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Abstract

In this paper, we aim at improving Czech senti-
ment with transformer-based models and their
multilingual versions. More concretely, we
study the task of polarity detection for the
Czech language on three sentiment polarity
datasets. We fine-tune and perform experi-
ments with five multilingual and three mono-
lingual models. We compare the monolingual
and multilingual models’ performance, includ-
ing comparison with the older approach based
on recurrent neural networks. Furthermore, we
test the multilingual models and their ability
to transfer knowledge from English to Czech
(and vice versa) with zero-shot cross-lingual
classification. Our experiments show that the
huge multilingual models can overcome the
performance of the monolingual models. They
are also able to detect polarity in another lan-
guage without any training data, with perfor-
mance not worse than 4.4 % compared to state-
of-the-art monolingual trained models. More-
over, we achieved new state-of-the-art results
on all three datasets.

1 Introduction

In recent years, BERT-like models (Devlin et al.,
2019) based on the Transformer architecture
(Vaswani et al., 2017) and generalized language
models brought a significant improvement in per-
formance in almost any NLP task (Raffel et al.,
2020a), especially in English. Despite this fact,
not much work has been recently done in senti-
ment analysis for the Czech language with the lat-
est Transformer models. We partly fill this gap by
focusing on the Sentiment Classification task, also
known as Polarity Detection.

Polarity detection is a classification task where
the goal is to assign a sentiment polarity to a given
text. The positive, negative and neutral classes are
usually used as the polarity labels. The polarity can

also be defined with a different number of labels,
i.e., fine-grained sentiment analysis (Liu, 2012).

The models based on BERT were almost ex-
clusively trained for English, limiting their us-
age to other languages. Recently, however, their
cross-lingual adaptions like mBERT (Devlin et al.,
2019), mT5 (Xue et al., 2020), XLM (Conneau and
Lample, 2019) or XLM-R (Conneau et al., 2020)
emerged along with other non-English monolingual
versions, for example, Czech (Sido et al., 2021),
French (Martin et al., 2020; Le et al., 2019), Ara-
bic (Safaya et al., 2020), Romanian (Dumitrescu
et al., 2020), Dutch (Vries et al., 2019) or Finnish
(Virtanen et al., 2019).

Our motivation is to reveal the performance lim-
its of the current SotA transformer-based models on
the Czech polarity detection task, check the ability
of the multilingual models to transfer knowledge
between languages and unify the procedure and
data that enable the correct future evaluation of this
task.

In this paper, we focus on the task of polarity de-
tection applied on Czech text by comparing the per-
formance of seven pre-trained transformer-based
models (both monolingual and multilingual) on
three Czech datasets. We fine-tune each model
on each dataset and we provide a comprehensive
survey of their performance. Our experiments
show the effectiveness of the Transformer models
that significantly outperform the older approaches
based on recurrent neural networks. We observe
that the monolingual models can be notably out-
performed by the multilingual models, but only
by those with much more parameters. Moreover,
we achieve new state-of-the-art results on all three
evaluated datasets.

We are also interested in the ability of the multi-
lingual models to transfer knowledge between lan-
guages and its usability for polarity detection. Thus,
we perform zero-shot cross-lingual classification,



1139

fine-tune four cross-lingual transformer-based mod-
els on the English dataset and then test the models
on Czech data. We also perform the same experi-
ment in the reverse direction, i.e., from Czech to En-
glish. The results reveal that the XLM-R-Large
model (fine-tuned solely on English) can achieve
very competitive results that are only about 4 %
worse than the SotA model fine-tuned by us on
Czech data. To the best of our knowledge, this is
the first paper that performs zero-shot cross-lingual
polarity detection for the Czech language.

We also noticed that the comparison with the
previous works is rather problematic and thus, we
provide a split for all Czech datasets that allows
comparing future works much easier. Our code and
pre-trained models are publicly available1.

Our main contributions are the following: 1) We
provide the comprehensive performance compar-
ison of the currently available transformer-based
models for the Czech language on the polarity de-
tection task along with the models’ optimal settings.
2) We test the ability of the multilingual models
to transfer knowledge between Czech and English.
3) We release all the fine-tuned models and code
freely for research purposes and we provide a data
split that allows future comparison and evaluation.
Furthermore, we achieved new state-of-the-art re-
sults for all three evaluated datasets.

2 Related Work

The previous approaches (Kim, 2014; Johnson and
Zhang, 2016; Cliche, 2017; Baziotis et al., 2017;
Gray et al., 2017; Conneau et al., 2017) for English
polarity detection and other related tasks mostly
relied on transfer learning and pre-trained word em-
beddings such as word2vec (Mikolov et al., 2013)
and fastText (Bojanowski et al., 2017) in combina-
tions with Convolutional Neural Networks (CNN)
or Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997), eventually in conjunc-
tion with the modified attention mechanism (Bah-
danau et al., 2015; Rocktäschel et al., 2015; Raffel
and Ellis, 2015). Furthermore, the new contex-
tualized word representations such as CoVe (Mc-
Cann et al., 2017) or ELMo (Peters et al., 2018)
and pre-trained language model ULMFiT (Howard
and Ruder, 2018) were successfully applied to the
polarity detection. Finally, the latest transformer-
based models like BERT (Devlin et al., 2019), GPT

1https://github.com/pauli31/
improving-czech-sentiment-transformers

(Radford et al., 2018), RoBERTa (Liu et al., 2019)
or T5 (Raffel et al., 2020b) that are all in general
trained on language modeling tasks proved their
performance superiority for English over all previ-
ous approaches, for example in (Sun et al., 2019).
These models are pre-trained on a modified lan-
guage modeling tasks with a huge amount of un-
labeled data. In the end, they are fine-tuned for a
specific downstream task.

The initial works on Czech polarity detection
and sentiment analysis usually used lexical fea-
tures (Steinberger et al., 2011; Veselovská et al.,
2012) or Bag-of-Words text representations along
with the Naive Bayes or logistic regression classi-
fiers (Habernal et al., 2013) or a combination of
supervised and unsupervised approach (Brychcı́n
and Habernal, 2013). Lenc and Hercig (2016) ap-
plied CNN using the architecture from (Kim, 2014)
and the LSTM neural network to all three datasets
that we use in this paper. Another usage of LSTM
neural network with the self-attention mechanism
(Humphreys and Sui, 2016) can be found in (Li-
bovickỳ et al., 2018). Similarly, Sido and Konopı́k
(2019) tried to use curriculum learning with CNN
and LSTM.

Lehečka et al. (2020) pre-trained a BERT-based
model for polarity detection with an improved pool-
ing layer and distillation of knowledge technique.
The most recent application of the Transformer
model is in (Sido et al., 2021). The authors created
a BERT model for Czech and, as one of the evalua-
tion tasks, they performed polarity detection on the
FB and CSFD datasets.

To the best of our knowledge, there are no previ-
ous works that focus on the zero-shot cross-lingual
polarity detection task in the Czech language. The
recent related work can be found in (Eriguchi et al.,
2018), where the authors use the neural machine
translation encoder-based model and English data
to perform zero-shot cross-lingual sentiment clas-
sification on French. In (Eriguchi et al., 2018) the
authors performed the zero-shot classification from
Slovene to Croatian. Another related work can be
found in (Wang and Banko, 2021; Qin et al., 2020).

3 Data

To the best of our knowledge, there are three Czech
publicly available datasets for the polarity detection
task: (1) movie review dataset (CSFD), (2) Face-
book dataset (FB) and (3) product review dataset
(Mallcz), all of them come from (Habernal et al.,

https://github.com/pauli31/improving-czech-sentiment-transformers
https://github.com/pauli31/improving-czech-sentiment-transformers
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2013) and each text sample is annotated with one
of three2 labels, i.e., positive, neutral and negative,
see Table 1 for the class distribution. For the cross-
lingual experiments we use the two-class English
movie review dataset (IMDB) (Maas et al., 2011).

Dataset Part Positive Negative Neutral Total

CSFD

train 22 117 21 441 22 235 65 793
dev 2 456 2 399 2 456 7 311
test 6 324 5 876 6 077 18 277

total 30 897 29 716 30 768 91 381

FB

train 1 605 1 227 3 311 6 143
dev 171 151 361 683
test 811 613 1 502 2 926

total 2 587 1 991 5 174 9 752

Mallcz

train 74 100 7 498 23 022 104 620
dev 8 253 848 2 524 11 625
test 20 624 2 041 6 397 29 062

total 102 977 10 387 31 943 145 307

IMDB
train 12 500 12 500 - 25 000
test 12 500 12 500 - 25 000

total 25 000 25 000 - 50 000

Table 1: Datasets statistics.

The FB dataset contains 10k random posts from
nine different Facebook pages that were manually
annotated by two annotators. The CSFD dataset is
created from 90k Czech movie reviews from the
Czech movie database3 that were downloaded and
annotated according to their star rating (0–2 stars
as negative, 3–4 stars as neutral, 5–6 stars as pos-
itive). The Mallcz dataset consists of 145k users’
reviews of products from Czech e-shop4, the labels
are assigned according to the review star rating on
the scale 0-5, where the reviews with 0-3 stars are
labeled as negative, 4 stars as neutral and 5 stars as
positive. The English IMDB dataset includes 50k
movie reviews scraped from the Internet Movie
Database5 with positive and negative classes split
into training and testing parts of equal size.

Since there is no official partitioning for the
Czech datasets, we split them into training, de-
velopment and testing parts with the same class
distribution for each part as it is in the original
dataset, see Table 1. For the Mallcz and CSFD
datasets, we use the following ratio: 80 % for train-
ing data, 20 % for testing data, for the FB dataset,
it is 70 % and 30 %, respectively and 10 % from
the training data (for all datasets) is used as the

2The FB dataset also contains 248 samples with a fourth
class called bipolar, but we ignore this one.

3https://www.csfd.cz
4https://www.mall.cz
5https://www.imdb.com

development data. We used different split ratio for
the FB dataset because it is approximately ten and
sixteen times smaller than the CSFD and Mallcz
datasets, respectively and we did not want to reduce
the size of the testing data too much.

4 Models Description

We performed exhaustive experiments with
transformed-based models and in order to com-
pare them with the previous works, we also im-
plemented the older models (baseline models) that
include the logistic regression classifier and the
BiLSTM neural network.

4.1 Baseline Models

We re-implemented the best models from (Haber-
nal et al., 2013), i.e., logistic regression classifier
(lrc) with character n-grams (in a range from 3-
grams to 6-grams), word uni-grams and bi-grams
features. The second baseline model is the LSTM
model partly inspired by (Baziotis et al., 2017). Its
input is a sequence of t tokens represented as a
matrix M ∈ Rt×d, where d = 300 is a dimension
of the Czech pre-trained fastText word embeddings
(Bojanowski et al., 2017)6. The maximal size of
the input vocabulary is set to 300 000. The input is
passed into the trainable embedding layer that is fol-
lowed by two BiLSTM (Graves and Schmidhuber,
2005) layers and after each, the dropout (Srivastava
et al., 2014) is applied. After the two BiLSTM lay-
ers, the self-attention mechanism is applied. The
output is then passed to a fully-connected softmax
layer. An output of the softmax layer is a probabil-
ity distribution over the possible classes. We use
the Adam (Kingma and Ba, 2014) optimizer with
default parameters (β1 = 0.9, β2 = 0.999) and
with weight decay modification (Loshchilov and
Hutter, 2017) and the cross-entropy loss function.
We replace numbers, emails and links with generic
tokens, we tokenize input text with the TokTok
tokenizer7 and we use a customized stemmer8.

We use different hyper-parameters for each
dataset, see Appendix A.1 for the complete set-
tings.

6Available at https://fasttext.cc/docs/en/
crawl-vectors.html

7https://github.com/jonsafari/tok-tok
8https://github.com/UFAL-DSG/alex/

blob/master/alex/utils/czech_stemmer.py

https://www.csfd.cz
https://www.mall.cz
https://www.imdb.com
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/jonsafari/tok-tok
https://github.com/UFAL-DSG/alex/blob/master/alex/utils/czech_stemmer.py
https://github.com/UFAL-DSG/alex/blob/master/alex/utils/czech_stemmer.py
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4.2 Transformer Models

In total, we use eight different transformer-based
models (five of them are multilingual). All of them
are based on the original BERT model. They use
only the encoder part of the original Transformer
(Vaswani et al., 2017), although their pre-training
procedure may differ. There are also text-to-text
models like T5 (Raffel et al., 2020b) and BART
(Lewis et al., 2019) and their multilingual versions
mT5 (Xue et al., 2020) and mBART (Liu et al.,
2020; Tang et al., 2020). The main difference from
BERT-like models is that they use the full encoder-
decoder architecture of the Transformer. They are
mainly intended for text generation tasks (e.g., ab-
stractive summarization). We decided to use only
the BERT-like models with the same architecture
because they fit more for the classification task.

All the models are pre-trained on a modified
language modeling task, for example, Masked Lan-
guage Modeling (MLM) and eventually on some
classification task like Next Sentence Prediction
(NSP) or Sentence Ordering Prediction (SOP), see
(Devlin et al., 2019; Lan et al., 2020) for details.
The evaluated models differ in the number of pa-
rameters (see Table 2) and thus, their performance
is also very different, see Section 5.

Model #Params Vocab #Langs

Czert-B 110M 30k 1
Czert-A 12M 30k 1
RandomALBERT 12M 30k 1
mBERT 177M 120k 104
SlavicBERT 177M 120k 4
XLM 570M 200k 100
XLM-R-Base 270M 250k 100
XLM-R-Large 559M 250k 100

Table 2: Models statistics with a number of parameters,
vocabulary size and a number of supported languages.

Czert-B is Czech version of the of the original
BERTBASE model (Devlin et al., 2019). The only
difference is that during the pre-training, the au-
thors increased the batch size to 2048 and they
slightly modified the NSP prediction task (Sido
et al., 2021).

Czert-A is the Czech version of the ALBERT
model (Lan et al., 2020), also with the same mod-
ification as Czert-B, i.e., batch size was set to
2048 and the modified NSP prediction task is used
instead of the SOP task (Sido et al., 2021).

RandomALBERT we follow the evaluation in
(Sido et al., 2021) and we also test randomly initial-
ized ALBERT model without any pre-training to
show the importance of pre-training of such mod-
els and its performance influence on the polarity
detection task.
mBERT (Devlin et al., 2019) is a multilingual
version of the original BERTBASE, jointly trained
on 104 languages.
SlavicBERT (Arkhipov et al., 2019) is initialized
from the mBERT checkpoint and further pre-trained
with a modified vocabulary only for four Slavic
languages (Bulgarian, Czech, Polish and Russian).
XLM (Conneau and Lample, 2019) utilizes the
training procedure of the original BERT model
for multilingual settings mainly by using the Byte-
Pair Encoding (BPE) and increasing the shared
vocabulary between languages.
XLM-R-Base (Conneau et al., 2020) is a multi-
lingual version of the RoBERTa (Liu et al., 2019)
specifically optimized and pre-trained for 100 lan-
guages.
XLM-R-Large (Conneau et al., 2020) is the
same model as the XLM-R-Base, but it is larger
(it has more parameters).

4.3 Transformers Fine-Tuning

To utilize the models for text classification, we
follow the default approaches mentioned in the cor-
responding models’ papers and we fine-tune all pa-
rameters of the models. In all models except XLM,
we use the final hidden vector h ∈ RH of the spe-
cial classification token [CLS] or <s> taken from
the pooling layer9 of BERT or RoBERTa models,
respectively. The vector h represents the entire en-
coded sequence input, where H is the hidden size
of the corresponding model. We add a task-specific
linear layer (with a dropout set to 0.1) represented
by a matrix W ∈ R|C|×H , where C is a set of
classes. We compute the classification output, i.e.,
the input sample being classified as class c ∈ C as
c = argmax (hWT ).

In the case of the XLM model, we take the last
hidden state (without any pooling layer) of the first
input token and we apply the same linear layer
(W ∈ R|C|×H ) and approach to obtain the clas-
sification output. For learning, we use the Adam
optimizer with default parameters and with weight
decay (same as for the LSTM model), and the cross-

9The pooling layer is a fully-connected layer of size H
with a hyperbolic tangent used as the activation function.
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entropy loss function. See Section 5.1 and Ap-
pendix A.2 for the hyper-parameters we used.

5 Experiments & Results

We perform two types of experiments, i.e., mono-
lingual and cross-lingual. In monolingual experi-
ments, we fine-tune and evaluate the Transformer
models for each dataset separately on three-class
(positive, negative and neutral) and two-class (pos-
itive and negative) sentiment analysis. We also im-
plemented the logistic regression (lrc) and LSTM
baseline models and we compare the results with
the existing works.

In cross-lingual experiments, we test the ability
of four multilingual transformer-based models to
transfer knowledge between English and Czech.
We run the multilingual models only on the two-
class datasets (positive and negative). We fine-tune
either on English (IMDB) or Czech (CSFD), and
then we evaluate on the other language. Thus we
perform the zero-shot cross-lingual classification.
We decided to use the IMDB and CSFD dataset
because they are from the same domain i.e., movie
reviews.

Each experiment10 was performed at least five
times and we report the results using the macro F1

score.

5.1 Monolingual Experiments

The goal of the monolingual experiments is to re-
veal the current state-of-the-art performance on the
Czech polarity datasets, namely CSFD, FB and
Mallcz (see Section 3) and provide a comparison
between the available models and their settings.

As we already mentioned, we split the datasets
into training, development and testing parts. There
is no official split for the datasets and we found
out that all the available works usually use either
10-fold cross-validation or they split11 the datasets
on their own, the † and * symbols in Table 3, re-
spectively causing the comparison to be difficult.

We fine-tune all models on training data and
we measure the results on the development data.
We select the model with the best performance on
the development data and we fine-tune the model
on combined training and development data. We
report the results in Table 3 on the testing data with
95% confidence intervals.

10Except for the experiments with the lrc model.
11The authors do not provide any recipe to reproduce the

results.

Firstly, we re-implemented the logistic regres-
sion classifier (lrc) with the best feature combi-
nation from (Habernal et al., 2013) and we report
the results on our data split. We can see that we
obtained very similar results to the ones stated in
(Habernal et al., 2013). We also tried to improve
this baseline with Tf-idf weighting, but it did not
lead to any significant improvements, so we de-
cided to keep the settings the same as in (Habernal
et al., 2013), so the results are comparable.

For the LSTM model, we tried different com-
binations of hyper-parameters (learning rate, op-
timizer, dropout, etc.). We report the used hyper-
parameters for the results from Table 3 in Appendix
A.2. Our implementation is only about 1 % worse
than LSTM with the self-attention model from (Li-
bovickỳ et al., 2018), but they used a different data
split. For the Mallcz dataset, we were not able to
outperform the lrc baseline with the LSTM model.

We fine-tune all parameters of the seven pre-
trained BERT-based models and one randomly ini-
tialized ALBERT model. In our experiments, we
use constant learning rate and also linear learning
rate decay (without learning rate warm-up) with
the following initial learning rates: 2e-6, 2e-5 and
2.5e-5. We got inspired by the ones used in (Sun
et al., 2019). Based on the average number of to-
kens for each dataset and models’ tokenizer (see
Table 4 and Figures 1, 2, 3)12, we use a max se-
quence length of 64 and a batch size of 32 for the
FB dataset. We restrict the max sequence length
for the CSFD and Mallcz datasets to 512 and use a
batch size of 32. All other hyper-parameters of the
models are set to the pre-trained models’ defaults.
See Table 7 in Appendix A.2 for the reported re-
sults’ hyper-parameters.

We repeated all the basic experiments with the
polarity detection task from (Sido et al., 2021) with
the new data split. Our results do not significantly
differ, as shown in Table 8 and in Appendix A.2.
If we compare the BERT model from (Lehečka
et al., 2020) with the Czert-B, mBERT and
SlavicBERT models13, we can see that on the
binary task, they also perform very similarly, i.e.,
around 93 %, but again they used different test data
(the entire CSFD dataset14). The obvious obser-
vation is that the XLM-R-Large model is supe-

12The distributions of the other models were similar to those
shown in the mentioned Figures.

13All of them should have the same or almost the same
architecture and a similar number of parameters.

14The examples with positive and negative classes.
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Model
3 Classes 2 Classes

CSFD FB Mallcz CSFD FB Mallcz

lrc (ours) 79.63 67.86 76.71 91.42 88.12 88.98
LSTM (ours) 79.88 ± 0.18 72.89 ± 0.49 73.43 ± 0.12 91.82 ± 0.09 90.13 ± 0.17 88.02 ± 0.24
Czert-A 79.89± 0.60 73.06± 0.59 76.79± 0.38 91.84± 0.84 91.28± 0.18 91.20 ± 0.26
Czert-B 84.80 ± 0.10 76.90 ± 0.38 79.35 ± 0.24 94.42 ± 0.15 93.97 ± 0.30 92.87 ± 0.15
mBERT 82.74 ± 0.16 71.61 ± 0.13 70.79 ± 5.74 93.11 ± 0.29 88.76 ± 0.42 72.79 ± 3.09
SlavicBERT 82.59 ± 0.12 73.93 ± 0.53 75.34 ± 2.54 93.47 ± 0.33 89.84 ± 0.43 90.99 ± 0.15
RandomALBERT 75.79 ± 0.18 62.53 ± 0.46 64.81 ± 0.25 89.99 ± 0.21 81.71 ± 0.56 85.38 ± 0.10
XLM-R-Base 84.82 ± 0.10 77.81 ± 0.50 75.43 ± 0.07 94.32 ± 0.34 93.26 ± 0.74 92.56 ± 0.07
XLM-R-Large 87.08 ± 0.11 81.70 ± 0.64 79.81 ± 0.21 96.00 ± 0.02 96.05 ± 0.01 94.37 ± 0.02
XLM 83.67 ± 0.11 71.46 ± 1.58 77.56 ± 0.08 93.86 ± 0.18 89.94 ± 0.27 91.97 ± 0.22
(Habernal et al., 2013)† 79.00 69.00 75.00 - 90.00 -
(Brychcı́n and Habernal, 2013)† 81.53 ± 0.30 - - - - -
(Libovickỳ et al., 2018)* 80.80 ± 0.10 - - - - -
(Lehečka et al., 2020)* - - - 93.80 - -

Table 3: The final monolingual results as macro F1 score for all three Czech polarity datasets on two and three
classes. For experiments with neural networks performed by us, we present the results with a 95% confidence
interval. The models from papers marked with † were evaluated with 10-fold cross-validation and the ones marked
with * were evaluated on custom data split.

Model
CSFD FB Mallcz

Avg. Max. Avg. Max. Avg. Max.

Czert-B 84.5 1000 20.3 64 34.3 1471
mBERT 111.6 1206 25.6 66 46.6 2038
SlavicBERT 83.6 983 20.7 62 34.3 1412
XLM 100.5 1058 22.6 64 41.0 1812
Czert-A

81.7 993 19.7 62 32.6 1435
RandomALBERT
XLM-R-Base

93.9 952 20.4 53 37.5 1670
XLM-R-Large

Table 4: The average and maximum number of sub-
word tokens for each model’s tokenizer and dataset.

rior to all others by a significant margin for any
dataset. Only for the three-class Mallcz dataset, the
Czert-B model is competitive (the confidence
intervals almost overlap). From the results for
the RandomALBERT model, we can see how im-
portant is the pre-training phase for Transformers,
since the model is even worse than the logistic re-
gression classifier15.

5.2 Cross-lingual Experiments
The cross-lingual experiments were performed
with the multilingual models that support English
and Czech. For these experiments, we use linear
learning rate decay with an initial learning rate of
2e-6.

Firstly, we fine-tuned the models on the English
IMDB dataset and we evaluated them on the test
part of the Czech binary CSFD dataset (i.e., zero-

15The model was trained for a maximum of 15 epochs and it
would probably get better with a higher number of epochs, but
the other models were trained for the same or lower number
of epochs.

shot cross-lingual classification). We randomly
selected 5k examples from the IMDB dataset as the
development data. The rest of the 45k examples
is used as training data. We select the models that
perform best on the English development data16

and we report the results in Table 5. The test (cs)
column refers to results obtained on the CSFD test-
ing part. For easier comparison, we also include
the Monoling. (cs) column that contains the results
(same as in Table 3) for models trained on Czech
data. The XLM-R-Large was able to achieve re-
sults only about 4.4 % worse than the same model
that was fine-tuned on Czech data. It is a great
result if we consider that the model has never seen
any labeled Czech data. The XLM and mBERT mod-
els perform much worse.

Model
EN→ CS Monoling. (cs)

dev (en) test (cs)

XLM-R-Base 94.52 ± 0.12 88.01 ± 0.28 94.32 ± 0.34
XLM-R-Large 95.86 ± 0.06 91.61 ± 0.06 96.00 ± 0.02
XLM 92.76 ± 0.34 75.37 ± 0.29 93.86 ± 0.18
mBERT 93.07 ± 0.03 76.32 ± 1.13 93.11 ± 0.29

Table 5: Macro F1 score for cross-lingual experiments
from English to Czech.

The second type of cross-lingual experiment was
performed in a reverse direction, i.e., from Czech
to English. We use the Czech CSFD training and
testing data for fine-tuning and we evaluate the
model on the English IMDB test data. We report
the results in Table 6 using the accuracy because

16The dev (en) column in Table 5.
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the current state-of-the-art works (Thongtan and
Phienthrakul, 2019; Sun et al., 2019) use this met-
ric. Similarly to the previous case, we selected the
model that performs best on Czech CSFD devel-
opment data. For these experiments, the mBERT
did not converge. As in the previous experiment,
the XLM-R-Large performs best and it achieves
almost 94 % accuracy that is only 3.4 % below
the current SotA result from (Thongtan and Phien-
thrakul, 2019).

Model
CS→ EN

dev (cs) test (en)

XLM-R-Base 94.22 ± 0.01 89.53 ± 0.15
XLM-R-Large 95.65 ± 0.17 93.98 ± 0.10
XLM 93.66 ± 0.13 78.24 ± 0.46
(Thongtan and Phienthrakul, 2019) - 97.42
(Sun et al., 2019) - 95.79

Table 6: Accuracy results for cross-lingual experiments
from Czech to English.

Based on the results, we can conclude that the
XLM-R-Large model is very capable of transfer-
ring knowledge between English and Czech (and
probably between other languages as well). It is
also important to note that Czech and English are
languages from a different language family with
a high number of differences both in syntax and
grammar.

5.3 Discussion & Remarks
We can see from the results that the recent pre-
trained transformer-based models beat the older
approaches (lrc and LSTM) by a large margin.
The monolingual Czert-B model is in general
outperformed only by the XLM-R-Large and
XLM-R-Base models, but these models have five
times/three times more parameters, and eight times
larger vocabulary. Taking into account these facts,
the Czert-B model is still very competitive. It
may be beneficial in certain situations to use a
smaller model like this that does not need such
computational resources as the ones that are re-
quired by the XLM-R-Large.

During the fine-tuning, we observed that in most
cases, the lower learning rate 2e-6 (see Table 7 in
Appendix A.2) leads to better results. Thus we
recommend using the same one or similar order.
The higher learning rates tend to provide worse
results and the model does not converge.

According to the generally higher confidence
interval, the fine-tuning of a smaller dataset like
FB that has only about 6k training examples is, in

general, less stable and more prone to overfitting
than training a model on datasets with tens of thou-
sands of examples. We also noticed that fine-tuning
of the mBERT and SlavicBERT on the Mallcz
dataset is very unstable (see the confidence interval
in Table 3). Unfortunately, we did not find out the
reason. A more detailed error analysis could reveal
the reason.

6 Conclusion

In this work, we evaluated the performance of
available transformer-based models for the Czech
language on the task of polarity detection. We
compared the performance of the monolingual and
multilingual models and we showed that the large
XLM-R-Large model can outperform the mono-
lingual Czert-B model. The older approach
based on recurrent neural networks is surpassed
by a very large margin by the Transformers. More-
over, we achieved new state-of-the-art results on
all three Czech polarity detection datasets.

We performed zero-shot cross-lingual polarity
detection from English to Czech (and vice versa)
with four multilingual models. We showed that
the XLM-R-Large is able to detect polarity in
another language without any labeled data. The
model performs no worse than 4.4 % in comparison
to our new state-of-the-art monolingual model. To
the best of our knowledge, this is the first work that
aims at cross-lingual polarity detection in Czech.
Our code and pre-trained models are publicly avail-
able.

In the future work, we intend to perform a deep
error analysis to find in which cases the current
models fail and compare approaches that use the
linear cross-lingual transformations (Artetxe et al.,
2018; Brychcı́n, 2020) that explicitly map semantic
spaces into one shared space. The second step in
the cross-lingual settings is to employ more than
two languages and utilize the models for different
domains.
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Tomáš Brychcı́n and Ivan Habernal. 2013. Unsuper-
vised improving of sentiment analysis using global
target context. In Proceedings of the International
Conference Recent Advances in Natural Language
Processing RANLP 2013, pages 122–128, Hissar,
Bulgaria. INCOMA Ltd. Shoumen, BULGARIA.

Mathieu Cliche. 2017. BB twtr at SemEval-2017
task 4: Twitter sentiment analysis with CNNs and
LSTMs. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 573–580, Vancouver, Canada. Association for
Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised

cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault, and
Yann Lecun. 2017. Very deep convolutional net-
works for text classification. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 1,
Long Papers, pages 1107–1116, Valencia, Spain. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Stefan Dumitrescu, Andrei-Marius Avram, and Sampo
Pyysalo. 2020. The birth of Romanian BERT. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,
pages 4324–4328, Online. Association for Computa-
tional Linguistics.

Akiko Eriguchi, Melvin Johnson, Orhan Firat, Hideto
Kazawa, and Wolfgang Macherey. 2018. Zero-
shot cross-lingual classification using multilin-
gual neural machine translation. arXiv preprint
arXiv:1809.04686.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5-6):602–610.

Scott Gray, Alec Radford, and Diederik P Kingma.
2017. Gpu kernels for block-sparse weights. arXiv
preprint arXiv:1711.09224, 3.
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lauzen, Benoı̂t Crabbé, Laurent Besacier, and Di-
dier Schwab. 2019. Flaubert: Unsupervised lan-
guage model pre-training for french. arXiv preprint
arXiv:1912.05372.
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2012. Creating annotated resources for polarity clas-
sification in czech. In KONVENS, pages 296–304.

Antti Virtanen, Jenna Kanerva, Rami Ilo, Jouni Luoma,
Juhani Luotolahti, Tapio Salakoski, Filip Ginter, and
Sampo Pyysalo. 2019. Multilingual is not enough:
Bert for finnish.

Wietse de Vries, Andreas van Cranenburgh, Arianna
Bisazza, Tommaso Caselli, Gertjan van Noord, and
Malvina Nissim. 2019. BERTje: A Dutch BERT
Model. arXiv:1912.09582 [cs].

Cindy Wang and Michele Banko. 2021. Practical
transformer-based multilingual text classification.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies:
Industry Papers, pages 121–129, Online. Associa-
tion for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2020. mT5: A massively
multilingual pre-trained text-to-text transformer.

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2007.13184
http://arxiv.org/abs/2007.13184
https://www.aclweb.org/anthology/W11-1704
https://www.aclweb.org/anthology/W11-1704
https://doi.org/10.18653/v1/P19-2057
https://doi.org/10.18653/v1/P19-2057
https://doi.org/10.18653/v1/P19-2057
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1912.07076
http://arxiv.org/abs/1912.07076
http://arxiv.org/abs/1912.09582
http://arxiv.org/abs/1912.09582
https://doi.org/10.18653/v1/2021.naacl-industry.16
https://doi.org/10.18653/v1/2021.naacl-industry.16
http://arxiv.org/abs/2010.11934
http://arxiv.org/abs/2010.11934


1148

A Appendix

A.1 LSTM Hyper-parameters
We use cross-entropy as the loss function and the
Adam (Kingma and Ba, 2014) optimizer with de-
fault parameters (β1 = 0.9, β2 = 0.999) and with
a modification from (Loshchilov and Hutter, 2017)
for the FB dataset. The embedding layer is train-
able with a maximum size of 300k. The max se-
quence length for the input t tokens is 64 for the FB
dataset and 512 for the CSFD and Mallcz dataset
with weight decay in the optimizer set to 0. We
use Czech pre-trained fastText (Bojanowski et al.,
2017) embeddings17. For the Mallcz and CSFD
datasets, we use 128 units in the BiLSTM layers
and a batch size of 128. For the FB dataset, we use
256 units in the BiLSTM layers and a batch size of
256 with weight decay in the optimizer set to 1e-4.

For all datasets, we use 10 % of total steps (batch
updates) to warm up the learning rate, which means
that during the training, the linear rate is firstly
linearly increasing to the initial learning rate before
being decayed with the corresponding learning rate
scheduler. The dropout after the BiLSTM layers
is set to 0.2. We use cosine (the * symbol in Table
7) and the exponential learning rate scheduler (the
‡ symbol in Table 7) with a decay rate set to 0.05.
Table 7 contains the initial learning rate and the
number of epochs for the LSTM model for each
dataset.

A.2 Transformer Hyper-parameters
For fine-tuning of the transformer-based models,
we use the same modification (Loshchilov and Hut-
ter, 2017) of the Adam (Kingma and Ba, 2014)
optimizer with default weight decay set to 1e-2.
We use different learning rates and a number of
epochs for each combination of the models and
datasets, see Table 7. We use either constant linear
rate or linear learning rate decay without learning
rate warm-up. We use default values of all other
hyper-parameters.

For the cross-lingual experiments, we use only
the linear learning rate decay scheduler with the
initial learning rate set to 2e-6 without learning
rate warm-up. For the cross-lingual experiments
from English to Czech, the numbers of epochs
used for the fine-tuning are 5, 2, 4 and 10 for
the XLM-R-Base, XLM-R-Large, XLM and
mBERT models, respectively. For the cross-lingual

17Available at https://fasttext.cc/docs/en/
crawl-vectors.html
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Figure 1: Subword token histograms for the CSFD and
Mallcz datasets for the Czert-B model.

experiments from Czech to English, the numbers
of epochs used for the fine-tuning are 25, 5 and
9 for the XLM-R-Base, XLM-R-Large and
XLM models18, respectively.

A.3 Computational Cluster
For fine-tuning of the Transformers models we use
the Czech national cluster Metacentrum19. We use
two NVIDIA A100 GPUs each with 40GB mem-
ory.

18The mBERT model did not converge for this experiment
19See https://wiki.metacentrum.cz/wiki/

Usage_rules/Acknowledgement
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Model
3 Classes 2 Classes

CSFD FB Mallcz CSFD FB Mallcz

Log. reg. (ours) 79.63 67.86 76.71 91.42 88.12 88.98
LSTM (ours) 79.88 ± 0.18 (5e-4 / 2)* 72.89 ± 0.49 (5e-4 / 5)* 73.43 ± 0.12 (5e-4 / 10) ‡ 91.82 ± 0.09 (5e-4 / 2)* 90.13 ± 0.17 (5e-4 / 5)* 88.02 ± 0.24 (5e-4 / 2)‡
Czert-A 79.89± 0.60 (2e-6 / 8) 73.06± 0.59 (2e-5 / 8) 76.79± 0.38 (2e-5 / 12) 91.84± 0.84 (2e-5 / 8) 91.28± 0.18 (2e-5 / 15)† 91.20 ± 0.26 (2e-5 / 14)

Czert-B 84.80 ± 0.10 (2e-5 / 12) 76.90 ± 0.38 (2e-6 / 5)† 79.35 ± 0.24 (2e-5 / 15) 94.42 ± 0.15 (2e-5 / 15) 93.97 ± 0.30 (2e-5 / 2) 92.87 ± 0.15 (2e-5 / 15)

mBERT 82.74 ± 0.16 (2e-6 / 13) 71.61 ± 0.13 (2e-6 / 13)† 70.79 ± 5.74 (2e-5 / 10) 93.11 ± 0.29 (2e-6 / 14)† 88.76 ± 0.42 (2e-5 / 8) 72.79 ± 3.09 (2e-5 / 1)

SlavicBERT 82.59 ± 0.12 (2e-6 / 12) 73.93 ± 0.53 (2e-5 / 4) 75.34 ± 2.54 (2e-5 / 10) 93.47 ± 0.33 (2e-6 / 15)† 89.84 ± 0.43 (2e-5 / 9)† 90.99 ± 0.15 (2e-6 / 14)†
RandomALBERT 75.79 ± 0.18 (2e-6 / 14) 62.53 ± 0.46 (2e-6 / 14)† 64.81 ± 0.25 (2e-6 / 15)† 89.99 ± 0.21 (2e-6 / 14)† 81.71 ± 0.56 (2e-6 / 15)† 85.38 ± 0.10 (2e-6 / 14)†
XLM-R-Base 84.82 ± 0.10 (2e-6 / 15)† 77.81 ± 0.50 (2e-6 / 7)† 75.43 ± 0.07 (2e-6 / 15)† 94.32 ± 0.34 (2e-6 /14) † 93.26 ± 0.74 (2e-6 / 5)† 92.56 ± 0.07 (2e-6 / 12)†
XLM-R-Large 87.08 ± 0.11 (2e-6 / 11 ) 81.70 ± 0.64 (2e-6 / 5)† 79.81 ± 0.21 (2e-6 / 24)† 96.00 ± 0.02 (2e-6 / 143)† 96.05 ± 0.01 (2e-6 / 15) 94.37 ± 0.02 (2e-6 / 15)†
XLM 83.67 ± 0.11 (2e-5 / 11) 71.46 ± 1.58 (2e-6 / 9)† 77.56 ± 0.08 (2e-6 / 14)† 93.86 ± 0.18 (2e-5 / 5) 89.94 ± 0.27 (2e-6 / 15)† 91.97 ± 0.22 (2e-6 / 16)†

Table 7: The final monolingual results as macro F1 score and hyper-parameters for all three Czech polarity datasets
on two and three classes. For experiments with neural networks performed by us, we present the results with a 95%
confidence interval. For each result, we state the used learning rate and the number of epochs used for the training.
The † symbol denotes that the result was obtained with constant learning rate, ∗ denotes the cosine learning rate
decay, ‡ denotes exponential learning rate decay, otherwise the linear learning rate decay was used.

Model
CSFD FB

(Sido et al., 2021) Ours (Sido et al., 2021) Ours

mBERT 82.80 ± 0.14 (2e-6 / 13) 82.74 ± 0.16 (2e-6 / 13) 71.72 ± 0.91 (2e-5 / 6) 71.61 ± 0.13 (2e-6 / 13)

SlavicBERT 82.51 ± 0.14 (2e-6 / 12) 82.59 ± 0.12 (2e-6 / 12) 73.87 ± 0.50 (2e-5 / 3) 73.93 ± 0.53 (2e-5 / 4)

RandomALBERT 75.40 ± 0.18 (2e-6 / 13) 75.79 ± 0.18 (2e-6 / 14 ) 59.50 ± 0.47 (2e-6 / 14) 62.53 ± 0.46 (2e-6 / 14)

Czert-A 79.58 ± 0.46 (2e-6 / 8) 79.89 ± 0.60 (2e-6 / 8) 72.47 ± 0.72 (2e-5 / 8) 73.06 ± 0.59 (2e-5 / 8)

Czert-B 84.79 ± 0.26 (2e-5 / 12) 84.80 ± 0.10 (2e-5 / 12 ) 76.55 ± 0.14 (2e-6 / 12) 76.90 ± 0.38 (2e-6 / 5)

Table 8: Comparison of results from (Sido et al., 2021) with results obtained by us.
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(a) CSFD – XLM-R-Base and XLM-R-Large
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(b) Mallcz – XLM-R-Base and XLM-R-Large

Figure 2: Subword token histograms for the CSFD
and Mallcz datasets for the XLM-R-Base and
XLM-R-Large models.
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(a) CSFD – mBERT
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(b) Mallcz – mBERT

Figure 3: Subword token histograms for the CSFD and
Mallcz datasets for the mBERT model.


