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Abstract

In the domain of natural language augmenta-
tion, the eligibility of generated samples re-
mains not well understood. To gather in-
sights around this eligibility issue, we ap-
ply a transformer-based similarity calculation
within the BET framework based on backtrans-
lation, in the context of automated paraphrase
detection. While providing a rigorous statisti-
cal foundation to BET, we push their results by
analyzing statistically the impacts of the level
of qualification, and several sample sizes. We
conducted a vast amount of experiments on
the MRPC corpus using six pre-trained mod-
els: BERT, XLNet, Albert, RoBERTa, Electra,
and DeBerta. We show that our method im-
proves significantly these ”base” models while
using only a fraction of the corpus. Our results
suggest that using some of those smaller pre-
trained models, namely RoBERTa base and
Electra base, helps us reach F1 scores very
close to their large counterparts, as reported on
the GLUE benchmark. On top of acting as a
regularizer, the proposed method is efficient in
dealing with data scarcity with improvements
of around 3% in F1 score for most pre-trained
models, and more than 7.5% in the case of
Electra.

1 Introduction

Natural language processing (NLP) tasks require
sufficiently large datasets to achieve the maximum
robustness of the trained models. Low sizes of
data pose the risks of hindering the models’ con-
vergence during the training process, which leads
to less accurate predictions (e.g. classification) or
generations (e.g. translations). On the other hand,
the provision of high-quality labelled data is often
very expensive both in terms of money and time.
As a result, NLP scientists seek alternative methods
to tackle this issue. One of the solutions is the ap-
plication of data augmentation techniques. These

methods help considerably to alleviate insufficien-
cies regarding the quantity of labelled data and the
expertise to annotate the data. These augmentation
techniques are also proved to induce a regulariza-
tion effect during the training of NLP models to
avoid overfitting, most notably, on surface cues.

In this paper, we examine the impact of adding a
post-processing stage after applying such data aug-
mentation technique to assess the eligibility of the
generated samples. We intend to run our analysis in
automated paraphrase identification. In this regard,
we increase the size of the paraphrase data through
a backtranslation method called BET (Corbeil and
Abdi Ghavidel, 2020). In particular, we conduct
the following experiments:

• We take randomly several samples of the orig-
inal train set and augment them with back-
translation.

• After augmenting the textual data, we assess
the eligibility by applying a similarity filter.
We report the results for three criteria: 0.8,
0.9, and 0.95.

• We examine six pre-trained transformer mod-
els: BERT, XLNet, RoBERTa, ALBERT,
Electra, and DeBerta.

• We run ten times each experiment randomiz-
ing the random seed to measure the averaged
metrics and their p-values.

The remainder of this paper is structured as fol-
lows. In section 2, we describe the previous works
in natural language augmentation. In section 3, we
explain our methodology in terms of the dataset and
our overall pipeline. Next, we illustrate and discuss
the results. Finally, we summarize our findings and
talk about the possible future research avenues.
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Figure 1: Experimentation pipeline schema to generate the training set from a sampled version of the MRPC —
N randomly selected samples for each experiment — on top of which we add the eligible backtranslated
examples. Using sentence-transformers ~e to encode the utterances as vectors, we estimate the qualification given
a threshold T by measuring the cosine similarity sim between the generated sentences and the original ones. The
utterance named Sentence 2 corresponds to the column name inside the MRPC dataset, which is identified as the
paraphrase.

2 Related Work

Data augmentation has been intensively explored in
computer vision given its straightforward geometri-
cal nature, especially image processing. According
to Feng et al. (2021), the popular techniques in
this field are cropping, flipping, and colour jitter-
ing. From a natural language processing stand-
point, many authors noted that the natural language
augmentation methods (NLA) either attempt to
preserve the meaning and structure after the data
augmentation process (Corbeil and Abdi Ghavidel,
2020; Tong et al., 2019; Coulombe, 2018; Sennrich
et al., 2016; Anaby-Tavor et al., 2019; Radford
et al., 2019) or to modify the tokens without taking
into account the overall structure of the language
(Wei and Zou, 2019; Coulombe, 2018). Feng et al.
(2021) classified the techniques into the following
categories:

• Rule-Based techniques: In these techniques,
the original examples are changed (rewritten)
based on a set of pre-defined rules. For in-
stance, Wei and Zou (2019) applied random
insertion, deletion, and swap on the tokens of
the sentences.

• Example interpolation techniques: These tech-
niques, also called mixed sample data aug-

mentation, either interpolate the feature vec-
tors (Zhang et al., 2017) or fuse the original
examples into pairs (Ghiasi et al., 2020).

• Model-Based techniques: This set of tech-
niques are concentrated on training models
to generate diverse examples out of the origi-
nal counterparts. Paraphrase generation (Sen-
nrich et al., 2016) is a widely-known example
of such techniques.

To the best of our knowledge, none of the pa-
pers in the aforementioned categories has analyzed
the effect of a post-processing stage so far. Only
Coulombe (2018) and Corbeil and Abdi Ghavidel
(2020) highlighted the necessity for filtering out
the backtranslation outputs to assess the data aug-
mentation validity, without conducting any specific
experiment to support the claim.

In the current paper, we closely set our work
on the BET framework proposed by (Corbeil and
Abdi Ghavidel, 2020), on top of which we enrich
the meaning preserving aspect with a semantic sim-
ilarity stage. Their original approach uses a model-
based technique by applying backtranslation on
ten intermediary languages to obtain a soft data
augmentation. Thus, they generate ten times the
amount of original data. Then, they analyzed the
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resulting improvements on the paraphrase detec-
tion task as external validation. They tested various
pre-trained models: BERT (Vaswani et al., 2017),
XLNet (Yang et al., 2019), RoBERTa (Liu et al.,
2019) and ALBERT (Lan et al., 2019). In this
work, we carry out the experiments with the same
pre-trained models adding the most recent ones:
Electra (Clark et al., 2020) and DeBerta (He et al.,
2020). There are still other closely related works
such as (Shakeel et al., 2020), but the authors used
neural network architectures such as LSTMs and
CNNs through exploiting a set of hand-crafted fea-
tures on the MRPC, Quora and SemEval datasets.

3 Methodology

3.1 Dataset

In this paper, we focus our experiments on the
MRPC1 corpus. This paraphrase corpus is included
in the GLUE benchmark (Wang et al., 2019). It
consists of a pair of sentences (sentence and para-
phrase), which are pulled from online news sources.
Overall, 4076 pairs were allocated to the train set
and 1725 to the test set. We further split the MRPC
train set into a smaller train set (90%, 3,668 pairs)
and a validation set (10%, 408 pairs).

3.2 Data Augmentation Pipeline

As illustrated in Figure 1, our pipeline includes a
backtranslation process based on BET using the
Google Translate API and a filtering process us-
ing the sentence-transformers bi-encoder approach
(Reimers and Gurevych, 2019).

On the basis of BET, we selected ten languages
for the backtranslation procedure. These interme-
diary languages are: Chinese (zh), Spanish (es),
Arabic (ar), Japanese (ja), Telugu (te), Javanese
(jv), Korean (ko), Vietnamese (vi), Turkish (tr) and
Yoruba (yo). In this regard, we augment only the
paraphrases (e.g. the column Sentence 2) through
backtranslating them into English from one of the
aforementioned languages.

Our filtering module is mainly based on
the sentence-transformers bi-encoder approach
(Reimers and Gurevych, 2019). It is built to com-
pute a unique sentence representation by pooling
all the transformer’s contextual word embeddings
— applying the mean. It is optimized under co-
sine loss in a Siamese neural network fashion. We
choose the stsb-distilroberta-v2 model, which is a

1Microsoft Research Paraphrase Corpus

lightweight version. Formally, we note it as a func-
tion ~e(s) with s being the sentence to encode into a
sentence embedding. Then, we calculate the cosine
similarity (see equation 1) between the original
sample and the backtranslated one. Finally, we opt-
out the ones which are below various thresholds
T ∈ {0.95, 0.9, 0.8}.

sim(s1, s2) =
~e(s1) · ~e(s2)

||~e(s1)|| · ||~e(s2)||
(1)

We show that different thresholds T influence
drastically the outcome of our transformer-based
paraphrase identifiers. We can approximate the ef-
fect of the semantic filtering as a paraphrase verifi-
cation para(·, ·) like in equation 2. We hypothesize
that, by adding this filtering stage, we can reinforce
the preservation of meaning into BET up to some
specific threshold T .

para(s1, s2) ≈
{

1 if sim(s1, s2) ≥ T
0 else

(2)

3.3 Adjusting the Thresholds for
Understanding the Similarities

In Figure 2, we present the histograms representing
the distributions of similarities between the original
sentence and the backtranslated ones. We displayed
one histogram for each intermediary language. Giv-
ing the proximity of our setup with the original
BET setup, we observe that the amount of gener-
ated examples with a similarity above 0.95 — as it
is sorted in Figure 2 — correlates with the results
reported by original BET experiments (Corbeil and
Abdi Ghavidel, 2020). For instance, the authors
mentioned that Spanish (es) and Vietnamese (vi)
are among the best intermediary languages to use
with BET to achieve the most gain on the perfor-
mances. From our observations, we conclude that
looking at similarity is a better way to analyze the
impact of intermediary languages on backtransla-
tion.

Based on those distributions, we also set the
three similarity thresholds used in our experiments.
We selected 0.8 because it conserves a majority
of the generated data while filtering outliers. Af-
terwards, we chose 0.9 which is a compromise
between quantity and quality. Finally, 0.95 is the
strictest threshold keeping only the most similar ex-
amples. We won’t extend our analysis to a thresh-
old of 0 — equivalent to the original BET — since
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Figure 2: Similarity distributions for all intermediary languages sorted from left to right (up and down) by the
amount of samples with a similarity above 0.95. The abbreviations are: Spanish (es), Chinese (zh), Arabic (ar),
Japanese (ja), Telugu (te), Javanese (jv), Korean (ko), Vietnamese (vi), Turkish (tr) and Yoruba (yo)

0.8 encompasses most of the data and the rest
should be only outliers.

Considering the full MRPC corpus, we further
analyzed the total amount of eligible samples af-
ter applying the different similarity thresholds T
in the bar chart of Figure 3. We can see that the
threshold of 0.8 retains most of the generated data.
For a threshold of 0.9, a majority of samples are
still qualified for the training of the model. The
0.95 threshold drops less than two-thirds of the
data taking only the most similar examples to the
original sentence. By observing the results of the
experiments in the next section, we can conclude
about which of the quantity criterion (T = 0.8) or
the quality criterion (T = 0.95) is better to deter-
mine the eligibility of a backtranslated text. We
externally assessed this qualification by measuring
the performances achieved by the models on the
paraphrase detection task.

Figure 3: The total amount of eligible samples per
similarity threshold. 0 corresponds to no filtering.

4 Results and Discussion

As we mentioned in section 1, we evaluated our
natural language augmentation approach on BERT
(Devlin et al., 2018), XLNet (Yang et al., 2019),
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2019), Electra (Clark et al., 2020) and DeBerta (He
et al., 2020). We performed our experiments itera-
tively beginning with the sampling of only 100 ran-
dom examples from the original MRPC dataset up
to reaching the whole trainset. We selected ten sam-
ple sizes to cover low-data regime situations (100
- 1,000) and high-data regime situations (1,000 -
3,668). We leveraged the HuggingFace2 transform-
ers library and the sentence-transformers library
for all our fine-tuning and filtering experiments. We
fixed the training configuration to well-known hy-
perparameters for this task based on HuggingFace’s
recommendations. We left a granular optimization
of the hyperparameters for future works. Thus, our
experimental setup is as follows:

• Batch size: 32

• Learning rate: 3e-5

• Number of runs per experiment (random seeds
were randomized at each run): 10

• Number of different experiments: 240

• Sample sizes: [100, 250, 500, 750, 1000,
1500, 2000, 2500, 3000, 3668]

2https://huggingface.co/



305

• FP16 mode

Overall, we conduct 240 unique experiments.
For each of these, we report the average of 10 runs
in Figures 4, 7, and 8. Our evaluation metrics are
respectively: F-1 score, precision, and recall. We
mainly focus on the average of F-1 scores since it
is the metric used for the GLUE benchmark and
in the literature. Nonetheless, we also inspect the
precision and recall — the components of the har-
monic mean used to compute the F-1 score — to
gain a thorough understanding of our method.

In Figure 4, we illustrate the F-1 scores for all
six models across all the sampling sizes. We dis-
play four curves: baseline (plain MRPC without
BET), BET filtered 0.95, BET filtered 0.9, and BET
filtered 0.8. We also added the F1 scores (dashed
black lines) reported by their original authors for
the corresponding large models. As a first general
observation, we observe that all the baseline curves
have approximately an S-shaped trend, in which
sharp variations occur. In contrast, the BET filtered
lines are smooth logarithmic-like growth, mostly
all above the baseline curve. We further note that
the higher we fix the similarity threshold, the big-
ger the gains we have. Some models like RoBERTa
and DeBerta have gained between 0.04 and 0.08
in the sample size region between 500 and 1,500
samples.

We directly provided in Figure 6 the F-1 scores
gain G in percent computed by comparing the BET
filtered 0.95 to the baseline. We used the equation
3. We first note that most models are around 3%
gain in the data scarcity region. For the Electra
base model, we observe a maximum peak of 7.6%
gain in F-1 score for a 750 sample size. The second
highest peak is reached by Albert with nearly 5%
between 500 samples and 1,500 samples. When
we look at the sizes near the full dataset, we can’t
discern a clear portrait, despite less gain overall.
We measured around 1% for RoBERTa and Electra,
which lead in absolute to results near their large
equivalent. Two cases are slightly below the 0% —
BERT and Albert. XLNet and Deberta seem to be
in between those extremums. Therefore, the trend
is moving from high gains in the low-data region
(250 to 2,000 samples) to lower gains at higher
sample sizes (3,000 to 3,668 samples).

G = 100 · F1augmented − F1baseline
F1baseline

(3)

Figure 6: F-1 score gain in percent by comparing the
F1-score averages between the BET filtered 0.95
against the Baseline.

We also checked the p-values from the Student’s
T-test between all the augmented F-1 scores and
the baseline ones, in Figure 5. In statistics, we are
usually advised for a minimum of about 35 runs to
benefit from the law of large numbers. Given the
long training times of transformer models and the
number of configurations set by our methodology,
we limited our experiments to ten runs. However,
we note it is already twice the usual five runs used
in the literature with these models. The resulting
comparison using the p-values is therefore limited.
Yet, we observe that in the case of the BET filtered
0.95 mostly all F-1 scores are strongly significant
below a p-value of 0.05 (dashed black line). How-
ever, we note less significant results at 100 samples,
and some at high sample sizes. Those regions, as
well as the BET filtered 0.8 and BET filtered 0.9,
would require further runs to conclude statistically
the T-test. We finally highlight that, in the case
of RoBERTa and Electra in the large sample size
region (from 3,000 to 3,668), the results reaching
near their large counterparts are significant.

To have an idea of the underlying influences
behind the reported F-1 scores, we also provide the
values for precision and recall in Figures 7 and 8.

In Figure 7, we observe in many cases a reduc-
tion in precision. However, in the low sample sizes
— below 1,500 samples —, we notice gains in pre-
cision between 0.03 and 0.15. Furthermore, we
report that the lower the similarity filter is(0.8 and
0.9), the more we tend to degrade the precision
compared to the baseline. We remark that all the
BET filtered 0.95 curves are surpassing the baseline
precision. We mentioned as a first hypothesis that
a higher threshold on the similarity scores would
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Figure 4: F-1 score curves for all experiments, where each point is the average of ten experiments. The dashed
black lines are the GLUE benchmark scores reported for the large models. The model names are the ones used by
the HuggingFace Model Hub.

Figure 5: P-values of the F1-score curves augmented by the BET framework against the Baseline curve.

induce a higher quality of the generated samples —
leading logically to a rise in precision. Therefore,
we confirm the validity of this hypothesis based on
its impact on the precision curves.

In Figure 8, we show the sensitivity curves, on
which we denote two observations. First, as ex-
pected generally with data augmentation in NLP,
we note an overall gain in recall when applying
BET from a couple of percent up to 0.05. We ob-
serve that this gain tends to lower as the similarity
threshold gets higher, but remains above the base-

line. The pre-trained models that benefit the most
in terms of sensitivity are respectively BERT, De-
Berta, Albert and RoBERTa. XLNet and Electra
obtained very low improvements on the sensitivity
metric. When looking below a 1,000 sample sizes,
we notice a drastic drop in recall from the baseline
to any of the BET curves. Nonetheless, we ratio-
nalize that the models tend to declare a paraphrase
too often. We conclude that this issue is solved by
applying any backtranslation.
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Figure 7: Precision curves for all experiments, where each point is the average of ten experiments.

Figure 8: Recall curves for all experiments, where each point is the average of ten experiments.

5 Conclusion and Future Work

In this paper, we described a method based on back-
translation which is followed by a filtering stage to
keep the most eligible examples. We increased the
F-1 scores on the automatic paraphrase detection
task by up to 7.6% compared to the baseline using
only a fraction of the original dataset. Furthermore,
we demonstrated that this approach limits the gain
in recall while avoiding degrading the precision,
which results in the best F-1 scores. With the aug-
mentation of the full dataset using RoBERTa base
and Electra base, we achieved results that are close

to the reported GLUE benchmark scores, while
the original authors were using their corresponding
large versions. In conclusion, pre-trained trans-
former models have very good transfer-learning
capabilities, but they still largely benefit from the
support of high-quality natural language augmen-
tation, both to enrich very small datasets and to
alleviate the overfit on surface cues.

In future work, we will extend this work to the
other paraphrase corpus as well as to the other NLP
tasks such as multi-class classification.
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