47
2. Kakao 75.19 51.91 69.00
3. Tohoku 74.71 56.67 70.24

IP
C1: 1+2 78.20 57.90 73.08
C2: 1+3 76.08 58.81 71.86
C3: 2+3 76.95 55.54 71.44
C4: 1+2+3 78.17 57.88 73.05

Table 1: Scores (%) of the component systems and the
IP combination approach on the BEA 2019 blind test
set.

synonyms defined in WordNet, and unigram para-
phrases. Then a confusion network is formed on
top of the aligned sentences and beam search de-
coding is used to form hypotheses. During beam
search, scoring of partial hypotheses is performed
by a set of features, including hypothesis length
to be normalized, log probability from a language
model, n-gram backoff from the language model,
and matched n-grams between the sentences gen-
erated by the component systems and the hypothe-
sis. Tuning of feature weights is performed using
ZMERT (Och, 2003), optimized for the BLEU met-
ric. We report the average score of three runs of
each MEMT combination.

The scores for the component systems and the
IP combination approach are reported in Table 1,
and the scores for the MEMT approach are re-
ported in Table 2. All combination scores using
the IP method are higher than the individual sys-
tems’ scores. The best IP score is achieved by com-
bining UEdin-MS and Kakao (1+2), and the F0.5

score is 73.08%, which is 3.61% higher than that of
the best individual component system UEdin-MS.
Comparing IP with MEMT, the average F0.5 score
across all combinations of IP is 72.36%, and that
for MEMT is 71.42%, so the average F0.5 score
of IP is 0.94% higher than that of MEMT. The
IBM approach (Kantor et al., 2019) reported F0.5

score of 73.18% when combining the component
systems UEdin-MS and Kakao (1+2). Overall, the
performance of IP is thus comparable to other state-
of-the-art combination approaches.
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System MEMT
P R F0.5

C1: 1+2 72.52 60.92 69.90
C2: 1+3 73.06 60.75 70.29
C3: 2+3 75.84 58.28 71.50
C4: 1+2+3 79.17 58.68 73.98

Table 2: Scores (%) of the MEMT approach on the
BEA 2019 blind test set.

5 Analysis of Results

We analyze how much the combined system using
the IP approach improves over individual compo-
nent systems, on a per-sentence basis. Since ref-
erence edits are unavailable for the blind test set,
we base our analysis on the BEA 2019 validation
set and split it into two halves: the first half for
training and the second half for testing. For each
input sentence, we compare the F0.5 scores of its
output sentences generated by Kakao, UEdin-MS,
and the system obtained by IP combination of both.
We assign each output sentence s into one of two
classes, based on whether (1) the F0.5 scores of s
are identical in Kakao and UEdin-MS; or (2) the
F0.5 scores of s are different.

The findings are summarized as follows. Of
the 2,192 test sentences, there are 1,503 sen-
tences where Kakao and UEdin-MS have the same
F0.5 score. For these sentences, the IP approach
achieves the same or higher F0.5 score on 1,501
sentences. The F0.5 score of IP on these 1,501
sentences is 0.4% higher than each individual sys-
tem. For the remaining 689 sentences that either
Kakao or UEdin-MS performs better, 503 out of
689 sentences benefit from IP combination, with an
increase of 11.58% in the overall F0.5 score on the
503 sentences compared to the average F0.5 score
of Kakao and UEdin-MS. This analysis shows that
the component systems benefit from the IP combi-
nation approach on a per-sentence basis.

6 Conclusion

In this paper, we have proposed a system combina-
tion approach for GEC based on nonlinear integer
programming, which combines all systems at once.
The use of binary selection variables is simpler
and more direct, compared to using continuous
variables then rounding them. The best F0.5 score
achieved is 73.08% on the BEA 2019 test set.
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