
Proceedings of Recent Advances in Natural Language Processing, pages 1369–1379
Sep 1–3, 2021.

https://doi.org/10.26615/978-954-452-072-4_153

1369

Watching a Language Model Learning Chess

Andreas Stöckl
University of Applied Sciences Upper Austria

Digital Media Department
Hagenberg, Austria

andreas.stoeckl@fh-hagenberg.at

Abstract

We analyse how a transformer-based language
model learns the rules of chess from text data
of recorded games. We show how it is possible
to investigate how the model capacity and the
available number of training data influence the
learning success of a language model with the
help of chess-specific metrics. With these met-
rics, we show that more games used for train-
ing in the studied range offers significantly bet-
ter results for the same training time. How-
ever, model size does not show such a clear
influence. It is also interesting to observe that
the usual evaluation metrics for language mod-
els, predictive accuracy and perplexity, give
no indication of this here. Further examina-
tion of trained models reveals how they store
information about board state in the activa-
tions of neuron groups, and how the over-
all sequence of previous moves influences the
newly-generated moves.

1 Introduction

Language models are now used for a variety of ap-
plications that are not, or not directly, related to Nat-
ural Language Processing tasks, and process data
that is not text Parmar et al. (2018); Huang et al.
(2018); Dhariwal et al. (2020). Lu et al. (2021) used
a so-called Frozen Pretrained Transformer (FPT)
to study finetuning on a variety of sequence clas-
sification tasks spanning numerical computation,
vision, and protein fold prediction.

In this article, we use state-of-the-art methods
for language models in an area that at first glance
does not seem to be an application area for them,
namely the area of computer chess. This is because
clear rules determine what happens here, rather
than the ambiguities and vagueness that charac-
terise language.

Brown et al. (2020) demonstrated, among other
things, that a language model with increasing

model capacity is able to learn the rules of arith-
metic to a certain degree by training it with the
data of crawled websites. In the process, elemen-
tary operations were learned in a certain number
space, but not beyond. Is this limitation due to the
lack of capacity of the model, insufficient training
time or training data that did not contain sufficient
information?

In Nogueira et al. (2021), it was demonstrated
that regardless of the number of parameters and
training examples, Transformer Vaswani et al.
(2017) models are unable to learn addition rules
that are independent of the length of the numbers
seen during training.

To test the ability of language models to learn
rules, and assess the influence of model size, train-
ing time and available training data, we use the
commonly-stressed field of “computer chess” as
an example. We investigate whether a language
model is able to learn the rules of chess only from
the records of games played by humans.

The test area is well suited for studying the train-
ing process of language models, since training data
is available in large quantities here thanks to the
recording of chess games on the booming internet
chess servers. Another reason is that the quality of
the language model can not only be assessed with
the usual evaluation metrics for language models
such as perplexity, but also with the help of the
chess rules to check whether correct games are
generated.

Chess as an AI testing ground has also been very
popular for decades, and it regained strong focus
a few years ago, thanks to the work of Deepmind1

Silver et al. (2018, 2017); Tomašev et al. (2020)
together with the game of GO. There, only starting
from the rules with new techniques of reinforce-
ment learning, a chess engine was created that sur-

1https://www.deepmind.com/



1370

passed everything that had previously existed in
terms of playing strength.

In Schrittwieser et al. (2020), as a continuation
of the previous work, knowledge of the rules is now
not even assumed. When evaluating Go, Chess and
Shogi, without knowledge of the rules of the game,
the new algorithm MuZero achieved the superhu-
man performance of AlphaZero2 of the earlier work,
which was trained with the rules of the game.

We will use a completely different approach as
a starting point to create a system that discovers
the rules of chess itself. Only transcripts of games
played will be used to train language models. We
will then inspect the models to ascertain how the
system has learned the rules of chess.

2 Formulation of the Problem

We formulate the problem of learning to play chess
within the framework of the usual methodology
for language models. A language model is made
capable of writing texts by training it with data
comprising natural language. It achieves this by
completing given passages of text, inserting word
by word or part of word by part of word that is
likely to be next.

In recent years, major progress has been made
in this field thanks to the use of neural networks.
These very powerful models are not only able to
form syntactically correct sentences, but also to
keep the context correct across several paragraphs,
thus producing texts that are almost indistinguish-
able from those written by humans.

This has become possible because the new model
architectures called Transformers Vaswani et al.
(2017); Alammar (2018) are able to capture de-
pendencies in the texts over long distances, and
sufficient training material is also available from
the WWW. In order to have a supervised training
setting, the systems are either fed with text as input
to guess the next word (casual language modelling),
or words in a whole sentence are masked, which the
model then has to reconstruct (masked language
modelling). The best-known representative of the
first type is the family of GPT models Radford et al.
(2018, 2019); Brown et al. (2020) and for that of
the second type BERT Devlin et al. (2018) and its
many relatives.

We will use the GPT2 model in different model
sizes as a basis and train them with chess data. This

2https://deepmind.com/blog/article/alphazero-shedding-
new-light-grand-games-chess-shogi-and-go algorithm

data is often in the so-called Portable Game Nota-
tion (PGN) format3. These are text files containing
some metadata, such as the names of the players,
the date, the ELO rating4 and more, and the tran-
scription of the actual game in Standard Algebraic
Notation5. This part is a string that can be seen like
a sentence of a natural language. The individual
moves form the “words” of the sentence.

Example:
“d4 d5 Nf3 Nf6 e3 Bf5 Nh4 Bg6 Nxg6 hxg6

Nd2 e6 Bd3 Bd6 e4 dxe4 Nxe4 Rxh2 Ke2 Rxh1
Qxh1. . . ”

Adding a new word to the SAN string is equiv-
alent to making a chess move. The context that a
language model has in the form of the preceding
words for prediction contains all of the information
needed to generate the state of the chessboard. Ac-
cordingly in principle it should be possible to create
a model that predicts all legal moves of a position
with positive probability and all illegal moves with
probability near 0.

3 Data and Pre-Processing

For training the language model, we need a large
amount of game data containing legal moves. We
can download these from the internet chess server
Lichess6, for example. All games played on the
server since 2013 are offered there, grouped by
month. A compressed PGN file is available for
each month. Overall, over 400 GB of compressed
data with over 1.7 billion games played.

This is a sufficiently large amount of data, even
if the amount becomes much smaller after pre-
processing (e.g. removing metadata). Considering
that the original GPT2 language model was trained
with 40GB of internet text, we have sufficient room
to experiment with different amounts of data during
training.

The quality of the games played plays a subordi-
nate role in this research, as it is initially only about
learning the rules. However, it would be possible to
filter games via the metadata of the ELO values of
the players and examine the influence on the play-
ing strength. However, in order to avoid games that
were abandoned early on, sometimes after only one
move on the server, we will use a minimum length

3http://www.saremba.de/chessgml/standards/pgn/pgn-
complete.htm

4https://en.wikipedia.org/wiki/elo rating system
5https://www.chessprogramming.org/Algebraic Chess

Notation
6https://database.lichess.org/



1371

for filtering. The pre-processing of the batch of data
is undertaken with a command line programme for
manipulating the PGN files, which masters almost
all of the required steps. pgnextract7 can perform
the required transformations in a reasonable time
even with large amounts of data.

In these cleansings, all move numbers, results,
comments, variations, etc. are removed from the
games to obtain only the pure string with the SAN
notation. One line per game is written to a file. All
games with fewer than 20 moves are also filtered.

4 Related Work

A very similar approach was followed in Noever
et al. (2020). With slightly different pre-processing,
a model also based on GPT2 was trained from game
data (11,000 games and 2.19 million games). Af-
ter 30,000 training steps, plausible looking games
could be generated, but with about 10 percent il-
legal moves in the games. It was also clearly ob-
served that fewer errors occurred in the early stages
of the game, which is obvious due to the lower
context required. In our experiments, we will in-
vestigate positions after different number of moves
from the starting position.

Jhamtani et al. (2018) use text generation not to
generate the games themselves, but rather to gen-
erate comments in text form. A specially created
data set and an LSTM (Hochreiter and Schmid-
huber, 1997)-based neural network are used for
training.

In our work, as in Kaplan et al. (2020); Henighan
et al. (2020) we will also investigate the relation-
ship between the development of test loss in lan-
guage models as a function of model size, com-
puting capacity and data volume. In their work,
power laws were found to be observed very pre-
cisely over seven orders of magnitude, showing
that the result benefits from a scale up as long as
the sizes are increased simultaneously and there is
no bottleneck at one. If the model sizes in terms
of the number of parameters are increased by eight
times, the amount of data has to be increased by
eight times. We will investigate the relationships
with chess-specific metrics, such as the number of
correctly-generated moves.

Before we start fine-tuning the model with the
games data, we would like to test whether the GPT2
models of different sizes trained with English lan-
guage files are inherently capable of continuing

7https://www.cs.kent.ac.uk/people/staff/djb/pgn-extract/

chess games. Since the training texts comprising
web crawls certainly contained chess games in al-
gebraic notation, this could be possible.

Sequences generated with the GPT2 small, for
example, if started with “e4 d5”, look like this: “e4
d5 e5 e8 8 f8) e5 e3 f8 e9 f8 f8) 9 0-0-0-0-0-”.
While this looks a little like a game of chess, but
they are hardly correct moves.

Games generated with the medium GPT2 model
look like this, for example: e4 d5 18. f6 Nc5 19.
Nf3 Nd4 20. Rg1 Nd6 This looks more like chess
notation, but it still does not contain correct moves.
This example also shows a problem that the model
has with the notation, given that games are pub-
lished very differently on the web and therefore
also in the GPT2 training data. They are partly
with numbering and partly without, which is also
reflected in the example.

The Large Model and the XL Model do not give
better results. We suspect that this is due to insuffi-
cient and inconsistent lot data in the training data
set. A larger model capacity does not bring any
progress here.

5 Training and Evaluation of the Models

The hardware used for the training was a Kuber-
netes cluster Brewer (2015) with NVIDIA RTX
3090 GPUs, each with 24 GB of video RAM and
256 GB of main memory.

For the implementation, the Transformers pack-
age Wolf et al. (2020) from HuggingFace8 based
on Pytorch Paszke et al. (2019) was used.

The learning rate search was conducted accord-
ing to Smith (2018). We start fine-tuning the model
as the learning rate increases from very low to very
high, and stop when the loss starts to truly become
out of control.

Fastai Howard and Gugger (2020) was used for
the training, using the 1-cylce-policy Smith and
Topin (2019). 9

With batch sizes just fitting on the GPU mem-
ory, the models were saved after some epochs of
training for the evaluations.

When language models generate sequences of
words, the same sequence will always emerge if
the word with the highest probability is always cho-
sen next. Furthermore, the models often tend to
repeat sequences of words. This also applies to the

8https://huggingface.co/transformers/
9https://sgugger.github.io/the-1cycle-policy.html



1372

generation of chess games here. Therefore, ran-
dom mechanisms such as top-k sampling Fan et al.
(2018) and top-p sampling Holtzman et al. (2019)
are used to generate the games. These techniques
reduce the tendency of repetition, although it can
still occur, as Welleck et al. (2020) have investi-
gated.

To evaluate the models, games are generated in
different ways:

• From a list of typical opening positions after
two moves.

• From positions of games from a game data set
after a given number of moves.

• From randomly-generated positions after a
given number of moves

For all of these games, the average number of cor-
rect moves generated is counted. These three chess-
specific metrics for assessing the generated moves
pose different challenges to the language model.
For the first evaluation criterion, it is easiest to
generate legal moves, since all test positions were
included in a large number of the training data
games, and therefore it is sufficient for the model
to remember the data. A generalization in the form
that the rules of chess were actually learned is only
necessary for very long generated move sequences.

The second method presents more of a challenge,
increasing as the length of the given number of
moves increases. Since the game data set used for
the test is not included in the training data, as the
length of the given moves increases, increasingly
more positions will appear that the model has never
seen before. Therefore, the model has to learn the
rules to generate valid moves.

The third metric uses starting positions generated
by a random sequence of moves. A large proportion
of these moves have therefore never appeared in
human games, nor in the test data set. Furthermore,
the move patterns that appear are very different
from those in human games, as well as from those
in conventional chess programs. It is therefore very
difficult for the model to generate regular moves
for these sequences. Even for humans, handling
such random positions is very difficult. Chase and
Simon (1973) has found in experiments with chess
grandmasters and amateurs that while good chess
players can easily remember typical positions, they
have problems with random positions.

For each trained model, the training loss, valida-
tion loss, accuracy predicting the moves in the data
and perplexity are also calculated.

6 Results

For encoding, we use byte pair encoding, and there-
fore a typical chess game of 50 moves from both
sides requires about 200 tokens for encoding the
whole game. However, a game can be much longer.
We use a maximum sequence length of 256 and cut
of the rest of the moves.

We trained different model sizes of GPT2 (small,
medium, large) with different numbers of games
(99,604, 577,202, 2,163,417 games) to investigate
the influence of the two factors on the learning
process. To assess the results, the models were each
subjected to an evaluation after a few epochs, using
the evaluation metrics described in the previous
section. Appendix A-1 shows how the predictive
accuracy of the language model evolves with the
number of GPU training hours.

The small amount of training data leads to a
strong increase in accuracy for all three model sizes
after only a few days of training. With more data,
no model shows this increase. The different models
seem to learn at about the same rate, with the small
model being slightly slower.

Alternatively, if we look at perplexity as an eval-
uation measure, the same picture emerges. All
models with a small training data set lead to a faster
drop in perplexity, which indicates a better predic-
tion of the language model. All other combinations
of model size and amount of data seem to perform
the same.

We now want to investigate whether the models
with little data are able to learn the chess rules faster
and whether it truly makes no difference with the
other combinations.

With the chess-specific metrics, we can get to
the root of this, and look at the performance of the
models as a function of training time.

From five typical opening positions after one
move by both sides, five games were generated with
the models with top-p sampling (p=0.92), and then
it was checked how many moves were correct until
the first incorrect move was made. The average
of these 25 games was calculated. Appendix A-
2 shows how this performance for the respective
models developed with the training time.

Top-p sampling is used to check the models’
ability to produce not only the most likely move,



1373

but also other valid moves. In a chess position,
more than one move is usually possible.

For each combination of models and data set,
the result was plotted over the training time and a
logarithmic fit was drawn. No data are available
for the GPT2 large model with the larger amount
of data because hardly any models could be trained
in the available time period due to the long training
time per epoch.

In contrast to the accuracy, this measure shows
that the models with a small amount of data per-
form significantly worse.

The best values are delivered by the medium
model with medium data volume. This is in sync
with the observation in Kaplan et al. (2020) that
model size and data volume should be increased
together for good results.

The second metric is a more demanding task, as
the games are not generated from a typical start-
ing position after one move, but rather from posi-
tions after ten moves, taken at random from games
played. These games were not from the training
data set.

Games are generated from 100 random positions
using top-p sampling (p=0.92), and then tested to
see how many moves were correct from this po-
sition, whereby the mean value is then calculated.
Appendix A-3 shows how this performance for the
respective models developed with the training time.
Again, a logarithmic fit was drawn.

For this task, all models benefit from more train-
ing data, although there are no differences in model
size.

As a third metric, we have chosen a task that
is even more challenging, and it should make
it clearer whether the task was solved based on
learned rules rather than pure memorisation of vari-
ants.

Again, starting with top-p sampling (p=0.92),
100 games were generated from one position af-
ter ten random moves, and then checked to see
how many moves were correct from this position,
whereby the mean value was then calculated. Ap-
pendix A-4 again shows how this performance for
the respective models developed with the training
time.

It can be seen that this task is much more diffi-
cult, as the models now only manage to correctly
execute sequences of a few moves on average.
However, the same effect can be seen as with the
two previous metrics, namely that all models bene-

fit from a larger amount of data. In terms of model
size, there are few differences.

7 How Is Chess Knowledge Stored in the
Model?

So far, we have explored how language models
benefit from more parameters in the model and
more training data when learning chess rules. Now
we want to ascertain whether there are patterns in
how the information of the chess rules is stored in
the parameters of the models. We will use different
visualisations for this purpose.

For this purpose, different approaches help to vi-
sualise language models. On the one hand, we look
at the influence of different inputs on the generated
words/moves, as shown in Arrieta et al. (2020); Li
et al. (2015), and on the other hand, we can look at
the activation of the different neurons in the mod-
els, as shown in Karpathy et al. (2015); Poerner
et al. (2018); Dalvi et al. (2019).

When properly visualised and studied, neuron
activations can reveal the roles played by individual
neurons and groups of neurons. We use the Ecco
library10 Alammar (2021) for analysis.

In order to combine the groups of neurons in-
volved in the same tasks, factorisation methods for
matrices are used, whereby the library used em-
ploys NMF for this purpose.

Let us look at the inner workings of a trained
model for moves from some sample positions. The
first position is from the opening phase and it is
a special situation where only one legal move is
possible (Fig. 1).

If we look at the influence of the individual parts
of the sequence in Fig. 2, the moves that led to po-
sition Fig. 1, on the new move, we see that the last
parts have the strongest influence, but otherwise
the entire sequence also influences the output.

The colour code shows the strength of the in-
fluence, and alternatively we can also show the
influence of the individual parts as a percentage
(Fig. 3).

How certain is the model that the generated move
is a correct one?

For this purpose, we look at the probabilities that
the model assigns to the individual possible tokens
at the end of the last layer of the generator part.
The move is generated in two parts, and it shows
a high probability of the generated move for both

10https://www.eccox.io/



1374

Figure 1: Position from the opening pair with exactly
one possible move.

Figure 2: Sequence of moves leading to position in
Fig. 1

Figure 3: Sequence of moves leading to position in
Fig. 1 with percentages

parts, but still far from 100 percent for the first part
(Fig. 4).

Figure 4: Predicted tokens for moves in position Fig. 1

Let us now look at the activations of the neurons
and try to see how the model stores information
about the chessboard from the move sequences. In
order to generate valid moves, the language model
needs a representation of the chessboard and its
pieces in the states of the neurons.

If we look at the activation of the neurons by
group, we see that one group (red in Fig. 5) is
active on the parts of the text responsible for the
row information on the chessboard, and another for
the column and piece information (blue in Fig. 5).
The other two are active at the beginning or end of
the sequence.

Figure 5: Activations of groups of neurons in position
Fig. 1

Let us now look at another position, which
comes from the so-called “Game of the Century”11.
In the complicated position from the middle game
in Fig. 6 with many possible moves, the model
reaches its limits. It recognises that a piece on the
d-file was captured last and wants to capture it back
with Rxd or Qxd. However, there is no valid move
for this in this position. The representation on the
board was not correctly mapped in the neurons
here, so no valid moves are generated.

The probability for possible next tokens in the
last layer of the network is also distributed over

11https://en.wikipedia.org/wiki/The Game of the
Century (chess)



1375

Figure 6: Position from the middle game.

many candidates (Fig. 7).

Figure 7: Predicted tokens for moves in position Fig. 6.

As in position 1, virtually the entire sequence of
previous moves has an influence on the new move
to be generated, as can be seen in Fig. 8.

Figure 8: Sequence of moves leading to position in
Fig. 6.

In this example, again the specialisation of
groups of neurons on the row information and the
figure and column information can be seen. How-
ever, the activations are lower at the beginning of
the sequence.

8 Conclusion and Future Work

In the two example positions, it can be seen that
the whole sequence has an influence on the gener-
ated move, which is necessary to generate correct
moves.

By looking at the activation of neurons, we could
see that the information about the row, column and
type of figure is stored in different groups of neu-
rons. Thus, the model seems to organise the storage
of the information necessary to represent the state
of the board. So the training could benefit from a
longer string representation of the games such as

the long algebraic notation since the mechanics of
moves are more directly accessible. Because rows,
columns, and pieces are all represented as separate
tokens.

In order to study the learning process for larger
models and larger data sets we would like to use
distributed training with Falcon (2019) with higher
computational capacity, and the optimizations pro-
posed in Rajbhandari et al. (2020); Rasley et al.
(2020); Zhang and He (2020); Ren et al. (2021);
Tang et al. (2021); Rajbhandari et al. (2021); Li
et al. (2021).

We have only investigated the learning of the
rules of the game here. Accordingly, investigat-
ing the possible playing strength of the language
models as a function of the training data quality
would be an interesting extension of the investiga-
tions. The influence of the selection of the training
data according to the playing strength of the play-
ers involved and the model size would have to be
considered here.

References
J Alammar. 2021. Finding the words to say: Hidden

state visualizations for language models.

Jay Alammar. 2018. The illustrated transformer. The
Illustrated Transformer–Jay Alammar–Visualizing
Machine Learning One Concept at a Time, 27.

Alejandro Barredo Arrieta, Natalia Dı́az-Rodrı́guez,
Javier Del Ser, Adrien Bennetot, Siham Tabik, Al-
berto Barbado, Salvador Garcı́a, Sergio Gil-López,
Daniel Molina, Richard Benjamins, et al. 2020. Ex-
plainable artificial intelligence (xai): Concepts, tax-
onomies, opportunities and challenges toward re-
sponsible ai. Information Fusion, 58:82–115.

Eric A Brewer. 2015. Kubernetes and the path to cloud
native. In Proceedings of the sixth ACM symposium
on cloud computing, pages 167–167.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

William G Chase and Herbert A Simon. 1973. Percep-
tion in chess. Cognitive psychology, 4(1):55–81.

Fahim Dalvi, Avery Nortonsmith, Anthony Bau,
Yonatan Belinkov, Hassan Sajjad, Nadir Durrani,
and James Glass. 2019. Neurox: A toolkit for an-
alyzing individual neurons in neural networks. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 9851–9852.

https://jalammar.github.io/hidden-states/
https://jalammar.github.io/hidden-states/


1376

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Prafulla Dhariwal, Heewoo Jun, Christine Payne,
Jong Wook Kim, Alec Radford, and Ilya Sutskever.
2020. Jukebox: A generative model for music.
arXiv preprint arXiv:2005.00341.

WA Falcon. 2019. Pytorch lightning. GitHub.
Note: https://github.com/PyTorchLightning/pytorch-
lightning, 3.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. arXiv preprint
arXiv:1805.04833.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen,
Christopher Hesse, Jacob Jackson, Heewoo Jun,
Tom B Brown, Prafulla Dhariwal, Scott Gray, et al.
2020. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Lstm
can solve hard long time lag problems. In Ad-
vances in neural information processing systems,
pages 473–479.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751.

Jeremy Howard and Sylvain Gugger. 2020. Fas-
tai: A layered api for deep learning. Information,
11(2):108.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob
Uszkoreit, Noam Shazeer, Ian Simon, Curtis
Hawthorne, Andrew M Dai, Matthew D Hoffman,
Monica Dinculescu, and Douglas Eck. 2018. Music
transformer. arXiv preprint arXiv:1809.04281.

Harsh Jhamtani, Varun Gangal, Eduard Hovy, Gra-
ham Neubig, and Taylor Berg-Kirkpatrick. 2018.
Learning to generate move-by-move commentary
for chess games from large-scale social forum data.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1661–1671.

Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
2020. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

Conglong Li, Ammar Ahmad Awan, Hanlin Tang,
Samyam Rajbhandari, and Yuxiong He. 2021. 1-
bit lamb: Communication efficient large-scale large-
batch training with lamb’s convergence speed. arXiv
preprint arXiv:2104.06069.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2015. Visualizing and understanding neural models
in nlp. arXiv preprint arXiv:1506.01066.

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor
Mordatch. 2021. Pretrained transformers as
universal computation engines. arXiv preprint
arXiv:2103.05247.

David Noever, Matt Ciolino, and Josh Kalin. 2020. The
chess transformer: Mastering play using generative
language models. arXiv preprint arXiv:2008.04057.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Li. 2021.
Investigating the limitations of the transformers with
simple arithmetic tasks.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz
Kaiser, Noam Shazeer, Alexander Ku, and Dustin
Tran. 2018. Image transformer. In International
Conference on Machine Learning, pages 4055–4064.
PMLR.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Ad-
vances in neural information processing systems,
pages 8026–8037.

Nina Poerner, Benjamin Roth, and Hinrich Schütze.
2018. Interpretable textual neuron representations
for nlp. arXiv preprint arXiv:1809.07291.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimiza-
tions toward training trillion parameter models. In
SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Anal-
ysis, pages 1–16. IEEE.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. 2021. Zero-infinity:
Breaking the gpu memory wall for extreme scale
deep learning. arXiv preprint arXiv:2104.07857.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,
and Yuxiong He. 2020. Deepspeed: System opti-
mizations enable training deep learning models with
over 100 billion parameters. In Proceedings of the
26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 3505–
3506.

http://arxiv.org/abs/2102.13019
http://arxiv.org/abs/2102.13019


1377

Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. 2021. Zero-
offload: Democratizing billion-scale model training.
arXiv preprint arXiv:2101.06840.

Julian Schrittwieser, Ioannis Antonoglou, Thomas
Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis
Hassabis, Thore Graepel, et al. 2020. Mastering
atari, go, chess and shogi by planning with a learned
model. Nature, 588(7839):604–609.

David Silver, Thomas Hubert, Julian Schrittwieser,
Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, et al. 2018. A general reinforcement
learning algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):1140–1144.

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. 2017. Mastering the game of go with-
out human knowledge. nature, 550(7676):354–359.

Leslie N Smith. 2018. A disciplined approach to neu-
ral network hyper-parameters: Part 1–learning rate,
batch size, momentum, and weight decay. arXiv
preprint arXiv:1803.09820.

Leslie N Smith and Nicholay Topin. 2019. Super-
convergence: Very fast training of neural networks
using large learning rates. In Artificial Intelligence
and Machine Learning for Multi-Domain Opera-
tions Applications, volume 11006, page 1100612. In-
ternational Society for Optics and Photonics.

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan,
Samyam Rajbhandari, Conglong Li, Xiangru Lian,
Ji Liu, Ce Zhang, and Yuxiong He. 2021. 1-bit
adam: Communication efficient large-scale train-
ing with adam’s convergence speed. arXiv preprint
arXiv:2102.02888.

Nenad Tomašev, Ulrich Paquet, Demis Hassabis, and
Vladimir Kramnik. 2020. Assessing game balance
with alphazero: Exploring alternative rule sets in
chess. arXiv preprint arXiv:2009.04374.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Sean Welleck, Ilia Kulikov, Jaedeok Kim,
Richard Yuanzhe Pang, and Kyunghyun Cho.
2020. Consistency of a recurrent language model
with respect to incomplete decoding. arXiv preprint
arXiv:2002.02492.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam

Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Minjia Zhang and Yuxiong He. 2020. Accelerat-
ing training of transformer-based language models
with progressive layer dropping. arXiv preprint
arXiv:2010.13369.



1378

Appendix A-1: Predictive accuracy over trainingstime

Appendix A-2: Average number of correct moves from an opening position



1379

Appendix A-3: Average number of correct moves from positions after move 10 from games played

Appendix A-4: Average number of correct moves from position after ten random moves


