
Proceedings of Recent Advances in Natural Language Processing, pages 1455–1462
Sep 1–3, 2021.

https://doi.org/10.26615/978-954-452-072-4_163

1455

Mistake Captioning: A Machine Learning Approach For Detecting
Mistakes and Generating Instructive Feedback

Anton Vinogradov
University of Kentucky
Lexington, KY 40506

anton.vinogradov@uky.edu

Andrew Miles Byrd
University of Kentucky
Lexington, KY 40506

andrewbyrd@uky.edu

Brent Harrison
University of Kentucky
Lexington, KY 40506

harrison@cs.uky.edu

Abstract

Giving feedback to students is not just about
marking their answers as correct or incorrect,
but also finding mistakes in their thought pro-
cess that led them to that incorrect answer. In
this paper, we introduce a machine learning
technique for mistake captioning, a task that
attempts to identify mistakes and provide feed-
back meant to help learners correct these mis-
takes. We do this by training a sequence-to-
sequence network to generate this feedback
based on domain experts. To evaluate this
system, we explore how it can be used on a
Linguistics assignment studying Grimm’s Law.
We show that our approach generates feedback
that outperforms a baseline on a set of auto-
mated NLP metrics. In addition, we perform
a series of case studies in which we examine
successful and unsuccessful system outputs.

1 Introduction

Giving feedback is one of the most critical parts of
education and training. It allows the instructor to
correct errors in students’ understanding and guide
them to the correct solution. In automated learning
systems, such as intelligent tutoring systems (ITSs)
the feedback and hints are focused on getting the
student to complete the assignment, but this may
not take into account their mastery of that skill.
While better feedback can be made by considering
student intent, we find that current models are lack-
ing in this regard. They are typically focused on
learning objective mastery and may not necessar-
ily give the whole picture when determining why
students answered something the way they did.

But there is a natural solution to this, in that
skilled educators are capable of intuitively mod-
eling a student’s thought process and determining
mistakes in it. This skill is often developed over
time. The difficulty of this task for educators de-
pends on the field of study, with some more free

form fields like writing and programming being
particularly difficult. By indirectly modeling a stu-
dent’s intent by instead modeling how the instructor
gives feedback, we can use this model to generate
novel feedback sentences.

We propose a system that when given a mis-
take that has been identified in the task of deriving
sound changes from Proto-Indo-European to Proto-
Germanic, will automatically generate an explana-
tion that identifies the mistake and the reasoning
to why this sound change should not apply in this
case. We call this method Mistake Captioning as
it takes inspiration from image captioning meth-
ods and post-hoc AI rationale generation methods
such as Ehsan et al. (2019) Automated Rationale
Generation.

We apply a suite of automated machine transla-
tion and image captioning metrics to test our sys-
tem. We also take a closer look at 3 cases from a
more complete retraining of the network to better
understand how the network is performing and how
well the metrics perform regarding our task. We
find that this method is a good start, but more data
and work need to be done to be able to integrate
this into a serious learning environment.

2 Background and Related Work

In the space of ITSs a problem is how to get a stu-
dent to the correct solution. One of the ways to
achieve this is by having an expert to author the
correct solution and the path to take to get there
(Marwan et al., 2020; Unnam et al., 2019; Ariely
et al., 2020). These all require the use of an expert
to either structure the assignment such that feed-
back can be extracted or to label assignments to
create a system that can learn the expert knowl-
edge. In some domains this is not necessary as
the students can provide the data for the path to
the solution themselves. This data-driven approach



1456

uses data from multiple students to create all pos-
sible paths that lead to a solution, as is shown by
Stamper et al. (2008) in their work on Hint Fac-
tory. This was later extended to create paths that
optimize for productivity metrics by Maniktala and
Barnes (2020). In vast solution spaces generating
all possible paths to the solution is not feasible,
and in Rivers and Koedinger (2017) work this is
done by abstracting states so that a single state can
represent a large space of states.

Our method does not attempt to establish a cor-
rect answer like these previous methods as they do
not tackle an underlying problem as to why stu-
dents make mistakes. We structure our problem not
as a method of guiding the student to the correct
path, but by trying to correct the thought process
that led them to their current answer. This is similar
to the methods used in image captioning (You et al.,
2016) where they train a model to recognize what
is in an image by relating human authored captions
to images. This model is then used to generate
captions on similar features in new pictures. This
is also like the work done in post-hoc AI rationale
generation like that of Ehsan et al. (2019). In this
work they relate a set of human actions to human
rationales of those actions for the use of explaining
AI behavior. In our system, we make use of human
actions in the form of mistakes and relate them to
human explanations of the mistake.

2.1 The Proto-Indo-European Language and
Grimm’s Law

Our application area for this paper is on an assign-
ment concerning Grimm’s Law, which is a series
of sound changes that occurred in the evolution of
Proto-Indo-European (PIE) into Proto-Germanic
(PGmc). PIE is a reconstructed language that at-
tempts to recreate the common ancestor of Indo-
European language family. While no direct evi-
dence remains of PIE, the similarities between the
languages in this family indicate that they come
from a common ancestor. Despite these similari-
ties, there are still differences in the languages that
can be attributed to shifts in pronunciation as time
went on and communities speaking this language
became isolated from others. PGmc. is also a re-
constructed language, serving as the source of all
Germanic languages. Sound changes can be traced
from PIE to PGmc.

We focus our task on a set of sound laws that
describe how stop consonants change from PIE

to PGmc collectively known as Grimm’s Law
(Campbell, 2013) and also include instances where
Grimm’s Law does not occur. Grimm’s Law con-
sists of three different changes that all contribute
towards a single shift known as a chain. These
changes are as follows:

1. PIE voiceless stops change to voiceless frica-
tives.

2. PIE voiced stops change to voiceless stops.

3. PIE voiced aspirated stops change to voiced
stops or fricatives.

Together they are chained such that affected
sounds in PIE are shifted one step to their form
in PGmc. This limited set of shifts is what is repre-
sented in our data and is the reason for some of the
limitations.

3 Methods

3.1 Data
The data used in this paper is centered around
the linguistics PIE rule, Grimm’s Law (Campbell,
2013). Since the task is to generate a reasoning
for a mistake made by students, we have opted to
organize the data as a fill-in-the-blank task, as one
would show up as an assignment. Since we are
focusing on captioning the mistake, the changes
from PIE to PGmc must contain a mistake and
an explanation for that mistake. To create these
erroneous responses, we had a linguistics expert
generate a number of entries fulfilling these cate-
gories: a PIE word; a PGmc form of that word with
blanked areas demarked by underscores; a faulty
PGmc word that contains a mistake; and an expla-
nation for what that mistake was and how to fix it.
The PIE word is the original form of the word that
the student is tasked to change. The blanked PGmc
form is blanked only in the areas that the student
would be tasked to change. There may be multiple
blanks if there are multiple spots where the change
occurs. The faulty PGmc form contains only a
single mistake each, so that the explanations can
be more focused on that specific mistake. When
multiple mistakes are identified for each PIE word,
they are separate entries with separate explanations.
Likewise, if there are multiple blanks to fill in for
a word, then each blank will have a separate set of
entries for its possible mistakes. The explanations
were written with a simplified style as to not in-
troduce too much detail into the explanations that



1457

PIE Blanked
PGmc

Faulty
PGmc Explanation

pisḱós is az fishaz ḱ ultimately does become h, but not when immediately following
stops & fricatives

pisḱós is az biskaz
p can shift to b, but only when the middle of the word preceding an
accented vowel

pisḱós is az fisgaz ḱ can shift to g, but only when preceding an accented vowel in the
middle of a word

pisḱós is az fisxaz ḱ normally changes to x, but not when preceded by a stop or fricative

Table 1: The data entries for the mistaken sound changes in the PIE word for “fish”

resulted in each explanation being a single sentence
following a general format. This sentence is in the
rough form of “the mistake that was made, reason
why it is not applicable in this case”. For example,
in Table 1 the explanation for why fishaz is wrong
has ḱ ultimately does become h as the mistake that
was made and but not when immediately follow-
ing stops & fricatives as the reason why it is not
applicable in this case.

This data was gathered by a single Linguistics
Expert, with minor input from the authors as to
style and structure to better suit this data for ma-
chine learning. Our linguistics expert is an asso-
ciate professor of linguistics that frequently teaches
classes on PIE. There were no attempts to control
for consistency in tone, tense, or voice style, so
such variations do occur in the data. Because the
sentences follow a general format, there are some
exact explanation matches in the data. Since this
was the application of a small set of rules over a
larger set of words, finding common letter changes
and explanations could not be avoided. We col-
lected 163 entries of PIE words, fill-in-the-blanks,
faulty PGmc words, and their corresponding expla-
nations. These came from 55 unique PIE words and
contained 53 unique explanations to cover all cases
found in the data. The most common explanation
occurred 15 times, while others only occurred once
in the entire dataset. Even those that occurred once
often shared similar phrasing with other explana-
tions since they were drawn from a common set of
rules and a common set of consonants.

The data was further structured for training as
seen in Table 2. To preserve the question that was
being hypothetically asked to solve and the answer,
we combined the PIE form and the faulty PGmc

form, separated by a space, as our model input. For
our model output we used the explanations without
adding anything, but we did remove and change
some characters. We removed all instances of end-
ing punctuation like periods and exclamation points
and spaced out commas to count them as separate
tokens. The white space was also normalized and
any leading or trailing white space was removed.
While not shown in the table, the input was tok-
enized character by character to help preserve the
differences between the faulty PGmc, while the
output was done word by word.

3.1.1 Data Noise
Our data is very limited in scope due to the effort
it requires to generate it. If we were to train our
model only using the data as it is, we would likely
run into issues with overfitting and overtraining.
To alleviate this, we have injected noise into the
data to be able to train longer. For our training
output, creating noise is a straightforward process.
In every training iteration, the output has 30% of its
words masked out. This value was chosen to keep
most of the explanation intact while still having a
significant amount noised as overfitting is a serious
concern. This means that at no training iteration
has the model ever seen a complete output sentence,
but with enough training iterations the unmasked
portions should have overlapped enough to reveal
the complete sentence.

The input was a more complicated process.
Since the input is smaller than the output, we
made the attempt to preserve some of the important
parts, namely the actual changes from PIE to PGmc.
Since these are fill-in-the-blank tasks, we have ac-
cess to the parts that contain no mistakes and using
this part of the dataset we identified the portions



1458

Input Output Maskable Indices

pisḱós fishaz
ḱ ultimately does become h , but not when immediately
following stops & fricatives

[10, 11, 13, 14]

pisḱós biskaz
p can shift to b , but only when the middle of the word
preceding an accented vowel

[10, 11, 13, 14]

pisḱós fisgaz
ḱ can shift to g , but only when preceding an accented
vowel in the middle of a word

[10, 11, 13, 14]

pisḱós fisxaz
k normally changes to x , but not when preceded by a
stop or fricative

[10, 11, 13, 14]

Table 2: The processed data entries for the word “fish”.

of the Germanic words that are considered safe to
mask out in the form of maskable indices. These
are shown in the 3rd column of Table 2, though
these may not visually line up to the index of the
words since letters that are accented are encoded
as multiple characters. Since this only affected the
PGmc part of the already smaller input, instead of
masking 30% of the characters we only mask a sin-
gle character at a time and limit it to only 30% of
the time. This hopefully allows us to make a more
robust set of training examples without disrupting
the underlying meaning too much.

3.2 Model

For our model we use a sequence-to-sequence net-
work. Sequence to sequence networks utilize two
recurrent neural networks: an encoder and a de-
coder. The encoder encodes the sequential data
into a fixed length context vector that is meant to
represent the important elements of the input. This
context vector is then used by the decoder to gener-
ate a natural language output. In our case, this out-
put is an explanation, but this can be used for other
tasks. Sequence to sequence networks have been
used for translation (Sutskever et al., 2014) and
post-hoc rationale generation (Ehsan et al., 2019)
tasks, and while our task is not a traditional transla-
tion or rationale generation task it can be modeled
as one. The network learns to take the input se-
quence of our PIE and faulty PGmc words as a
character sequence and translate them into a word
sequence for our explanations. By connecting the
input to the explanation, we are learning human-
like reasoning for why the mistakes happened. We
use Gated Recurrent Units (GRUs) to take advan-
tage of their faster training time and better use with

smaller data (Chung et al., 2014). We also make
use of an attention mechanism (Graves, 2013) on
the decoder to learn to focus on the important parts
of the output explanation.

The model was trained on 75,000 iterations using
the same 163 question and explanation pairs, but
as mentioned previously in each iteration some
characters and words were masked to prevent the
model from seeing them. During each training
iteration a random sample from the data is run
through the network after having noise applied.

4 Experiments

We conducted two experiments to evaluate our
method: A quantitative approach using a set of
automated metrics to judge the candidate explana-
tions, and a qualitative case study to demonstrate
what types of outputs were generated. For both the
qualitative and quantitative evaluation we used 5
different automated metrics:

BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), ROUGE (Lin, 2004), CIDEr
(Vedantam et al., 2015), and BERTScore (Zhang
et al., 2019).

For our quantitative evaluation, we used k-fold
cross-validation to control for the variance in our
data. We compare our approach against a major-
ity baseline. Since several of the explanations in
the data were repeated, we decided that a better
baseline would be the majority baseline and used
the most repeated explanation in our data. This
explanation was used 15 times in the data, and for
the majority baseline we set the generated output to
all be this exact sentence. This explanation can be
seen in Table 4 in the baseline incorrect, candidate
sentence. While the majority baseline has a low



1459

Figure 1: The means and std. displayed visually
(CIDEr was not included since it is unbounded).

accuracy, about 9.2%, it was chosen to show that
the method is viable before continuing to a human
evaluation.

For our qualitative analysis, we opted to look
at outputs for a retrained model that was trained
on all but 8 random examples of the data. Since
our dataset is small, we decided that training on
all but a small number of examples would give
better insights on what the network was learning.
We examined how the model performed in gener-
ating explanations for each of the 8 examples that
were held out during training. From these 8, we
used their automated metric performance in con-
junction with their correctness to divide them into
three categories: correct, partially incorrect, and
incorrect. We then explore why this occurred and
reason about the implications of these results in
practice.

During training, we use the following hyper-
parameter values for our model. We used a teacher
forcing ratio of 0.5, and a learning rate of 0.01. For
the hidden layers (consisting of the attention and
GRU layers), a fixed size of 256 was used. All
outputs were limited to a maximum length of 30
but this limit was not reached. To test the model,
we implemented beam search to select the best can-
didate explanation instead of the default greedy
search. In addition to improving the accuracy of
the model this allowed us to look at multiple final
outputs, each scored by the model. This is useful
in manually judging if the alternatives to the top
output were more correct. We limited the beam
width to 5.

5 Results

We found that our method consistently outper-
formed the baseline in all metrics as can be seen in
Table 3. This provides evidence that our model is
working to learn when to apply and how to recreate
humanlike feedback in response to mistakes. We
also found that the leave-8 retraining performed
better than the 5-fold models. This trend can be
visually seen in Figure 1.

Applying a 2-sided t-test we find that the differ-
ence between the baseline and the 5-fold is statisti-
cally significant (p < 0.0001) in all cases. When
comparing the baseline to 8 case studies this also
holds true (p < 0.001). There is also no statisti-
cally significant difference between the case studies
and the 5-fold.

6 Discussion

In this section, we discuss the results in more detail,
going over the results of the automated metrics and
case studies.

6.1 Automated Metrics
While the automated metrics do show that our
method outperforms our baseline, they are not per-
fect. One finding that came out of this evaluation
is that automated metrics can be misleading when
evaluating performance. This is because automated
metrics for evaluating language generation systems
often measure how well generated sentences over-
lap with reference sentences. The change of a sin-
gle word alters the semantic meaning of an expla-
nation, however, which can fool the metrics into
scoring it higher than it is. Likewise, a generated
explanation can be nearly correct but contain lit-
tle similarity in structure to the original. This is
ultimately a limitation of the data since we only
have a single reference explanation for each faulty
PGmc example. In the data there exist explanations
that explain a concept similar to other explanations
but are differently structured. If the model lifts the
structure of one explanation to the correct change
and reasoning of a change, there is no guarantee
that this will match the reference explanation and
will be scored more poorly. This does not mean
that these metrics are not useful, though, just that
the limited scope of our data makes it less suited
to these metrics. There is a general trend between
how well the explanation performs compared to
how correct it is, as we will see in the case stud-
ies. In general, this seems to suggest that how



1460

Baseline 5-Fold Case Studies
Mean Std. Mean Std. Mean Std.

bertscore 0.8896 0.0397 0.9479 0.0502 0.9593 0.0521
Bleu 1 0.2872 0.2424 0.6019 0.2690 0.6776 0.2999
Bleu 2 0.2377 0.2570 0.5558 0.3009 0.6503 0.3202
Bleu 3 0.2059 0.2633 0.5228 0.3198 0.6322 0.3239
Bleu 4 0.1802 0.2676 0.4913 0.3378 0.6180 0.3266

METEOR 0.2175 0.1749 0.4003 0.1908 0.4532 0.1917
ROUGE L 0.3377 0.2709 0.6495 0.2864 0.7481 0.3112

Table 3: Mean and Std. for all models generated.

well these metrics will perform will change if we
get more data, both on the number of PIE words
and the number of possible explanations for each
mistake.

6.2 Case Studies
To take a better look at the generated explanations
we have a separate leave-8-out training. In these 8
that we left out and tested on we found three cate-
gories: correct, partially incorrect, and completely
incorrect. Correct explanations include the correct
mistaken change and the correct reason it was not
applicable, while partially incorrect only include
one of the two. Incorrect explanations contain nei-
ther. Of the 8, 4 of these where correct, 3 were
partially incorrect, and only one was completely
incorrect. We have selected 3 examples to match
these 3 categories to look more closely at.

6.2.1 Completely Incorrect
There was only a single example of the completely
incorrect case, which is shown in Incorrect case
in Table 4. This explanation does not identify the
sound change giving ḱ instead of t for the sound
change. For the reasoning it seems like it is on the
correct track by mentioning preceded by stop or
fricative but reverses whether the change occurs
because of this. In fact, this is a case of the candi-
date explanation having no relation to the reference
explanation, nor is close to any reference explana-
tion for that PIE word, nor the PIE and PGmc input.
The candidate explanation refers to a ḱ which does
not appear in input but, as will be expanded on
later, this may be a case of encoding. Due to the
way that the input is interpreted on a character-by-
character basis the model may have recognized the
presence of the k and conflated it with a ḱ. It also
used the explanation that is most repeated in the
dataset, which suggests that it picked the most pop-
ular explanation as opposed to correctly learning

this change.

6.2.2 Partially Incorrect
For the partially incorrect case we find that the
model could identify something correct but not ev-
erything. Sometimes this was only identifying the
correct sound change or the correct reasoning, but
in the case that we are focusing it generated a com-
pletely new explanation that was one word from
being correct. This candidate explanation changed
the word must to only which completely changes
the meaning of the explanation. In our explanation
generation we saved the top 5 sentences, and the
correct explanation does appear as the second. This
may be another encoding issue since the phrase k
only appears several times in our dataset. We used
beam search to attempt to avoid this problem, but
in this case, it does not seem to have been enough.
The complete phrase that was generated does not
appear as a reference explanation in any of the ex-
amples, so it is unknown as to why it chose this one.
It is likely that having more reference explanations
would help as it would force the model to learn
more important features.

In another case of partially incorrect, we found
that the exact reference explanation that never ap-
peared in that training data, which means that the
model could not have possibly generated a com-
pletely matching explanation.

6.2.3 Correct
The correct category is marked by when the model
was correctly able to generate an explanation for
the mistake that was made, matching both the
change and reasoning. This is also the largest cate-
gory, comprising 4 of the 8 examples. These score
highly on all the metrics. This category has sound
changes that are well represented in the training
data, with no reference explanation appearing less
than 5 times. In the case shown in Table 4, the



1461

Case PIE
PGmc Reference Sentence Candidate Sentence

Completely
Incorrect

skotó
skata

t only remains t if it’s
preceded by a stop or fricative

while ḱ does become a velar sound ,
it also shifts if it isn’t
preceded by a stop or fricative

Partially
Incorrect

ḱlew-
ḱlew

ḱ must shift if it isn’t
preceded by a stop or fricative

ḱ only shift if it isn’t
preceded by a stop or fricative

Correct
pénkwe
finkwe

kw only remains kw if it’s
preceded by a stop or fricative

kw only remains kw if it’s
preceded by a stop or fricative

Baseline
Incorrect

h2yuh2nḱó-
yunha-

ultimately k becomes h , but
it first changes into a velar sound

while ḱ does become a velar sound ,
it also shifts if it isn’t preceded by a
stop or fricative

Table 4: Specific examples of cases that we found in our data. Included is an example from the baseline.

reference explanation appeared 8 times which is
relatively high, but not unique to this category. The
completely incorrect case had its reference sen-
tence appear 12 times in the data, meaning that this
is likely not the most prominent factor in whether a
generated explanation will be correct or incorrect.

In all these cases we find that the automated
metrics to judge these explanations are generally
higher when the answer is more correct, and gen-
erally lower when it is more incorrect. This holds
in cases when there is only partial correctness. As
mentioned before this is likely due to our limited
data and may break if we have more reference sen-
tences. We hope to expand the data to cover other
changes in linguistics, though the method should
be able to be transferring to other domains too.

7 Future Work

Due to the way that our method works in identi-
fying a single mistake at a time, we can use the
fill-in-the-blank task to generate explanations on
multiple mistakes. This is done by first comparing
the answer given to the correct answer and find-
ing the difference between the two and isolating
each individual mistake. Each of these individual
mistakes can be then applied to the original correct
answer to create separate faulty answers which can
subsequently be run through our system. Using this
method, we can also change the fill-in-the-blank
task to a simple response, where the student is
tasked to correctly make all the changes to the PIE
word to produce a PGmc word.

Either through separate models for separate rules

(and enough annotations on the input) or by training
a single more complex model, it may be possible
to create a system that can caption all mistakes for
a given task. This could work in conjunction with
automatically grading the assignments to quickly
provide feedback on the mistakes.

8 Conclusion

In this paper we show a method of the novel task
of creating automated captions of mistakes. These
captions serve as explanations for what the thought
process behind the mistake was, and why it is not
applicable in this case. We apply two methods
to test our model, comparing against a baseline
with a suite of automated metrics, and manually
identifying and analyzing the sentences in a series
of case studies. Our experiments show that our
method has promise in creating these automated
captions but that there are significant challenges
that need to be overcome.

We set out tasks in the domain of Linguistics
pedagogy, and in this we can make improvements
with representation of the input data and with gath-
ering more and more varied data. We also hope to
expand this to include a wider set of rules covering
a larger set of sound changes, and eventually evalu-
ate the method using a human study. We hope that
this method of mistake captioning can be applied
to other fields of study.



1462

References
Moriah Ariely, Tanya Nazaretsky, and Giora Alexan-

dron. 2020. First steps towards nlp-based formative
feedback to improve scientific writing in hebrew. In
proceedings of the 13th International Conference on
Educational Data Mining.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Lyle Campbell. 2013. Historical Linguistics: An In-
troduction, ned - new edition, 3 edition. Edinburgh
University Press.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Upol Ehsan, Pradyumna Tambwekar, Larry Chan,
Brent Harrison, and Mark O Riedl. 2019. Auto-
mated rationale generation: a technique for explain-
able ai and its effects on human perceptions. In Pro-
ceedings of the 24th International Conference on In-
telligent User Interfaces, pages 263–274.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Mehak Maniktala and Tiffany Barnes. 2020. Extend-
ing the hint factory: Towards modelling productivity
for open-ended problem-solving. In In proceedings
of the 13th International Conference on Educational
Data Mining (DC paper).

Samiha Marwan, Ge Gao, Susan Fisk, Thomas W
Price, and Tiffany Barnes. 2020. Adaptive imme-
diate feedback can improve novice programming
engagement and intention to persist in computer
science. In Proceedings of the 2020 ACM Con-
ference on International Computing Education Re-
search, pages 194–203.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Kelly Rivers and Kenneth R Koedinger. 2017. Data-
driven hint generation in vast solution spaces: a
self-improving python programming tutor. Interna-
tional Journal of Artificial Intelligence in Education,
27(1):37–64.

John Stamper, Tiffany Barnes, Lorrie Lehmann, and
Marvin Croy. 2008. The hint factory: Automatic
generation of contextualized help for existing com-
puter aided instruction. In Proceedings of the 9th In-
ternational Conference on Intelligent Tutoring Sys-
tems Young Researchers Track, pages 71–78.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
arXiv preprint arXiv:1409.3215.

Abhishek Unnam, Rohit Takhar, and Varun Aggarwal.
2019. Grading emails and generating feedback. In-
ternational Educational Data Mining Society.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4566–4575.

Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang,
and Jiebo Luo. 2016. Image captioning with seman-
tic attention. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
4651–4659.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.


