
Proceedings of Recent Advances in Natural Language Processing, pages 121–127
Sep 1–3, 2021.

https://doi.org/10.26615/978-954-452-072-4_015

121

Litescale: A Lightweight Tool for Best-worst Scaling Annotation

Valerio Basile
University of Turin

valerio.basile@unito.it

Christian Cagnazzo
University of Turin

christian.cagnazzo@edu.unito.it

Abstract

Best-worst Scaling (BWS) is a methodol-
ogy for annotation based on comparing and
ranking instances, rather than classifying or
scoring individual instances. Studies have
shown the efficacy of this methodology ap-
plied to NLP tasks in terms of a higher qual-
ity of the datasets produced by following
it. In this system demonstration paper, we
present LITESCALE, a free software library
to create and manage BWS annotation tasks.
LITESCALE computes the tuples to annotate,
manages the users and the annotation process,
and creates the final gold standard. The func-
tionalities of LITESCALE can be accessed pro-
grammatically through a Python module, or
via two alternative user interfaces, a textual
console-based one and a graphical Web-based
one. We further developed and deployed a
fully online version of LITESCALE complete
with multi-user support.

1 Introduction

Annotation is a cornerstone of Computational Lin-
guistics and Natural Language Processing (NLP).
Much of modern NLP is based on machine learning,
and in particular on supervised machine learning.
As a consequence, large amounts of manually an-
notated data are constantly in high demand, and
the quality of the annotation directly influence the
predictive capability of models trained on them.

The annotation of natural language resources
comes in many forms of varying complexity and
levels of abstraction. However, it is possible to
categorize most of the approaches in three main
families. Categorial annotation is perhaps the most
common approach, whereas each instance of a
dataset is associated with a label from a fixed set
of options. Annotation can also consist of scalar
values, that is, numeric values on a predetermined
scale. Finally, ranking is a type of annotation where

multiple instances are put in a certain order by the
annotator, who therefore does not make judgments
on instances in isolation but rather on groups of
them.

Recent literature highlights the advantages of the
ranking strategy, in terms of the quality of the anno-
tation produced with it, in particular when dealing
with subjective aspects of natural language (Yan-
nakakis et al., 2018). The Best-Worst Scaling
model (BWS) is a ranking-based annotation pro-
cess developed by Louviere et al. (2015). BWS has
been proved to be beneficial to the quality of the
resulting gold standard data for subjective-related
tasks such as emotion detection (Kiritchenko and
Mohammad, 2017) and hate speech detection (Po-
letto et al., 2019). The recent work of De Bruyne,
Luna and De Clercq, Orphée and Hoste, Veronique
(2021) further proved the validity of BWS as a
method of annotation for sentiment-related tasks,
dominance in particular.

Several general-purpose annotation tools have
been proposed in the literature. Among the most
popular, WebAnno (Eckart de Castilho et al., 2016)
and Brat (Stenetorp et al., 2012) both provide Web-
based interfaces and the possibility to implement
rich annotation schemas, including annotation at
the word and span level, and links between annota-
tions. A number of online services are also avail-
able to perform linguistic annotation, especially in
a crowdsourced fashion, such as Amazon Mechani-
cal Turk1, Appen2, or LightTag3. All these systems,
however, allow the user to devise schemas that as-
sociate labels or scores to individual units of text,
whether words, spans, sentences or others. In other
words, they natively give the possibility of imple-
menting categorial or ranking annotations. To our
knowledge, there is no publicly available system

1https://www.mturk.com/
2https://appen.com/
3https://www.lighttag.io/

https://www.mturk.com/
https://appen.com/
https://www.lighttag.io/


122

Figure 1: Software architecture of LITESCALE.

that implements a general-purpose ranking annota-
tion methodology, in particular of the Best-worst
Scaling flavour.

2 Best-worst Scaling Annotation

In Best-worst Scaling (BWS) annotation, the anno-
tator is shown a tuple consisting of a fixed number
of instances, and a phenomenon to annotate. The
annotator is then asked to select the instance from
the tuple which expresses the phenomenon to the
maximum extent, and the one that expresses it to
the least extent. For example, in a sentiment po-
larity annotation task, the annotator may be asked
to select the sentences conveying the most positive
and the most negative sentiment.

Starting from the set of instances to annotate,
tuples must be created such that:

• The instances appears in tuples in a random
order.

• Each instance appears in a predetermined
number of tuples.

• The same pair of instances never appears in
the same tuple more than once.

The size of the tuples and the number of tuples
in which each instance appears are parameters to
be determined at the time of the creation of the
tuples. The ratio between the values of these two
parameters determines the number of tuples with
respect to the number of input instances. In par-
ticular, if the two parameters are equal, then the
number of tuples will be approximately the same
as the instances to annotate.

Since the number of tuples where any individual
instance appears equals the size of the tuples (four
items), the number of final questions for the anno-
tators is roughly equivalent to the number of items
to be annotated.

Once the annotation is complete, a score is com-
puted for each instance as the difference between
the number of times the instance was selected as
“best” and the number of times it was selected as
“worst”. The score can easily be normalized to fit
a [−1, 1] or [0, 1] interval, depending on the needs
of the downstream application.

Since the tuples are computed once, at the be-
ginning of the annotation process, every annota-
tor is presented the same set of instances. It is
therefore possible to compute standard measures of
inter-annotator agreement such as Fleiss’ Kappa or
Krippendorf’s Alpha (Artstein and Poesio, 2008).

3 Litescale

In this section, we introduce LITESCALE, a free
and open source software package that imple-
ments the Best-worst Scaling annotation frame-
work. LITESCALE is composed of a core Python
library implementing the core functions, and two
alternative interfaces, a console-based textual one
and a Web-based graphical one. The user can create
annotation projects by providing a tab-separated
text file, and obtain a similarly formatted file at
the end of the annotation. A diagram depicting the
information flow and the modules of LITESCALE

is in Figure 1.

3.1 Core Functions

The core library of LITESCALE implements a series
of functions to create and manage BWS annotation
tasks, called projects. A project is created start-
ing from a simple text file, where each line is a
tab-separated pair of an instance identifier (which
can be any string) and its textual content. Upon
the creation of a new project, a JSON file is cre-
ated representing all the information relative to the
project.

Tuple creation. The function to create a new
project takes five inputs: a name, the label for the
phenomenon to annotate, the file containing the in-
stances, and two parameters for the creation of the
tuples from the set of input instances. Such param-
eters are the size of the tuples to create (tuple size)
and the number of tuples in which a single instance
will occur (instance replication). Given these two
parameters, the system implements the three con-
straints described in Section 1 by leveraging Gauss’
modular arithmetic. More precisely, calling s the
tuple size and r the replication factor, and n the



123

total number of instances, tuple are composed of
instances with indexes in the form:

(xsj+1 + isj) mod n

0 ≤ x < bn/sc
0 ≤ i < s

0 ≤ j < r

This formula ensures that the BWS conditions are
met, by “wrapping up” the indexes in an appro-
priate way. For instance, with s = 4, r = 4,
and n = 101, the first tuples are identified by
the following indexes: (1, 2, 3, 4), (5, 6, 7, 8), ...
However, once the indexes exceed n, the modu-
lar arithmetic recombines them: (1, 5, 9, 13), ...,
(81, 85, 89, 93), (97, 101, 4, 8), and so on.

While this method ensures to fully include all
the input instances into the tuples, due to the in-
ner working of the modular arithmetic the formula
works correctly under the condition that n (the
number of instances) and s (the size of the tuples)
are be co-primes, i.e., they need not have com-
mon divisors other than 1. As a workaround, the
LITESCALE library automatically exclude a num-
ber up to s − 1 of instances from the process, to
prevent the formula to run into a corner case. Fur-
thermore, for some combinations of parameters it is
mathematically impossible to have all the instances
appear in exactly r tuples. More precisely, there
will be up to s− 1 instances that occur r− 1 times,
i.e., a considerably small set of instances will lack
exactly one annotation at the end of the process.

BWS annotation. The library creates a directory
to store all the annotations for a project as a series
of JSON files, one for each user partitipating to the
annotation task. The next tuple function checks the
current status of the annotation and returns the first
non-annotated tuple to be presented to the user. The
annotate function takes a pair of tuple indexes indi-
cating the “best” and the “worst” and updates the
annotation JSON correspondingly. The progress
function returns the number of currently annotated
tuples by a given user and the total number of tuples
in the project, in order to compute the advancement
status of the project as a percentage or progress bar.

Gold standard. The other key function in the
LITESCALE core library is the one that computes
the gold standard. This function collects all the
annotations provided by the users for a specific

project, and computes the gold standard according
to the BWS methodology. For each instance, li-
brary counts the number of times it was judged
“best” and the number of times it was judges
“worst”, and computes the difference between these
numbers. The result is then normalized using the
minimum and maximum values of the differences
across all instances, in order to return a score be-
tween 0 and 1, indicating the relevance of the phe-
nomenon object of the annotation project in each
instance. The gold standard dataset is finally writ-
ten out to a text tab-separated file consisting of
three columns, namely instance ID, text, and score.

3.2 Command-line Interface
The command-line interface (CLI) of LITESCALE

is implemented with the PyInquirer4 Python li-
brary. It makes use of the functions provided by the
LITESCALE core library and exposes an interactive,
menu-based interface to easily navigate through its
functionalities.

Figure 2: LITESCALE command-line interface: login
and start menu.

Upon starting, the CLI asks for a username to
log in, and keeps memory of the last user that had
logged in previous sessions. No password is re-
quested, since the application is intended to be for
single user interaction in individual installations.
After logging in, a menu with a few options is pro-
posed to the user, as shown in Figure 2.

Figure 3: LITESCALE Command-line interface: cre-
ation of a new annotation project.

• Start/continue annotation: lists the available
annotation projects, and start the annotation
of the selected project.

• Generate gold standard: lists the available
annotation projects, and creates the gold stan-

4https://github.com/CITGuru/PyInquirer

https://github.com/CITGuru/PyInquirer


124

dard dataset from all the annotations collected
for the selected project.

• Create a new annotation project: prompts a
sub-menu wizard to create a new project, as
shown in Figure 3.

• Log out: returns to the login prompt.

• Exit: quits the application.

The creation of a new annotation project involves a
small set of questions for the user. These include a
name for the project, a label for the phenomenon
to annotate, values for the two parameters for the
creation of the tuples (tuple size and instance repli-
cation), and the path to a tab-separated file from
which the instances will be read.

Figure 4: LITESCALE Command-line interface: best-
worst scaling annotation.

Selecting start/continue annotation from the
main menu, the user can choose one of the avail-
able projects and start the BWS annotation. The
annotation automatically starts from the beginning,
if this option is selected for the first time, or it con-
tinues at the point where it was left by the logged
in annotator for the selected project.

Figure 5: LITESCALE Command-line interface: check-
ing the progress.

For the BWS annotation, the CLI shows two
questions in sequence to the user, in the form
“which is the MOST label?” and “which is the
LEAST label?”, followed by the list of the in-
stances in a tuple, where label is the label of the
phenomenon for the selected project. An example
of the annotation interface is shown in Figure 4.
At any moment, the user can select PROGRESS
to check how many instances are left to complete
the task (Figure 5), or EXIT to return to the main
menu.

3.3 Web-based Interface

In order to provide a more versatile user experi-
ence, LITESCALE is equipped with a Web-based
interface, as an alternative to the console-base one
described in the previous section. A Web applica-
tion was developed with the Bottle Python library5

that incorporates the core library of LITESCALE

and exposes a local HTTP server.

Figure 6: LITESCALE Web-based interface: main
menu.

Figure 7: LITESCALE Web-based interface: BWS an-
notation.

Figure 8: Software architecture of LITESCALE online.

Executing the server script and pointing a Web
browser to the indicated URL, the Web interface

5https://bottlepy.org/

https://bottlepy.org/


125

of LITESCALE is shown, initially prompting for a
username, exactly as its CLI counterpart. Once the
user has logged in, the main menu is displayed as
in Figure 6.

The Web-based interface provides the same func-
tionalities as the CLI, and the annotation workflow
is identical (Figure 7). Furthermore, the two inter-
faces are by default part of the same installation of
LITESCALE and make use of the same core library.
Therefore, an annotation task can start with one
interface and switch seamlessly to the other and
back at any time. The annotations created with the
two interfaces are exactly in the same format, and
can therefore be merged without any extra work.

4 Multi-user Online Platform

Despite being a standalone application,
LITESCALE is natively multi-user, because
the annotations produces by different users are
represented as different JSON files. These files can
reside on the same machine, or different machines
if multiple installation of LITESCALE took place.
In the latter case, it is sufficient to copy the
annotation files of a project from one installation
to another to generate a gold standard comprising
all the annotations. This process, however can be
tedious and error-prone. Moreover, the version of
LITESCALE presented so far needs to be executed
as a series of Python scripts, therefore requiring at
least a minimal amount of skill in such technology
from the annotators. To overcome these issues, and
provide an even easier and more accessible user
experience, we developed a fully online, multi-user
version of LITESCALE, described in this section.

The online version of LITESCALE offers the
same functionalities as the standalone version de-
scribed in the previous section, with a user inter-
face very similar to the Web-based interface in Sec-
tion 3.3. The front-end was however implemented
from scratch, while retaining the core library for
the basic functions, although with some modifi-
cations. LITESCALE online is a Web application
implemented with the Flask6 Python framework.
More precisely, the software is designed in a mod-
ular way. A RESTful HTTP API is provided in
order to expose the core library functionalities, and
a Web application provides the user interface by
connecting to the API. Figure 8 shows the modular
architecture of this version of LITESCALE.

6https://flask.palletsprojects.com

Figure 9: LITESCALE online: creating a new annota-
tion project.

Figure 10: LITESCALE online: management of user
authorization on projects.

The RESTful API is intended as a layer of ab-
straction to facilitate the future development of
tools that access the core library functions remotely,
or application that provide alternative interfaces,
such as mobile applications. The RESTful API is
implemented with the Flask-RESTful extension of
the Flask framework7. The HTTP verbs and their
semantics are summarized in Table 1.

In order to make LITESCALE online ready to
scale up the number of users and projects, the
core library has been modified. In particular, the
inner representation and persistence of instances,
projects, tuples, and annotations, does not rely on
JSON files but rather on a SQL database.

The workflow in the online version of
LITESCALE is substantially the same as the stan-
dalone version, including the interface to create
new projects (Figure 9) and the annotation interface
itself. However, additional functionalities were im-
plemented to account for the online multi-user envi-

7https://flask-restful.readthedocs.io

https://flask.palletsprojects.com
https://flask-restful.readthedocs.io


126

Method Endpoint Description
POST /users Creates a user
DELETE /users Deletes a user
GET /projectList Retrieve the list of projects

of a user
GET /projects Retrieves the properties of

a project
POST /projects Creates a project
DELETE /projects Deletes a project
GET /tuples Retrieves the tuples of

a project
POST /annotations Creates a new annotation
GET /gold Generates the gold standard
GET /progress Returns the current progress

of an annotation task
POST /authorizations Adds a user to a project
DELETE /authorizations Removes a user from a project

Table 1: The LITESCALE RESTful API.

ronment. The users can sign up with a valid email
address and set up proper log in credentials after
receiving a confirmation by email. The user authen-
tication features are managed by the Werkzeug8

Python library, including the storage of encrypted
passwords in the database. Moreover, the associa-
tion of users to projects is also managed through
the Web application. By default, when a project is
created, the user who created it assumes the role
of owner of that project. The owner of a project
can invite other users to join their projects, by in-
dicating a valid email address (Figure 10). The
recipients of such invitation will receive an auto-
mated email notification, inviting them to sign up
to LITESCALE if they are not already registered.

5 Evaluation

We conducted a pilot test in order to evaluate the
efficacy of Litescale in supporting the Best-worst
Scaling annotation of datasets for NLP tasks. We
extracted a sample of short hotel reviews in En-
glish from the list of 1,000 hotels and their reviews
provided by Datafiniti’s Business Database9. We
selected the 20 shortest reviews for each of the five
ratings (1 to 5 stars) for a total of 100 instances,
shuffled then randomly and created an annotation
task in Litescale. Three annotators were asked to
perform the annotation and record the times spent
annotating each 10 annotations (pairs of best/worst
judgments). We computed the Pearson correlation
between the scores resulting from Litescale and the
original ratings associated to the reviews, obtain-

8https://werkzeug.palletsprojects.com
9https://www.kaggle.com/datafiniti/

hotel-reviews?select=Datafiniti_Hotel_
Reviews_Jun19.csv

ing a score of 0.77, indicating strong correlation
with the ground truth. The agreement between the
annotators is relatively high, considering the sub-
jectivity of the sentiment polarity annotation task.
Interestingly, the three annotators agreed more on
the worst judgments (two annotators agreed 91%
of the times, all three agreed 66% of the times) than
on the best ones (two annotators agreed 88% of the
times, all three agreed 58% of the times).

Figure 11: Recorded annotation times during the
LITESCALE evaluation experiment. Each 10 tuples, the
three annotators recorded the time spent on the annota-
tion, shown as a dot in the plot.

The annotation took about 43 minutes on aver-
age. However, the average time spent annotating
tends to decrease consistently as the annotation
task progresses, as shown in Figure 11. This is not
surprising, considering the nature of the BWS anno-
tation, where the same instance is shown multiple
times, and therefore the annotator gains familiarity
with the instances over time.

6 Conclusion and Future Work

We introduced LITESCALE, a flexible software
tool to create and manage linguistic annotation
tasks based on the Best-worst scaling methodology.
LITESCALE is easy to use, free and open source10,
and ships with different user interfaces. Moreover,
a multi-user online version of LITESCALE is also
presented11, which runs entirely in a Web browser

10The source code of LITESCALE is available on the Github
repository https://github.com/valeriobasile/
litescale

11LITESCALE online is available at http://lite-env.
eba-jhijbmtj.eu-west-3.elasticbeanstalk.
com/home

https://werkzeug.palletsprojects.com
https://www.kaggle.com/datafiniti/hotel-reviews?select=Datafiniti_Hotel_Reviews_Jun19.csv
https://www.kaggle.com/datafiniti/hotel-reviews?select=Datafiniti_Hotel_Reviews_Jun19.csv
https://www.kaggle.com/datafiniti/hotel-reviews?select=Datafiniti_Hotel_Reviews_Jun19.csv
https://github.com/valeriobasile/litescale
https://github.com/valeriobasile/litescale
http://lite-env.eba-jhijbmtj.eu-west-3.elasticbeanstalk.com/home
http://lite-env.eba-jhijbmtj.eu-west-3.elasticbeanstalk.com/home
http://lite-env.eba-jhijbmtj.eu-west-3.elasticbeanstalk.com/home


127

and provides all the functionalities of the original
software.

While the BWS methodology has been thor-
oughly tested in the literature, this particular tool
has not been systematically tested for its usability
(but it is being used at the moment for the creation
of several language resources). Although all the
main features are implemented, there is always
room to add extra functionalities and improving
the existing ones.

A short video describing the main functions of
LITESCALE is abailable on YouTube: https://

youtu.be/SozWDMH2ah0

Acknowledgments

This work is partially funded by the project “Be
Positive!” (under the 2019 “Google.org Impact
Challenge on Safety” call).

References
Ron Artstein and Massimo Poesio. 2008. Inter-Coder

Agreement for Computational Linguistics. Compu-
tational Linguistics, 34(4):555–596.

Richard Eckart de Castilho, Éva Mújdricza-Maydt,
Seid Muhie Yimam, Silvana Hartmann, Iryna
Gurevych, Anette Frank, and Chris Biemann. 2016.
A web-based tool for the integrated annotation of se-
mantic and syntactic structures. In Proceedings of
the Workshop on Language Technology Resources
and Tools for Digital Humanities (LT4DH), pages
76–84, Osaka, Japan. The COLING 2016 Organiz-
ing Committee.

De Bruyne, Luna and De Clercq, Orphée and Hoste,
Veronique. 2021. Annotating affective dimensions
in user-generated content : comparing the reliability
of best-worst scaling, pairwise comparison and rat-
ing scales for annotating valence, arousal and dom-
inance. LANGUAGE RESOURCES AND EVALUA-
TION.

Svetlana Kiritchenko and Saif Mohammad. 2017. Best-
worst scaling more reliable than rating scales: A
case study on sentiment intensity annotation. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 465–470. ACL.

Jordan J Louviere, Terry N Flynn, and Anthony Al-
fred John Marley. 2015. Best-worst scaling: The-
ory, methods and applications. Cambridge Univer-
sity Press.

Fabio Poletto, Valerio Basile, Cristina Bosco, Viviana
Patti, and Marco Stranisci. 2019. Annotating hate
speech: Three schemes at comparison. In 6th Italian
Conference on Computational Linguistics, CLiC-it
2019, volume 2481, pages 1–8. CEUR-WS.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107, Avignon, France. Association for
Computational Linguistics.

Georgios Yannakakis, Roddy Cowie, and Carlos Busso.
2018. The ordinal nature of emotions: An emerging
approach. IEEE Transactions on Affective Comput-
ing, pages 1–20. Early Access.

https://youtu.be/SozWDMH2ah0
https://youtu.be/SozWDMH2ah0
https://doi.org/10.1162/coli.07-034-R2
https://doi.org/10.1162/coli.07-034-R2
https://www.aclweb.org/anthology/W16-4011
https://www.aclweb.org/anthology/W16-4011
http://dx.doi.org/10.1007/s10579-020-09524-2
http://dx.doi.org/10.1007/s10579-020-09524-2
http://dx.doi.org/10.1007/s10579-020-09524-2
http://dx.doi.org/10.1007/s10579-020-09524-2
http://dx.doi.org/10.1007/s10579-020-09524-2
https://doi.org/10.18653/v1/P17-2074
https://doi.org/10.18653/v1/P17-2074
https://doi.org/10.18653/v1/P17-2074
https://www.aclweb.org/anthology/E12-2021
https://www.aclweb.org/anthology/E12-2021
https://doi.org/10.1109/TAFFC.2018.2879512
https://doi.org/10.1109/TAFFC.2018.2879512

