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Abstract

Recently, domain shift, which affects accuracy
due to differences in data between source and
target domains, has become a serious issue
when using machine learning methods to solve
natural language processing tasks. With addi-
tional pretraining and fine-tuning using a tar-
get domain corpus, pretraining models such as
BERT1 can address this issue. However, the
additional pretraining of the BERT model is dif-
ficult because it requires significant computing
resources.

The efficiently learning an encoder that classi-
fies token replacements accurately (ELECTRA)
pretraining model replaces the BERT pretrain-
ing method’s masked language modeling with a
method called replaced token detection, which
improves the computational efficiency and al-
lows the additional pretraining of the model to
a practical extent.

Herein, we propose a method for addressing the
computational efficiency of pretraining models
in domain shift by constructing an ELECTRA
pretraining model on a Japanese dataset and ad-
ditional pretraining this model in a downstream
task using a corpus from the target domain.

We constructed a pretraining model for ELEC-
TRA in Japanese and conducted experiments
on a document classification task using data
from Japanese news articles. Results show that
even a model smaller than the pretrained model
performs equally well.

1 Introduction

A domain shift problem occurs when using ma-
chine learning to solve natural language processing
tasks, where the training data (source) domain is
differs from the test data (target) domain.

Because downstream tasks fine-tune a model,
pretrained models such as BERT (Devlin et al.,

1Bidirectional Encoder Representations from Transform-
ers

2019) can deal with the domain shift problem. To
improve accuracy, the additional pretraining of
BERT using the target domain corpus and fine-
tuning of the additional pretrained models have
been used recently. However, the additional pre-
training of BERT requires considerable computing
resources and therefore cannot be performed easily.
Furthermore, a large corpus of the target domain to
be used is required, but this corpus is often unavail-
able in reality.

In this paper, we attempted to address the compu-
tational efficiency of pretraining in domain shifting
using efficiently learning an encoder that classifies
token replacements accurately (ELECTRA) (Clark
et al., 2020).

ELECTRA is a pretraining model that uses
replaced token detection (RTD) to replace the
masked language modeling (MLM) used in BERT.
In MLM, the model is trained by estimating the
[MASK] and replacing some words in the input
sentence with [MASK]. However, only 15% of the
words in BERT are replaced by [MASK], which
is computationally inefficient: thus, RTD is an im-
provement on BERT.

RTD provides two models: generative and dis-
criminative, which are based on the idea of genera-
tive adversarial network (GAN) (Goodfellow et al.,
2014). The discriminator is pretrained by deciding
if it replaces each token generated by the generator.
RTD is computationally more efficient because it
can handle all tokens in training, and the ELEC-
TRA model using RTD performs better than the
BERT model of the same size.

In this study, we first built a general small-scale
ELECTRA model. Thereafter, we constructed a
domain-specific ELECTRA model by additional
pretraining it using a small corpus of the target
domain. Although the constructed domain-specific
ELECTRA model is smaller than BERT-base, we
confirmed that it outperforms BERT-base in the
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target domain for a document classification task.

2 Method

The corpus used to train pretraining models can be
biased(Bai et al., 2020). We can use a pretraining
model unique to the domain that the actual system
is targeting to increase accuracy in that domain if
we construct one. However, most of the current
pretraining methods require considerable computa-
tional resources to be effective.

In most cases, increasing the amount of compu-
tation needed for pretraining, would increase the
accuracy of the downstream task; however, when
conducting pretraining, considering the accuracy of
the downstream task as well as the computational
performance is important.

Therefore, herein, we use ELECTRA, that
uses RTD, a computationally efficient pretraining
method.

ELECTRA models of various sizes evaluated
the performance of the downstream tasks consid-
ering computational complexity. Experiments on
GLUE (Wang et al., 2018), a benchmark for natural
language understanding, and SQuAD (Rajpurkar
et al., 2016), a benchmark for question answering
techniques, were performed. For the same amount
of computation, the ELECTRA model outperforms
other state-of-the-art natural language processing
models. For example, it performs RoBERTa and
XLNet with less than 25% of the computational
effort.

For further efficiency, ELECTRA-Small, which
can be trained in four days on a single GPU, per-
forms better than GPT and requires only 1/30 of
the computation.

Building a pretraining model using ELECTRA,
which employs RTD, a more computationally ef-
ficient pretraining method, and performing addi-
tional pretraining on the corpus in the target do-
main, we can build a model with accuracy compa-
rable to existing pretraining models for document
classification tasks with fewer computational re-
sources and less training time; see Figure 1 for an
overview.

3 Experiments

3.1 Pretraining Model

We used a program (run pretraining.py) avail-
able on the official GitHub 2, free TPU resources on

2https://github.com/google-research/electra

Google Colaboratory (Colab), and Google Cloud
Storage (GCS) to build the ELECTRA model with
pretraining in Japanese. We can reduce the train-
ing time even more than the GPU using the TPU
resources on Colab. Furthermore, TPU on Colab
can only input and output data via GCS, so using
GCS is necessary.

For the pretraining corpus, we used the full text
of Wikipedia in Japanese, which is same as BERT
from Tohoku University (Tohoku-BERT). We used
Mecab-NEologd for the tokenizer as well as for
Tohoku-BERT.

To build the training corpus, preprocess the text,
create the vocabulary files, and create the Ten-
sorFlow dataset for pretraining, the software on
Tohoku-official BERT’s GitHub3 was used.

3.2 Model Evaluation

The build model was evaluated based on its suc-
cess on a document classification task in a small
domain. We used the Livedoor-news corpus as the
evaluation data for fine-tuning. This is a dataset
of Japanese news articles from Livedoor-news pub-
lished by RONDHUIT Inc.

Each document comprises a URL, creation date,
a title, and a body text. Here, we labeled the article
body numerically according to its category.

We divide the text of an article into training and
test data for each of the nine categories, train a
model on the training data, perform a nine-value
classification task on the test data to predict the
article’s category from the text of the article, and
assess performance based on the percentage of cor-
rect answers.

The numerical labels for each category and num-
ber of articles included are shown in Table 1.

3.3 Results

ELECTRA-JP-Small, the model we developed,
was pretrained with small size parameters rather
than base size parameters, as in Tohoku-BERT.
This is because we also consider the computational
efficiency of pretraining. In fine-tuning, training is
done up to 50 epochs. The trained models are saved
for each epoch, and the value with the highest per-
centage of correct task answers for each model is
selected. The results are shown in Table 2.

We perform model comparison experiments us-
ing the SentencePiece-based Japanese ELECTRA
model (ELECTRA-JP-SentencePiece) released by

3https://github.com/cl-tohoku/bert-japanese
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Figure 1: Overview of the method.

Class Category Train Test
0 dokujo-tsushin 87 696
1 it-life-hack 87 696
2 kaden-channel 86 692
3 livedoor-homme 51 409
4 movie-enter 87 696
5 peachy 84 674
6 smax 87 696
7 sports-watch 90 720
8 topic-news 77 616

total 736 5895

Table 1: Numerical labels and number of articles in
each category.

Model Accuracy
Tohoku-BERT 0.8835

ELECTRA-JP-Small 0.8412
ELECTRA-JP-SentencePiece 0.8024

Table 2: Experimental results of fine-tuning. Accuracy
is the highest percentage of correct answers for each
model.

Cinnamon AI Inc. as a guide. This model is a
pretrained model with the same parameter size as
ELECTRA-Small.

The ELECTRA-JP-Small model provides a
higher percentage of correct answers than the
ELECTRA-JP-SentencePiece model, (Table 2).
However, because the model’s parameter size is
smaller than the base size, the correct response rate
is approximately 4% lower than the Tohoku-BERT
model.

3.4 Additional Pretraining

Additional pretraining using this small corpus
would enable us to create comparable models;
we have been fine-tuning using a domain-specific
small corpus and noting the computational effi-
ciency of the ELECTRA models,

Therefore, we experimented to confirm this pro-
cess. The text of articles from the Livedoor-news
corpus, which was used in the previous experiment,
was extracted in plain text and used as a single
pretraining dataset for the additional pretraining of
ELECTRA-JP-Small.

The ELECTRA-JP-Small has already been pre-
trained for 1 M steps (24 h in training time).
We increase the number of steps in this model
(ELECTRA-JP-Small-1.25M) by 0.25 M (10 h of
training time); see Figure 2 for an overview.

After the additional pretraining, we run the fine-
tuning five times on the models, extract the highest
correct response rate value from each of the five
models, and show the average and highest values
in Table 3.

As shown in the table, even with a small parame-
ter size model, we could to confirm that by perform-
ing additional pretraining with a small corpus of
domain-specific data, we can create an ELECTRA
model that outperforms Tohoku-BERT.

3.5 Prediction Time

The ELECTRA model we developed is smaller
than the Tohoku-BERT model. This is expected to
reduce the training and prediction times during fine-
tuning. To confirm this, we measured the training
and prediction times for each of the 50 models
created during fine-tuning for both ELECTRA-JP-
Small and Tohoku-BERT. The results are shown in
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Figure 2: Overview of additional pretraining.

Model Average Max
Tohoku-BERT 0.8814 0.8835

ELECTRA-JP-Small-1.25M 0.8834 0.8864

Table 3: Experimental results of fine-tuning after additional pretraining. Average is the average of the values
obtained by running fine-tuning five times for each of the five models with the highest percentage of correct answers.
Max is the highest value of the five models’ correct responses.

Figure 3.
The average training time for each BERT model

was approximately 61.7 s, and for each ELECTRA
model was approximately 14.4 s. Moreover, each
model in BERT took an average of 160.4 s to pre-
dict, and in ELECTRA took on average of 33.6
s. Summing up the time taken by each of the 50
models, the training time for BERT was 51 min
25.1 s and the prediction time was 2 h 13 min
39.7 s, whereas the training time for ELECTRA
was 11 min 58.7 s and the prediction time was 27
min 59.7 s. From these results, it can be seen that
ELECTRA-JP-Small can train the model in approx-
imately 1/4 the length and predict in approximately
1/5 the length than Tohoku-BERT.

3.6 Model Size

Table 4 shows the predictions of the pretraining
time up to 1 M steps using TPU for different model
sizes.

The results in Table 2 are not an exact compar-
ison of model performance because of the perfor-
mance difference due to the parameter size of the
pretraining model. Even with one TPU resource,
building an ELECTRA model with the same param-

Model Time
ELECTRA-JP-Small 1d 22hs
ELECTRA-JP-Base 7d 1h

Table 4: Pretraining time for models up to 1M steps.
The time in the table is the predicted pretraining time
for the model up to 1M Steps.

eter size as Tohoku-BERT requires approximately
a week of training time. As pretraining requires
huge computational resources, the larger the model
size, the more difficult it becomes to build a pre-
trained model. The ELECTRA model, which is
more parameter efficient for smaller models, the
performance was reasonably good even for small
size. However, this does not go far enough to over-
ride the performance of the different model sizes.
To confirm the difference in model performance
more accurately, constructing pretraining models
of the same size is necessary.

3.7 Effects of Additional Pretraining

From the results in Tables 2 and 3, it is clear that the
pretraining model with a small corpus of domain-
specific data before the downstream task can im-
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Figure 3: Box plots of training and prediction times for Tohoku-BERT and ELECTRA-JP-Small.

prove the model’s accuracy after fine-tuning.
The larger the parameter size of the model, even

for BERT and ELECTRA, the more time it takes
to pre-train the model, and thus the more diffi-
cult it is to perform additional pretraining. How-
ever, for small models, the time required for addi-
tional pretraining is much shorter than for base-size
models. Therefore, additional pretraining of the
ELECTRA-Small model with a small corpus of
domain-specific models can achieve better perfor-
mance with less computation.

4 Related Work

4.1 Masked Language Modeling

MLM masks a certain percentage of words in the
input sentence (usually approximately 15%). The
masked words are replaced with other words or
special tokens, such as [MASK], and the model
is assigned to predict the masked words. BERT
with such a pretraining method outperforms the
conventional language model on many of the down-
stream tasks. However, because the MLM methods
is used to predict masked words, only 15% of the

masked words in each input sentence are used to
train the model. Therefore, pretraining a model
using MLM requires considerable computational
resources. additionally, the token [MASK], which
represents the mask, exists only during pretrain-
ing and does not appear during fine-tuning. This
mismatch of [MASK] tokens between pretraining
and fine-tuning slightly degrade the performance
of MLM pretraining models.

4.2 Replaced Token Detection

ELECTRA employs a new pretraining method
called RTD to improve the weaknesses of MLM. It
learns a bidirectional model like MLM while learn-
ing from all input sentences like a conventional
language model.

Based on the idea of GAN, RTD trains the gen-
erative model to distinguish between “real” and
“fake” input words. Rather than collapsing the in-
put sentence by replacing a word with [MASK],
as BERT dose, RTD collapses the input sentence
by replacing it with a “fake” word that is false but
plausible compared to the original sentence. There-
after, the discriminative model is trained to take the
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collapsed sentence as input and to predict which
words have been replaced compared to the original
input sentence.

The generator model can be any model that pro-
duces token output distributions, but a previous
study (Clark et al., 2020) used a small MLM model
trained concurrently with the discriminator model,
i.e., the BERT model with a small hidden layer
scale. Although the relationship between the gen-
erator and discriminator is similar to the structure
of GAN described above, applying GAN to the
text domain is not easy. Therefore, the generator
is trained using the maximum likelihood to predict
masked words rather than adversarial. If the gen-
erator correctly predicts the original word of the
masked word, the word is labeled as the original
word.

The generator and discriminator share the same
input word embeddings, and after pretraining, the
generator is removed and only the discriminator
is adjusted in the downstream task. Both the two
models use the neural transformer architecture.

4.3 Analyzing the Efficiency of MLM

MLM is considered inefficient, and to confirm this,
Clark et al. (2020) set up and experimented with
three models. The performance of ELECTRA is
improved by defining the loss for all input tokens
instead of only partially. BERT’s performance
is slightly impaired by the discrepancy between
pretraining and fine-tuning in the [MASK] token.
BERT has already been replaced with random to-
kens as a measure to improve this mismatch; how-
ever, even this measure is not sufficient. Conse-
quently, ELECTRA is computationally more effi-
cient than BERT owing to more efficient tokens and
less mismatch during fine-tuning (use of MASK
symbols). The improvement in ELECTRA can
also be attributed to other factors than fast learn-
ing. ELECTRA outperforms BERT by a wider
margin when the model size is smaller, and it con-
verges perfectly. Although more analysis is needed,
ELECTRA is generally considered more parameter
efficient than BERT.

Because ELECTRA-JP-Small and Tohoku-
BERT model sizes are different, we did not confirm
the exact difference in computational efficiency,
but if the two Japanese models of the same size
are trained together, ELECTRA will likely produce
better accuracy.

4.4 Unsupervised Domain Adaptation
Models that generate contextualized word embed-
dings, such as ELMo and BERT, perform well
across natural language processing tasks when pre-
trained on large unlabeled corpora. Although these
models use corpora such as Wikipedia or news
texts for training, it is unclear whether this ap-
proach is effective when the domain and writing
style of the target text differ significantly from the
pretrained corpus. However, fine-tuning the dis-
tributed representation using the text in the target
domain improved the performance (Han and Eisen-
stein, 2019).

In the related research, two texts were tested as
target domains: Early Modern English and Twitter.
Both are different from the existing pretrained cor-
pora, but the proposed method provides substantial
improvements over the BERT model.

We use the computationally efficient ELECTRA
model for fine-tuning the target domain instead
of BERT to improve the accuracy in downstream
tasks and increase the computational speed using a
smaller model.

4.5 Domain/Task Tuning
Contextualized word embeddings may be ineffec-
tive for tagging tasks when the target domain is
different from the pretrained corpus. This is espe-
cially serious for unsupervised domain adaptation
because the labeled data may differ significantly
from the target text. To address this problem, a
method of the AdaptaBERT model for unsuper-
vised domain adaptation was proposed.

Specifically, the following two approaches have
been applied.

Domain Tuning Unsupervised tuning of the
BERT language model using text from the target
domain. For example, BERT trained on Wikipedia
can be retrained using Twitter text.

Task Tuning A way to tune BERT using teacher
data. For example, for named entity recognition,
this would be to train the entire model including
BERT using CoNLL 2003.

The four experimental settings are defined by the
combination of domain and task tunings.

• Frozen BERT

• Task-tuned BERT

• AdaptaBERT
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• Fine-tuned BERT

Frozen BERT is a method that uses BERT as
a feature extractor without training it. Task-tuned
BERT is a method that BERT is trained using super-
vised data from the source domain. AdaptaBERT
is a method in which BERT is tuned using unsu-
pervised data from the target domain and then the
model is trained using supervised data from the
source domain. The last one, Fine-tuned BERT, is
a method to train the entire model including BERT
using data from the target domain.

The experiment evaluates part-of-speech tagging
in the Penn Parsed Corpus of Early Modern English
(PPCEME) and named entity recognition in the
Workshop on Noisy User Text (WNUT) 2016.

For part-of-speech tagging, used the Penn Tree-
bank (PTB) corpus of 20th century English as the
source domain corpus and PPCEME as the target
domain corpus. PTB corpus is for modern English,
and the PPCEME corpus is for 15th to 17th century
English.

For named entity recognition, used Conference
on Natural Language Learning (CoNLL) 2003 as
the source domain corpus and WNUT 2016 as the
target domain corpus. CoNLL 2003 is for news,
and WNUT is for Twitter.

The results of part-of-speech tagging and named
entity recognition show that using Domain Tuning
to train BERT on a corpus of the target domain
improves performance. Even if no large amount
of labeled data in the target domain is unavailable,
improving performance by simply tuning the pre-
training model using unsupervised data from the
target domain is practical.

In our experiments, we assume a situation where
a large amount of labeled data in the target domain
cannot be secured. We are exploring how much
Domain Tuning can improve the performance of
ELECTRA-Small under this situation.

5 Conclusion

In this paper, focusing on the computational effi-
ciency of the ELECTRA model and its good perfor-
mance at scale, we constructed a domain-specific
pretrained ELECTRA model by additional pretrain-
ing it using a small corpus of the target domain.

Although the constructed ELECTRA model is
smaller than the Tohoku-BERT model to be com-
pared, it achieved higher performance than Tohoku-
BERT in document classification in the target do-
main.

In future work, we would like to construct a
pretraining model of the same size to compare the
performance of the two models more rigorously.
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