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Abstract

The number of biomedical documents is in-
creasing rapidly. Accordingly, a demand for
extracting knowledge from large-scale biomedi-
cal texts is also increasing. BERT-based models
are known for their high performance in vari-
ous tasks. However, it is often computationally
expensive. A high-end GPU environment is
not available in many situations. To attain both
high accuracy and fast extraction speed, we
propose combinations of simpler pre-trained
models. Our method outperforms the latest
state-of-the-art model and BERT-based models
on the GAD corpus. In addition, our method
shows approximately three times faster extrac-
tion speed than the BERT-based models on the
ChemProt corpus and reduces the memory size
to one sixth of the BERT ones.

1 Introduction

The amount of biomedical documents is increasing
rapidly. The documents contain valuable knowl-
edge, such as chemical compound names and their
relations. However, the current knowledge extrac-
tion is considerably manual. Therefore, a demand
for extracting knowledge automatically from large-
scale biomedical text data is increasing.

Biomedical relation extraction (RE) models
based on BERT (Devlin et al., 2019) have shown
great performance (Lee et al., 2019; Beltagy et al.,
2019). The methods using BERT models pre-
trained on biomedical corpora achieved state-of-
the-art (SOTA) performance on several biomedical
RE datasets. However, BERT models require a
huge amount of computational resources and gen-
erally need a long time for extraction processes. By
processing data in parallel with multiple computa-
tional resources, we can process larger text as com-
pared with a single resource. However, a high-end

∗Work done while the author was at Fujitsu Laboratories
Ltd.

GPU or a distributed environment for efficient com-
putation is not available in many situations. Even
if we can utilize such computational resources, sub-
stantial energy consumption becomes a problem
(Strubell et al., 2019). Therefore, more lightweight
and accurate RE models are expected.

In this paper, we construct a biomedical RE
model by combining word embeddings obtained
from multiple lightweight models. The RE model
can be executed in a wide range of environments,
such as a CPU and a middle-class GPU, by re-
ducing memory consumption during the learning
process or the inference process. During the infer-
ence process of our proposed model, the amount of
calculation can be suppressed and the model can
process documents at high speed. Since the cal-
culation in each lightweight model is small scale,
memory consumption can be suppressed. Further-
more, by selecting whether or not to utilize each
word embeddings, we can customize the model to
be suitable for the computer environment. Hence,
our model can process faster than the BERT-based
models in the inference process.

We adopt more lightweight pre-trained models:
ELMo (Peters et al., 2018) and Contextual String
Embeddings (CSE) (Akbik et al., 2018). ELMo is
contextualized word-level embeddings from the lan-
guage model (LM) based on multiple layers of bidi-
rectional long-short term memories (Bi-LSTMs)
(Hochreiter and Schmidhuber, 1997). On the other
hand, CSE is character-level embeddings of each
input word from LM based on single-layer Bi-
LSTM. Subword information of words plays an
important role in the estimation of kinds and fea-
tures of chemicals since chemical names tend to
contain characteristic sub-word patterns such as
prefixes and suffixes. Therefore, we propose RE
models that combine ELMo and CSE to utilize both
word-level and character-level features effectively.

We investigate the effectiveness of our RE mod-
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els in terms of not only the accuracy but also the
processing speed and the memory size. The contri-
butions of this paper are as follows:

• We apply the strategy that feeds the comple-
mentary features from pre-training models to
RE tasks in the biomedical domain: GloVe,
ELmo, and CSE.

• The proposed model outperforms the latest
SOTA F1 score on the GAD corpus. As a case
study, we show that BERT-based models do
not always produce the best performance.

• Our model performs approximately three
times faster extraction speed than BERT-based
models on the ChemProt corpus and reduces
the memory size to one sixth of the BERT
ones.

2 Related Work

Beltagy et al. (Beltagy et al., 2019) have pro-
posed a method with pre-trained the BERT model
called SciBERT. They pre-trained the BERT model
on the large scale computer science and biomed-
ical corpora. They constructed a new vocabulary
of the BERT model for the tasks of science and
biomedical domains. The SciBERT model with
their vocabulary achieved SOTA performance on
several benchmark tasks on the domains. Lee et
al. (Lee et al., 2019) have proposed a model called
BioBERT. They pre-trained the BERT model on a
large scale biomedical corpus containing 4.5 billion
words. They applied the model to biomedical NER,
RE, and question answering tasks and achieved
high performance on the benchmark tasks. For the
RE tasks, they utilized the sentence classifier of
the original version of BERT, which uses a [CLS]
token for the classification of relations. They used
pre-defined strings such as @GENE$ and @DIS-
EASE$ to express a pair of target entities. For
instance, a sentence with two target entities (gene
and disease in this case) is represented as Example
1.

Example 1 Serine at position 986 of @GENE$
may be an independent genetic predictor of angio-
graphic @DISEASE$.

Zhou et al. (Zhou et al., 2016) have proposed
a relation classification model with an attention-
based Bi-LSTM model. They used pre-defined
indicator tags to express a pair of target entities.
For instance, a sentence with a pair of target entities
is represented as Example 2.

… nonselective    MAO inhibitors, selegiline does …

CSE 

Language 

Model

Bi-LSTM+Attention Model

Predicted relation class

ELMoGloVe

Figure 1: Overview of the proposed method

Example 2 <e1> Flowers </e1> are carried
into the <e2> chapel </e2>.

Entity pairs were anonymized using the predefined
strings in the method of Lee et al. (Lee et al., 2019).
In contrast, this model can predict a relation class
using surface information of the target entity pair.
Sub-word information such as prefixes and suffixes
plays an important role in estimations of kinds and
features of chemicals. Therefore, we express the
entity pair using tags in our method.

BERT is constructed by multiple layers of multi-
head self-attention layers and requires large-scale
computational resources. More lightweight pre-
training LM models have also been proposed. Jin
et al. (Jin et al., 2019) have proposed models
for biomedical NLI tasks using ELMo pre-trained
on large-scale in-domain text data. ELMo is an
LM based on multi-layer Bi-LSTMs for aiming at
obtaining contextualized word-level embeddings.
CSE is generated by a character-level LM. The
LM is lightweight since it is constructed with a
single layer of Bi-LSTM. Sharma et al. (Sharma
and Daniel Jr, 2019) have proposed a biomedi-
cal NER method with CSE generated from the
LM pre-trained on a biomedical corpus. Watan-
abe et al. (Watanabe et al., 2019) have proposed
a method with a multi-task learning model using
CSE. Their method achieved SOTA performance
on the biomedical NER task. Sharma et al. and
Watanabe et al. evaluated the effectiveness of
CSE on the biomedical NER tasks. However, they
did not evaluate the effectiveness of CSE on the
biomedical RE task. We evaluate the effectiveness
of ELMo and CSE on the biomedical RE tasks.

3 Proposed Method

Figure 1 shows an overview of our method. We
incorporate three types of word embeddings into
the RE model: GloVe (Pennington et al., 2014),
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CSE, and ELMo. First, we train a character-level
LM for CSE and a word-level LM for ELMo using
large-scale biomedical corpora. Then we obtain
GloVe, CSE, and ELMo vectors corresponding to
each word in a sentence as shown in the middle
of Figure 1. Next, we construct an RE model as
shown in the top of Figure 1. We explain the pre-
training procedure for the GloVe embeddings and
the language models for ELMo and CSE vectors in
Section 3.1. Then, we explain the RE model based
on the combinations of multiple word embeddings
in Section 3.2.

3.1 Pre-Training

We obtain word embeddings by concatenating
GloVe, CSE, and ELMo vectors for training and
extraction. We use the GloVe embeddings1 trained
on general domain corpora (the Wikipedia and the
Gigaword corpus). For pre-training the CSE lan-
guage model, we use the PubMed2, the PMC3, and
the ChemRxiv4. The data from PubMed, PMC, and
ChemRxiv contain 190k, 270k, and 300k biomedi-
cal papers, respectively. We use the ELMo embed-
dings5 trained on the PubMed corpus.

3.2 Relation Extraction Model

For the RE task, we apply a Bi-LSTM with an
attention model (Zhou et al., 2016). The rela-
tion extraction model outputs a predicted class la-
bel. Here, we express the stacked embeddings as
X = x1, x2, ..., xn. The predicted class label is
computed as follows:

−→
hi =

−−−−→
LSTM(xi,

−→
h i−1) (1)

←−
hi =

←−−−−
LSTM(xi,

←−
h i+1) (2)

hi = [
−→
hi;
←−
hi] (3)

where xi is the i-th input vector.
−→
hi and

←−
hi are

hidden states of the forward LSTM and backward
LSTM, respectively. [·; ·] indicates concatenation
of two vectors. We calculate a weight ai for each
hidden state hi as follows:

mi = ωT tanh(hi) (4)

ai =
exp(mi)∑n
j=1 exp(mj)

(5)

1https://nlp.stanford.edu/projects/glove/
2http://www.nlm.nih.gov/databases/download/pubmed m

edline.html
3https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
4https://chemrxiv.org/
5https://allennlp.org/elmo

Dataset Class # samples

GAD
Positive 2,801
Negative 2,529

ChemProt
Positive

CPR:3 1,973
CPR:4 5,002
CPR:5 471
CPR:6 726
CPR:9 1,814
Total 9,986

Negative 31,298

Table 1: Dataset statistics. The number of samples
for ChemProt is the sum of the number of samples in
training, validation, and test sets.

ω is a vector of trainable parameters. We obtain
the final hidden state h∗ as follows:

r =
∑n

i=1
aihi (6)

h∗ = tanh(r) (7)

Then, the model calculates a predicted label ŷ as
follows:

p(y|X) = softmax(Wsh
∗ + bs) (8)

ŷ = arg max
y

P (y|X) (9)

During training, we use the loss function:

LossRE = − 1

N

N∑
i=1

log(p(yi|X)) (10)

where N is the number of class labels.
We use an SGD optimizer (Bottou, 1991). We

set parameters as follows: a learning rate is 0.1, a
batch size is 32, and the number of hidden units is
256.

4 Experimental Settings

4.1 Dataset
We use the Genetic Association Database (GAD)
(Bravo et al., 2015) and the Bio-Creative VI
Chemical-Protein RE dataset (ChemProt) (Isla-
maj Doğan et al., 2017) as RE datasets to evaluate
our model. Table 1 shows the statistics for each
dataset.

The GAD dataset contains gene-disease rela-
tions. Relations between a gene and a disease
within the same sentence were annotated. It is
a binary classification task. The ChemProt dataset
consists of 2,432 PubMed abstracts with chemical-
protein relations annotated by domain experts. This
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Dataset E-SVM SPINN SciBERT BioBERT
Baseline
(GloVe)

Proposed1
(GloVe
+CSE)

Proposed2
(GloVe

+ELMo)

Proposed3
(GloVe
+CSE

+ELMo)
P 79.21 - 85.54 76.43 77.31 78.74 83.10 82.64

GAD R 89.25 - 80.61 87.65 80.01 87.43 85.43 86.36
F 83.93 - 82.83 81.61 78.59 82.83 84.16 84.38
P - 74.85 79.73 77.02 58.13 67.41 76.49 76.05

ChemProt R - 56.06 70.85 75.90 57.43 58.79 65.82 66.17
F - 64.11 75.03 76.46 57.78 62.81 70.76 70.77

Table 2: Experimental results. Bold and underline indicate the best score and the second best score, respectively.
The values of E-SVM (Bhasuran and Natarajan, 2018), SPINN (Lim and Kang, 2018), and BioBERT (Lee et al.,
2019) are referred from the original papers. For SciBERT (Beltagy et al., 2019), because the experimental setting in
the paper differs from the setting of BioBERT, we re-evaluate it with the same setting as BioBERT.

dataset was used in the shared task of the BioCre-
ative VI text mining chemical-protein interaction
track. This dataset contains pairs of a chemical
and a protein within the same sentence annotated
with five kinds of relation labels: CPR: 3, CPR: 4,
CPR: 5, CPR: 6, CPR: 9. The task is to classify
an instance pair into one of the five classes and
non-relation.

For the GAD dataset, there is no separate test set.
Therefore, we follow Lee et al. (2019) and report
the performance of a 10-fold cross-validation on
the dataset. We used the same 10-folds as Lee
et al. (2019) with the provided datasets on their
webpage6.

4.2 Target Entity Pair Indicators

To indicate the location of target entities, Zhou
et al. (2016) used indicator tags to express a pair
of target entities in an RE task. In the same way,
we inserted tags before and after each target en-
tity. For the GAD dataset, we use the <gene> and
<dise> tags for genes and diseases, respectively.
For the ChemProt dataset, we use the <gene>
and <chem> tags for genes and chemicals, respec-
tively. For instance, 1-aminoadamantane and Fos
are the target entities in Example 3.

Example 3 Amantadine ( <chem> 1-
aminoadamantane </chem> ) induced <gene>
Fos </gene> expression in the central, dorsal-
medial and ventral-medial part of the striatum.

4.3 Methods in this Experiment

We trained one baseline and three proposed models.
Each method was based on a Bi-LSTM attention
model with a combination of three different inputs.
The trained models are followed:

6https://github.com/dmis-lab/biobert

• A Bi-LSTM attention model with GloVe
(Baseline: GloVe)

• A Bi-LSTM attention model with GloVe and
CSE (Proposed1: GloVe+CSE)

• A Bi-LSTM attention model with GloVe and
ELMo (Proposed2: GloVe+ELMo)

• A Bi-LSTM attention model with
GloVe, CSE, and ELMo (Proposed3:
GloVe+CSE+ELMo)

We evaluate the effectiveness of each embedding
through the comparison between the baselines and
our method.

In addition, we compared our methods with
the SOTA methods, namely BioBERT and SciB-
ERT on ChemProt, and E-SVM on GAD dataset.
BioBERT used the BERT model pre-trained on
large-scale biomedical corpora. SciBERT used the
BERT model pre-trained on large-scale biomed-
ical and computer science corpora. The current
SOTA method for GAD dataset was based on an
ensemble of SVMs (Bhasuran and Natarajan, 2018)
(E-SVM). SPINN was the previous SOTA method
before the BERT-era that was not based on pre-
trained LMs (Lim and Kang, 2018).

5 Experimental Results

5.1 Evaluation on accuracy

Table 2 shows the experimental results. For all
the datasets, we reported precision, recall, and F-
measure (F1) scores for the positive classes.

The F1 score of the Proposed1 (GloVe+CSE)
outperformed the F1 score of Baseline (GloVe)
for GAD and ChemProt datasets. The F1 score of
the Proposed3 (GloVe+CSE+ELMo) outperformed
Baseline and other all the proposed methods. The
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Method Time (s) / Sample (ms)
Proposed1 (GloVe+CSE) 86.53 5.99

Proposed2 (GloVe+ELMo) 212.51 14.71
Proposed3 (GloVe+CSE+ELMo) 239.06 16.55

SciBERT 537.32 37.20
BioBERT 680.39 47.11

Table 3: Extraction time required for the test-set of ChemProt.

result shows the effectiveness of LMs pre-trained
on the biomedical corpora.

For the GAD dataset, the Proposed3 showed
the best performance. It outperformed SciBERT,
BioBERT, and E-SVM. For the ChemProt dataset,
although this method also outperformed SPINN,
the previous SOTA method, it did not reach the
scores of SciBERT and BioBERT.

Another approach to improve the accuracy is to
incorporate a BERT model with our combination
models. We also attempted to incorporate the
BERT embeddings generated by the BioBERT
model into our model although the result is not
documented in Table 2 . However, all the methods
combining BERT embeddings (GloVe+BERT,
GloVe+ELMo+BERT, GloVe+CSE+BERT, and
GloVe+ELMo+CSE+BERT) resulted slightly
lower performance than BioBERT. In addition, the
models with BERT embeddings lead to vanishment
of the effectiveness and motivation, namely
construction of a lightweight model.

5.2 Evaluation on Processing Speed

Table 3 shows the extraction time of the proposed
methods, SciBERT, and BioBERT for processing
the test set of ChemProt7. The F1 score of the
Proposed3 was approximately 6 points lower than
BioBERT. However, the extraction speed was 2.85
times faster than that of BioBERT. Although the F1
score of the Proposed1 was approximately 8 points
lower than the Proposed3, the extraction speed was
2.76 times faster than that of the Proposed3. We
can see a trade-off between the F1 scores and the
extraction speed. If users need the extraction speed
for the application, our method is useful although
the accuracy is comparatively sacrificed.

7We did not evaluate the extraction time for the GAD
dataset because the dataset size is small. However, it seems
that there is no large difference between the average time per
sample for the GAD and the time for the ChemProt.

5.3 Evaluation on Memory Size

In the experiment, we used NVIDIA Tesla V100
GPU with 32GB memory. This is the high-end
GPU for data center use at present. We observed
the maximum memory consumption during the
learning execution of BioBERT and the proposed
method. BioBERT consumed approximately 12GB
of memory. It indicates that BioBERT needs high-
end GPUs to execute the learning. On the other
hand, our method consumed approximately 2GB of
memory. The memory consumption of our method
was lower than that of BioBERT (1/6). In addition,
considering the memory consumption, we believe
that our model can be executed even on a middle-
class GPU.

6 Discussion

We showed the effectiveness of our method in the
previous section. In this section, we discuss our
method from various perspectives, including some
negative results. First, we discuss a comparison
between the BERT-based models and the proposed
method in Section 6.1. Then, we discuss the exper-
imental settings of the proposed method in Section
6.2 and 6.3.

6.1 Datasets and Model Performance

For the GAD dataset, our method outperformed the
BERT-based models. However, for the ChemProt
dataset, the precision, recall, and F1 scores were
lower than the scores of the BERT-based models.
In the GAD dataset, the number of the negative
samples is almost the same as the number of pos-
itive samples as shown in Table 2. On the other
hand, in the ChemProt dataset, the number of nega-
tive samples is three times more than the number
of positive samples. We analyzed the classification
errors of our method for the positive samples of
the ChemProt dataset. About 92% of the misclassi-
fications were positive samples classified into the
negative class, not into the other positive classes.
It seems that the data imbalance affects our model
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Corpus F1 score
PubMed 69.57

PubMed+ChemRxiv 69.31
PubMed+PMC 70.19

PubMed+PMC+ChemRxiv 70.77

Table 4: Effects of the pre-training corpus. The score
of PubMed+PMC+ChemRxiv is the same as the Pro-
posed3 in Table2.

performance negatively. On the other hand, the
decrease in the performance of BioBERT was not
as large as the decrease in that of our model. We
need to analyze the cause of the difference between
our methods and the BERT-based models.

The difference between the ChemProt dataset
and the GAD dataset is not only the data imbalance
but also the scale. The number of samples in the
ChemProt dataset is almost eight times larger than
the samples in the GAD dataset. We can use more
data in the ChemProt dataset to train the models,
as compared with the GAD dataset . In practice,
large-scale learning data are, however, not always
available. Therefore, it is effective to use different
models according to the size of data. On the other
hand, the relation between the size of the dataset
and the suitable model is unobvious. Therefore, we
need to analyze the relationship deeply for real and
useful applications in biomedical domains.

6.2 Effects of Pre-Training Corpora
We used the CSE pre-trained on the PubMed, PMC,
and ChemRxiv corpora in Proposed3. We evalu-
ated the effectiveness of each corpus for the pre-
training. Table 4 shows the results for the Chem-
Prot. The F1 score of the model pre-trained on the
PubMed + ChmeRxiv was lower than the model
pre-trained on the PubMed. On the other hand, the
F1 score of the model pre-trained on the PubMed +
PMC was higher than the model pre-trained on
the PubMed. The F1 score of the model pre-
trained on the PubMed + PMC + ChemRxiv was
the best score. The combination of PubMed, PMC,
and ChemRxiv was effective although introducing
ChemRxiv alone provided no benefit to the pre-
training.

6.3 Effects of Target Entity Pair Indicators
We used the indicator tags to express a pair of two
target entities. On the other hand, Lee et al. (Lee
et al., 2019) replaced the target entity pair with
pre-defined strings. In this section, we compare the

Proposed 3
(GloVe+CSE+ELMo)

Dataset Tag Replacement

GAD
P 82.64 81.88
R 86.36 85.26
F 84.38 83.46

ChemProt
P 76.05 75.38
R 66.17 63.96
F 70.77 69.20

Table 5: Effects of the target entity pair indicators.

methods using the indicator tags with the methods
using the entity pair replacement. For the GAD
dataset, we replaced diseases and genes with pre-
defined strings @DISEASE$ and @GENE$, re-
spectively. For the ChemProt dataset, Lim and
Kang (2018), replaced chemicals and proteins with
pre-defined strings “bc6entc” and “bc6entg”, re-
spectively. We used the same pre-defined strings
that were used in Lim and Kang.

For instance, 1-aminoadamantane and Fos
in Example 4 are replaced with “bc6entc” and
“bc6entg” respectively as shown in Example 5.

Example 4 Amantadine (1-aminoadamantane)
induced Fos expression in the central, dorsal-
medial and ventral-medial part of the striatum.

Example 5 Amantadine (bc6entc) induced
bc6entg expression in the central, dorsal-medial
and ventral-medial part of the striatum.

We evaluated the proposed3 using each of the
indicator tags and the entity pair replacement. Ta-
ble 5 shows the experimental results for the GAD
and ChemProt datasets. As a result, the use of the
indicator tags was effective as compared with that
of the replacement approach. We can use the sur-
face information of the target entity pair by using
indicator tags. Therefore, the result shows the ef-
fectiveness of the surface information of the entity
pairs.

7 Conclusions

In this paper, we reported the effectiveness of
lightweight and high-performance RE models for
the biomedical domain. Our method used the com-
bination of word embeddings generated by the pre-
trained LMs (the ELMo model and the CSE model).
The ELMo model is a word-level LM and the CSE
model is a character-level LM. We proposed RE
models that combined ELMo and CSE to utilize
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both word-level and character-level features effec-
tively.

We evaluated the proposed methods on the
biomedical RE datasets. We used the ChemProt
dataset and the GAD dataset. We compared our
methods with BERT-based methods (BioBERT and
SciBERT) and the SOTA methods. We also evalu-
ated the model performance and the inference time.
Experimental results showed the effectiveness of
the combinations of the LMs. For the GAD dataset,
we obtained the SOTA score. For the ChemProt
dataset, our model showed approximately three
times faster extraction speed than BioBERT. In
addition, our model reduced the memory size to
one sixth of the BERT-based models. However,
the F1 score of our method was lower than that
of BioBERT for the ChemProt dataset. In future
work, we analyze the causes of the high extraction
speed and the low performance of our model for
the ChemProt dataset in terms of the parameter size
and architectures.
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Léon Bottou. 1991. Stochastic gradient learning in
neural networks. In Proceedings of Neuro-Nımes,
page 91.
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