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Oğuz Kerem Yıldız
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ezgi@starlangyazilim.com
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Abstract

This paper deliberates on the process of build-

ing the first constituency-to-dependency con-

version tool of Turkish1. The starting point of

this work is a previous study in which 10,000

phrase structure trees were manually trans-

formed into Turkish from the original Penn

Treebank corpus. Within the scope of this

project, these Turkish phrase structure trees

were automatically converted into UD-style

dependency structures, using both a rule-based

algorithm and a machine learning algorithm

specific to the requirements of the Turkish lan-

guage. The results of both algorithms were

compared and the machine learning approach

proved to be more accurate than the rule-based

algorithm. The output was revised by a team

of linguists. The refined versions were taken

as gold standard annotations for the evaluation

of the algorithms. In addition to its contribu-

tion to the UD Project with a large dataset of

10,000 Turkish dependency trees, this project

also fulfills the important gap of a Turkish con-

version tool, enabling the quick compilation of

dependency corpora which can be used for the

training of better dependency parsers.

1 Introduction

There are two types of annotated treebanks used

in natural language processing (NLP) systems:

1https://github.com/StarlangSoftware/StructureConverter

constituency treebanks and dependency treebanks.

They are used to represent syntactic relations, ar-

gument structures, and other hierarchical relations.

Constituency treebanks display groups of phrases

as trees and dependency treebanks marks head-

dependent relations for each item. Today, depen-

dency parsers are expected to adapt to new data

from a variety of genres. The Universal Depen-

dencies (UD) Project (Nivre et al., 2020) provides

convenient corpora for these parsers. However,

this kind of an adaptation requires a huge amount

of data that is not suitable for manual annotation.

Thus, the existent constituency treebank corpora

are being automatically converted into dependency

treebanks as the need for dependency treebanks

increased in order to train dependency parsers

(Marneffe et al., 2006); (Johansson and Nugues,

2007); (Choi and Palmer, 2012).

Constituency to dependency conversion re-

quires a big corpus and a coherent annotation

framework. UD helps to provide a framework

for annotated treebanks to be used in different

languages. There have been several attempts

made to represent Turkish language in this project

and to create a common framework in Turk-

ish language treebank studies (Sulubacak et al.,

2016); (Oflazer et al., 2003); (Çöltekin, 2015)

(Kuzgun et al., 2020). However, Turkish language
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has flexible word order as a consequence of its

agglutinative morphology. Such features compli-

cates the annotation scheme for Turkish and ren-

ders the language harder to parse while giving

rise to problems such as non-projectivity. In their

work, Türk et al. (2019) edited the IMST Tree-

bank (Sulubacak et al., 2016) according to the UD

framework considering the needs of the Turkish

language but its corpus does not provide a paral-

lel treebank in terms of a cross-linguistic attribu-

tion to the literature and even this refinement could

not help the IMST Treebank to adapt the new ver-

sions of the UD framework. In spite of all the

attempts and refinements which have been men-

tioned above, Turkish still lags behind compared

to similar languages in the area. For instance,

a dependency conversion tool is yet to be devel-

oped for Turkish while there are studies present for

similar languages such as Hungarian (Simkó et al.,

2014).

We have applied our conversion algorithms to

the biggest Turkish Constituency Treebank which

is the Turkish counterpart of the original Penn

TreeBank corpus (Marcus et al., 2002), the first an-

notated treebank of English that set the gold stan-

dard for other treebanks. There have been sev-

eral studies done for the parallel constituency tree-

bank creation in Turkish. Yıldız et al. (2014) de-

veloped an automatic translation process to trans-

late trees from the Penn Treebank. They cre-

ated a tool that learned from the 5000 manually

translated sentences and offered possible transla-

tions. Yıldız et al. (2015) fine tuned this work by

deleting empty projections, and rearranging the

two word constructions that were appearing in

one node due to the cross-linguistic consequences.

In their study, Bakay et al. (2019) translated sen-

tences using a tree-based approach to deal with the

long distance dependencies that are not present in

the corresponding English sentences. These long

distance dependencies occur as a result of the dif-

ference between English and Turkish in having a

fixed word order and a flexible word order respec-

tively.

The Turkish Penn Constituency Treebank used

in this conversion study, however, is distinct from

the previous parallel Turkish constituency tree-

bank studies as the most recent one is translated

and annotated manually. It consists of 10.000 an-

notated sentences2 translated from the original ver-

2https://github.com/olcaytaner/TurkishAnnotatedTreeBank-

sion of the Penn Treebank (Kara et al., 2020). In

order to make the translations suitable for the Turk-

ish language, a team of linguists deleted, changed

some tags from the original Penn Treebank, and

also they introduced new tags that are necessary

for a better syntactic representation of the Turkish

language. We preferred using The Turkish Penn

Treebank in our conversion study as it offered an

accurate and less complicated constituency tree-

bank that is necessary for the demands of our con-

version tool.

Our main objective in this study is to introduce

the first Turkish constituency to dependency con-

verter by using the parallel Turkish constituency

treebank introduced above. Another contribu-

tion of this work to the literature comes from its

cross-linguistic nature. Since most of the con-

version studies used the Penn Treebank corpus

(Marneffe et al., 2006); (Johansson and Nugues,

2007); (Choi and Palmer, 2012), our choice of em-

ploying a translated corpus results in a Turkish-

English parallel constituency to dependency con-

version study.

All the previous converter studies employed

a rule-based approach. Johansson and Nugues

(2007) differs from these studies in that they in-

cluded extra labels to include semantic informa-

tion and to handle syntactic phenomena such as

topicalization, clefting, gapping, and so on. They

put the semantic annotations in the Penn Treebank

in use to achieve a more semantically rich de-

pendency treebank. However, as the labels were

more complicated, the employment of semantic

information decreased the parsing accuracy. The

Stanford dependency approach, on the other hand,

did not use these function labels that were manu-

ally annotated over the Penn Treebank corpus. In

their study, Choi and Palmer (2012) combined the

Stanford approach with the CoNLL dependency

approach which uses different labels and relation

rules. This combination allowed them to achieve

better accuracy without eliminating the semantic

information encoded in the Penn Treebank corpus.

In our study, the translated version of the Penn

Treebank does not include these semantic labels,

and therefore our conversion rules does not em-

ploy these semantic information as in the Stanford

approach.

15
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Hierarchy Tag List

1 VP, NOMP

2 S, NP, ADJP, ADVP

3 PP

4 DP, NUM

5 QP, NEG, CONJP, INTJ, WP

Table 1: Hierarchical head table.

2 Conversion Process

2.1 Turkish Penn Treebank as Input

Using the Penn Treebank as an input for converter

algorithms is a very common procedure. So as not

to break this tradition, we have also decided to use

the Turkish version of Penn Treebank. As men-

tioned above, this widely-used constituency tree-

bank was first adapted to Turkish by Yıldız et al.

(2014). We found the latest version of the dataset

to be simplistic and yet an adequate representation

of the Turkish language, especially thanks to its

being manually edited by a team of linguists. The

tree in Figure 1 illustrates the final version of a

sentence in the Turkish Penn Treebank corpus.

The input we used follows the main principles

of the Penn Treebank annotation. However, there

are differences in some aspects. In their study,

Kara et al. (2020) excluded the bar level projec-

tions such as NONE, VBN, NNP, IN, NSBJ-1.

They aimed for a more minimal approach to re-

duce the number of branches while keeping the

necessary constituency information. In addition

to this difference, this version has additional tags

such as NEG, NOMP, and QP. In conversion, we

used word level non-terminal nodes while benefit-

ing from the headedness of Turkish language.

2.2 Algorithms

2.2.1 Rule-based Approach

While constructing an algorithm for constituency

to dependency converters, there are some basic

and simple steps that should be followed. The

real hardship lies in creating specific rules for the

needs of each language. Turkish has a rich mor-

phology, with many suffixes and different cases

carrying semantic or syntactic information. This

made it compulsory to include in the algorithm

some information from a morphological analyzer.

As our input dataset already had each word mor-

phologically analyzed through a semi-automatic

process (Yıldız et al., 2019), we had the opportu-

nity to extract information from their analyses.

The first problem to tackle is determining a

head for each phrase in the phrase structure trees.

Whereas in phrase structure trees the head of a

constituent is not transparent due to its non-binary

representation and linking style, in dependency

structures the head and its dependents are always

marked. This requires a head to be determined

for each constituent. The most efficient way to

achieve this is by constructing a hierarchical table

which allocates a number to each type of phrase

and listing them according to their prioritization.

Table 1 contains the hierarchical head table used

for the Turkish Penn Treebank. Hierarchical head

table allocates priority numbers (from 1 to 5, with

1 having the top priority and 5 having the lowest)

to different phrase labels. In a node with more than

one daughter, the one with the lowest number be-

comes the head. In a case where phrases with the

same priority number are sisters, the one on the

right becomes the head.

The hierarchy of the tags are decided by consid-

ering the behaviors of the UD tags and the head

final structure of Turkish. For instance words with

VP/NOMP labels are always the root of the sen-

tence. Therefore, they have the highest priority for

being labeled as the head. The following group is

the adjunct category. When these types of words

are linked to the root, they are always dependents.

The third category is the post positions and they

can be linked to a word that is in the first or in the

second category in the hierarchy, either case it is

always a dependent. The fourth category consists

of determiners and numeral modifiers. These are

always dependents to noun phrases, therefore it is

crucial that they are lower in the hierarchy. The

last category of the hierarchy consists of the tags

that are always dependents.

This table allows for an accurate head determi-

nation, especially in exceptional cases. Due to

its head-final nature, in Turkish, heads of phrases

generally appear on the right, thus at the end of

the phrase. To write such an algorithm would be

perfectly simple if it weren’t for some exceptions

such as postpositions and negation. For instance,

in the phrase senin için (”for you”) the postposi-

tion için is the rightmost word which should be the

head according to a head-final algorithm. How-

ever, in UD annotations, the adpositions should

be dependents of NPs, so the leftmost element

senin (NP) should be head and the postposition
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Figure 1: Representation of the sentence achieved by new methodology

için should be linked to the NP with the tag CASE.

The solution to this lies in the hierarchical head ta-

ble, where NP is given a priority value of 2 and

PP a priority value of 3. In this case, wherever

an NP is found as a sister to a PP, the NP has

the priority to be the head. Another example to

this can be the labels NOMP (nominal predicate)

and NEG (negation), which appear as sisters with

this respective order. However, the negation, even

though it appears on the right of the main predi-

cate, cannot be the head according to UD annota-

tions. By allocating the number 5 to NEG and 1

to NOMP, we make sure that whenever NOMP ap-

pears with NEG, the algorithm will choose NOMP

as the head and NEG as its dependent.

After the heads were determined, certain rules

had to be written to link structures and phrase

labels of the constituency trees with UD annota-

tion tags. Figure 2 is a list which illustrates some

of these conversion rules. There are 21 conver-

sion rules in total, excluding the DEP rule which

is used whenever the listed conversion rules fail

to apply. The rules take the POS information of

the head and dependent nodes in the constituency

tree along with the morphological information of

the word tokens. For instance, the sentence “hızlı

koşuyor” meaning “s/he is running fast.” consists

of an adverb and a verb. The tag hierarchy marks

the verb “koşuyor” as the head and the adverb

“hızlı” as the dependent. Then, the rules in Fig-

ure 2 apply and determine the relation between

them. There are two labeling options for the re-

lation between an adverb and a verb: ADVCL or

ADVMOD. The difference between the two rela-

tions is that the ADVCL relation is used when the

dependent is clausal, otherwise the adverb relation

is labeled with ADVMOD. The clausal adverbials

have a verbal root in their morphology. Therefore,

the algorithm questions the existence of a verbal

root in an adverb to determine the correct depen-

dency relation. The adverb “hızlı” does not have a

verbal root, so it is marked as ADVMOD. If it had

a verbal root as in “hızlanarak”, meaning “in an

increasing speed”, then, it would create an adver-

bial clause. Therefore, the algorithm would mark

it as the ADVCL.

2.2.2 Machine Learning Approach

In training a machine learning algorithm, there are

two main issues to consider: determining the head

and how it is linked to its dependents, and deter-

mining the dependency relations between the head

and its dependents. In order to achieve this, first,

the algorithm sees a tree as a whole. Then, it finds

the correct constituents by scanning the nodes of

the tree. Once a node is matched, it cannot be

overwritten by the upper nodes. This procedure

continues until there are no more nodes left in the

tree. Once the algorithm has established the con-

stituents, we use an oracle which is the mechanism

that determines the correct linkings between the

heads and their dependents as well as the depen-

dency relation types between them. We use two

different oracles to find these constituents. One of

them is the rule-based basic oracle and the other

is a classifier oracle which is used as a machine

learning model. After the constituents have been

determined, they are put together to form a sen-

tence.

The classifier oracle forms an instance list by

taking the Parts of Speech (POS) tags of the words

in the constituent and assigns them an index ac-

cording to its position in the constituent. In an-

other iteration, the head of the constituent is not

included in the ranking. For instance, in a con-
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1 i f dependentNode == ADVP:

2 i f i s V e r b a l ( dependentWord ) :

3 re tu rn ADVCL

4 e l i f i sNomina l ( dependentWord ) :

5 re tu rn NMOD

6 e l s e :

7 re tu rn ADVMOD

8 e l i f dependentNode == ADJP :

9 i f headNode == NP :

10 i f i s V e r b a l ( dependentWord ) :

11 re tu rn ACL

12 e l s e :

13 re tu rn AMOD

14 re tu rn ADVMOD

15 e l i f dependentNode == PP :

16 i f headNode == NP :

17 re tu rn CASE

18 e l s e :

19 i f i sNomina l ( dependentWord ) :

20 re tu rn NMOD

21 e l s e :

22 re tu rn ADVMOD

23 e l i f dependentNode == NP :

24 i f isCompound ( dependentWord )

25 and isCompound ( headWord ) :

26 re tu rn COMPOUND

27 i f headNode == NP :

28 i f i s P r o p e r ( dependentWord )

29 or i s P r o p e r ( headWord ) :

30 re tu rn FLAT

31 re tu rn NMOD

32 e l i f headNode == VP :

33 i f isAccOrNom ( dependentWord ) :

34 re tu rn OBJ

35 re tu rn OBL

36 e l i f dependentNode == S :

37 i f headNode == VP :

38 re tu rn CCOMP

39 e l i f dependentNode == DP :

40 re tu rn DET

41 e l i f dependentNode == NUM:

42 re tu rn NUMMOD

43 e l i f dependentNode == INTJ :

44 re tu rn DISCOURSE

45 e l i f dependentNode == NEG:

46 re tu rn NEG

47 e l i f dependentNode == CONJP :

48 re tu rn CC

Figure 2: Python rules for linking structures and phrase

labels of the constituency trees with UD annotation tags

Length Percentage

2 1.32

3 6.11

4 6.77

5 8.86

6 12.57

7 11.66

Table 2: Error rates according to constituency length

(Random Forest, ensemble size = 50)

stituent that includes an adjective and a noun, we

have a 2 word long instance as the following: ADJ

NOUN 0 1. Here, the ADJ marks the POS tag of

the first word of the constituent, the NOUN marks

the second word, and the numbers mark their in-

dexes. The instance lists are classified according

to the length of the constituent. Later, the index of

the head of the constituent is converted into class

information. Thus, an instance like “ADJ NOUN

0 1” turns into ADJ NOUN 1 given that the head

of this pair is the NOUN.

Subsequently, we have tested decision tree,

Naive Bayes, KNN, and Random Forest models by

using constituency and dependency treebanks of

the same corpus. Running the models separately

and as ensemble resulted in similar error rates.

Thus, we decided to use the Random Forest which

had the least errors. We tested the Random Forest

model with several parameters and chose the one

that minimizes the error rates. Table 2 shows er-

ror rates according to the constituency length. The

error rates get higher as the constituency length

increases. Therefore, we did not include con-

stituents bigger than 7 words length and applied

a rule-based algorithm for them.

As for the second problem of choosing depen-

dency relations, the first task was to assign the

POS-tags and class information flags of heads and

its dependents for the entirety of the instance list.

For instance, in a constituent with an adjective

and a noun, the instance would be ADJ NOUN

AMOD. Here, the first two tags mark the POS tag

of the two words in linear order, and the last one

marks the type of the dependency relation by con-

sidering the information provided by the POS tags.

However, the first results achieved by the ran-

dom forest model were not satisfying. So as to

achieve better performance, each word, includ-

ing the head, was evaluated according to the fol-

lowing questions concerning their morphological
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structure:

What is the POS-tag of the root?

Does the word have an ablative tag?

Does the word have a dative tag?

Does the word have a genitive tag?

Does the word have a nominative tag?

Does the word have an accusative tag?

Does the word have a proper tag?

Does the first word in the constituent share the

same sense ID in Turkish WordNet with the head

of the constituent?

These questions result in a sequence of true/-

false outputs along with the POS-tag information

of the head of the constituent and its dependents,

in addition to the class information provided at the

end of the instance. The performance was satisfy-

ing after the implementation of the questions. The

following string illustrates an instance of an ADJ-

NOUN constituent which consists of two words.

The string begins with the POS tag information

of the first word of the constituent and it is fol-

lowed by the true/false outputs relevant to this

word. Then, it continues with the POS tag infor-

mation of the second constituent and its applicable

true/false outputs. The last ”false” output stands

for the last question and shows that the two words

do not share the same word ID. The ADJP and

NOMP marks the node names of the constituents

in the phrase tree. Lastly, the AMOD label shows

the relation between the two words.

ADJ false false false false false false

NOUN false false false true false false

false

ADJP NOMP

AMOD

2.3 Setting the Gold Standard

In order to evaluate the algorithm, we needed gold-

standard dependency annotations for all 10,000

sentences in the Penn treebank corpus. This work

was carried out by a team of 7 linguists and a

UD-style annotation scheme was adopted. The

annotated data is freely available in the UD web

page3. The tags were adapted to the requirements

of Turkish, so that they would successfully cap-

ture important distinctions while avoiding over-

specifications which hinder the training of any

prospective dependency parsers.

3https://github.com/UniversalDependencies/UD Turkish-
Penn

Metric Percentage

LAS 66.92

UAS 85.32

LA 72.32

Table 3: LAS, UAS, and LA parsing scores of the rule-

based algorithm

The annotations for the gold-standard were car-

ried out with the help of an original interface. The

sentences appear in a linear way and the annotator

can mark the head-dependent relations by draw-

ing an arrow from the dependent towards the head

and choosing the suitable tag from a pop-up win-

dow. After the manual tagging process, the anno-

tations are checked and corrected on another win-

dow where the sentences appear as a list. The fact

that they can be grouped according to their tags or

the annotated words enables an effective and quick

control process for the annotators.

3 Evaluation

3.1 Evaluation Tool

We used three metrics in order to measure the per-

formance of our converter: Labelled Attachment

Score (LAS), unlabelled attachment score (UAS),

and label accuracy (LA). These are the metrics that

show the highest correlation with the human judge-

ments respectively (Plank et al., 2015). The LAS

score showed us the percentage of the words that

are connected to the right head with the right de-

pendency label. The UAS score determined the ac-

curacy of our head finding algorithm by displaying

the proportion of the words that are connected to

their correct head. Lastly, the LA score showed us

the proportion of the words with the correct tags.

3.2 Results & Discussion

Table 3 and 4 show the LAS, UAS and LA scores

of our converted dependency treebank for the two

approaches. The scores are calculated according

to the amount of changes made by the human an-

notators on the converted dependency treebank.

It should also be noted that the output sentences

were all projective in both conversion methods.

Since this is the first converter for the Turk-

ish language, we were unable to compare our re-

sults with other Turkish conversion tools. How-

ever, the results show that the rule-based approach

lags behind the conversion studies held in other

languages. The relatively lower LA score of the
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Metric Percentage

LAS 72.83

UAS 84.82

LA 78.18

Table 4: LAS, UAS, and LA parsing scores of the Ma-

chine Learning algorithm

rule-based approach reflects the fact that confu-

sion is existent between similar tags which cause

debates even among the human annotators. On

the other hand, the relatively higher UAS score of

the rule-based algorithm shows that our head find-

ing algorithm works better than the overall perfor-

mance of the converter. This might be the outcome

of the corpus we used since it consisted of formal

sentences with mostly canonical order. A less for-

mal corpus could give different results since the

amount of scrambling would be different.

Nevertheless, the rule-based approach is not as

successful as the machine learning algorithm. This

is an interesting finding given that the machine

learning approach resulted in better scores even

though the rule-based algorithm was specifically

tailored for the requirements of the Turkish Lan-

guage. The results indicate that dividing the con-

version problem into two phases as head finding

and determining the dependency relation is a bet-

ter methodology for conversion studies because it

not only results in better scores but also provides

a more adaptable algorithm that can be used for

other languages. This supports the idea that there

is confusion between similar tags, and this affects

the performance of the converter. The main rea-

sons for the confusions have been explained be-

low.

Tables 5 and 6 shows the confusion matrices

of the 13 most frequent tags used in the data for

rule-based and machine learning algorithms re-

spectively. From this table, some of our mistakes

can be explained as a result of the co-occurrence

of the same lexical items with different functions

in Turkish. For instance, the word yumuşak mean-

ing “soft” can occur as an adjective as in yumuşak

yastık meaning “soft pillow”, as an adverb modify-

ing a verb in a sentence like ”Yumuşak davrandı.”

meaning “S/he acted softly.”. It can also function

as an adjectival predicate to be labelled as a root

as in “Onun kumaşı yumuşak.” meaning “Its cloth

is soft”. Notice that the three words with different

functions do not show any morphological variance

on the word. These kinds of structures affect the

labeling of ADVMOD, AMOD, OBL, and NMOD

the most. Table 5 illustrates this effect. For exam-

ple, 5.6% of OBL had been mistakenly labelled as

ADVMOD and another 34.8% of them labelled as

NMOD. Considering the syntactic position helps

to differentiate between these tags to some extent,

especially in OBL-ADVMOD cases. However, un-

derstanding the function of morphologically iden-

tical structures is still an important issue because

of the flexible word order. Assumptions on syn-

tactic position often cause problems as a result of

the flexible word order of Turkish language. An

example is the NSUBJ tag. The table shows that

25.3% of the total mistaken tags for NSUBJ con-

sists of the NMOD tags and another 16.4% con-

sists of the OBJ tags. Some of these mistakes

can be explained by scrambling. In the canonical

word order, we would expect the first NP of a sen-

tence in Turkish to be the subject as in the tree-

bank all the complements of the verb were put un-

der the predicate node. However, there were sen-

tences where other NP structures occurred before

the subject. As a result, both flexible word order

and the morphological reasons mentioned above

gave rise to the confusion among these tags in the

rule-based algorithm.

Table 6 shows that the machine learning algo-

rithm prioritizes the learning of the more frequent

tags such as AMOD, ADVMOD, NMOD and so

on in that it shows higher performance than the

rule-based algorithm over these tags. This proves

that the machine learning approach does not tackle

the same confusion problems as the rule-based

model stated above. On the other hand, there are

areas in which the machine learning algorithm per-

formed poorer than the rule-based algorithm such

as identifying FLAT and CASE relations. These

tags share the common property of reversed attach-

ment type. This uniqueness of these relations can

easily be applied in rule-based algorithm but ap-

parently it causes confusion to the machine learn-

ing models.

All of these examples show that machine learn-

ing approach is helpful to increase the parsing ac-

curacy for languages with rich morphology and

flexible word order since it takes each sample as an

input, and evaluates the patterns according to the

relevant information provided by the data rather

than trying to fit the data into a structure. Both the

rule-based model and the machine learning model
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Tag Advmod Amod Case Cc Ccomp Compd Det Flat Nmod Nsubj Nummod Obj Obl

Advmod 81.3 1.7 1.9 3.0 0.1 0.1 0.7 0.0 3.9 0.2 1.4 0.3 2.0
Amod 11.7 74.4 1.4 0.0 0.0 0.1 0.8 0.2 4.7 0.1 0.5 0.2 0.1
Case 12.4 1.0 75.1 6.8 0.1 0.1 0.1 0.0 1.0 0.5 0.0 0.0 1.0
Cc 0.5 0.1 1.4 97.5 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0

Ccomp 3.6 1.1 0.1 0.5 47.2 0.5 0.0 0.1 7.1 1.5 0.1 25.4 8.3
Compd 6.5 0.6 0.0 0.3 0.2 50.2 1.3 1.3 16.1 0.0 14.8 4.8 2.5

Det 0.5 0.3 0.0 0.3 0.0 0.0 97.3 0.0 0.5 0.3 0.4 0.0 0.1
Flat 0.0 0.8 0.5 0.2 0.1 0.7 0.0 32.6 34.0 13.3 0.8 3.1 0.9

Nmod 0.8 0.3 1.7 0.1 0.1 6.3 0.0 7.6 73.5 1.3 2.1 1.7 4.2
Nsubj 0.2 0.1 0.1 0.1 0.1 0.1 0.4 3.1 25.3 52.8 0.2 16.4 0.7

Nummod 0.2 0.1 0.0 0.1 0.0 0.0 1.0 0.0 1.4 0.0 95.3 0.1 1.6
Obj 0.9 0.0 0.2 0.0 0.9 3.2 0.0 0.7 27.3 5.1 0.3 52.4 8.2
Obl 5.6 0.3 6.8 0.2 0.4 0.8 0.1 1.1 34.8 1.1 2.9 4.1 41.1

Table 5: Confusion matrix of the most frequent tags in the rule-based algorithm

Tag Advmod Amod Case Cc Ccomp Compd Det Flat Nmod Nsubj Nummod Obj Obl

Advmod 80.6 4.9 1.7 0.7 0.1 1.2 0.8 0.0 2.1 0.6 0.4 0.5 2.4
Amod 3.1 82.6 0.5 0.0 0.1 0.7 0.5 0.0 6.1 0.3 0.1 0.3 0.6
Case 10.1 1.2 74.5 1.4 0.3 0.1 0.0 0.0 4.2 0.1 0.0 0.1 4.5
Cc 2.9 0.1 2.5 83.3 0.0 0.2 0.0 0.0 4.6 0.3 0.0 0.0 0.0

Ccomp 1.5 0.7 0.1 0.2 71.6 0.8 0.0 0.0 3.4 1.6 0.0 8.1 4.6
Compd 3.3 1.4 0.2 0.0 0.3 58.6 1.1 0.0 12.7 0.6 9.3 7.1 3.5

Det 0.6 1.4 0.1 0.0 0.0 0.3 94.2 0.0 1.2 0.9 1.1 0.0 0.1
Flat 0.0 1.1 1.7 0.2 0.1 0.3 0.0 1.4 59.1 18.1 0.3 1.3 2.2

Nmod 0.9 0.9 1.5 0.0 0.2 1.0 0.0 0.2 80.7 2.5 1.5 3.2 6.1
Nsubj 0.3 0.2 0.1 0.0 0.1 0.2 0.1 0.1 7.7 87.3 0.1 2.1 0.7

Nummod 1.8 0.4 0.1 0.0 0.0 4.0 1.7 0.1 2.7 0.1 82.5 0.1 0.3
Obj 0.5 0.2 0.3 0.0 4.5 2.3 0.1 0.0 11.0 9.3 0.2 59.9 9.6
Obl 2.5 1.0 2.1 0.0 1.4 0.9 0.0 0.1 21.0 4.0 1.1 7.4 55.0

Table 6: Confusion matrix of the most frequent tags in the machine learning algorithm

employ the use of dependency relations which

are standardized according to the UD annotation

scheme. In a different domain, the frequency of

the labels used can change slightly. However,

as the edge cases are a result of the structure of

the language, a domain change would not signifi-

cantly affect the accuracy difference between the

two models. Therefore, the scores presented in

this study are not domain specific. In addition, it

should be noted that the comparison of the models

are based solely on the accuracy. The two models

require different kinds of prior work. For instance,

machine learning approach requires an annotated

corpus to be trained on while the rule-based model

does not need this kind of a training data. This

is one of the reasons that all of the previous con-

version studies employed a rule-based approach

as there was not any data to train the converter in

most languages. However, there are now enough

training corpora to employ machine learning ap-

proach for further studies.

4 Conclusion

Overall, this project presents a remarkable contri-

bution to UD studies in Turkish, in that it intro-

duces the first constituency to the dependency con-

version tool. Furthermore, the performance com-

parison which was provided shows that machine

learning algorithms are able to achieve better ac-

curacy scores compared to rule-based approaches.

We hope that this tool will prove to be useful in

future studies on Turkish dependency corpora as

well. Thanks to the rapid transformation from

phrase structure trees, it will allow for the creation

of more dependency data, paving the way for bet-

ter Turkish dependency parsers.

Moreover, as a result of this conversion, a

corpus of 10,000 new sentences has been added

to the Turkish dependency corpora, constituting

one of the largest dependency corpora in Turk-

ish. Besides, considering that the Penn Treebank

constituency trees have previously been trans-

formed into dependency trees with the help of

many conversion tools such as the Stanford con-

version tool (Marneffe et al., 2006) and ClearNLP

(Choi and Palmer, 2012) the output we provide

represents an impeccable overview of comparative

structures of English and Turkish UD trees, thus

offering a cross-linguistic perspective.
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