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Abstract

Many automatic semantic relation extraction
tools extract subject-predicate-object triples
from unstructured text. However, a large quan-
tity of these triples merely represent back-
ground knowledge. We explore using full texts
of biomedical publications to create a training
corpus of informative and important semantic
triples based on the notion that the main con-
tributions of an article are summarized in its
abstract. This corpus is used to train a deep
learning classifier to identify important triples,
and we suggest that an importance ranking for
semantic triples could also be generated.

1 Introduction

Subject-predicate-object triples are used in numer-
ous natural language processing areas, including
question answering (e.g. Hristovski et al. (2015)),
ontology building (e.g. Du and Li (2020)) and liter-
ature based discovery (e.g. Hristovski et al. (2006)).
While they can be thought of as representing the
minimum unit of semantic expression, there is a
large degree of variability in the amount of new
(not commonly known) content they convey. On
the one hand, they sometimes represent what can
be termed background knowledge, for example

“New Zealand - ISA - country” or “pharmaceuti-
cal services - TREATS - health personnel”, while
on the other, they may describe very specific find-
ings such as pimobendan TREATS hypertrophic
cardiomyopathy or LCN2 protein, human - ASSO-
CIATED WITH - chronic kidney disease. We use
biomedical publications to test the hypothesis that
training data consisting of such, important, triples
can be created from abstracts, and train a deep
learning algorithm to identify these high impor-
tance triples from a list of all triples appearing in a
paper. The system could also be adjusted to output
a weight instead of a binary decision, allowing for

an importance ranking of semantic triples within
an article.

The paper begins with an overview of related
work in Section 2, the experimental set-up follows
in Section 3, with the results and discussion in
Section 4 and conclusions drawn in Section 5.

2 Background

A number of tools for automatically extracting se-
mantic relations – (subject, relation, object) triples
– from unstructured text exist (Yuan and Yu, 2018).
However, as Papadopoulos et al. (2020) point out,
the majority of works incorporating these do not
perform much pre- or post- processing and there-
fore include many potentially uninformative triples,
and works proposing to extend currently existing
collections of semantic relations often speak of
extending the set of relations, not refining the rela-
tions present (e.g. Koroleva et al. (2020)).

Evaluations of semantic relation extraction sys-
tems are often very comprehensive, e.g. Kilicoglu
et al. (2020) present a detailed independent evalua-
tion of SemRep – a biomedical domain tuned triple
extraction tool – and discover common sources
of error for this tool, but such evaluations do not
quantify the quality of the triple that is retrieved
by the system. It is unclear whether the incorrectly
extracted triples are uninformative, or the opposite.

While not phrased as focusing on informative /
important triples, existing works often restrict to
particular types of relations: Yuan and Yu (2018)
evaluate the extraction of health claims, defined as
a relation between something that is being manipu-
lated and something that is being measured (e.g. the
relation between a substance and a disease). Ya-
dav et al. (2020) restrict to drug-drug interaction,
protein-protein interaction, and medical concept
relation extraction, while Hope et al. (2021) fo-
cus on mechanisms, i.e. activities, functions and
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causal relations. Such restrictions are likely to in-
crease the overall quality of the remaining triples:
removing the ISA relation alone eliminates a large
quantity of background knowledge. The closest to
our work is due to Zhang et al. (2021) who filter out
uninformative triples computationally, based on the
difference between triples’ expected and observed
frequencies.

3 Experiment Design

Below, we discuss the two steps needed to explore
the hypothesis that a dataset based on abstracts can
be used to detect important triples using machine
learning: 1) creation of a training corpus, and 2)
selection of a deep learning architecture.

3.1 Training Corpus Creation
The CORD-19 dataset (Wang et al., 2020) was cho-
sen for this work due to: 1) scale, the 2021-05-03
version contains 198,347 full articles, 2) availabil-
ity of extracted text, the dataset contains the text
extracted from available full article PDFs, 3) do-
main, the restricted nature of the dataset allows the
application of existing biomedical tools.

3.1.1 Semantic Relation Extraction
Subject-relation-object triples are extracted from
all article texts present in the dataset using Sem-
Rep (Rindflesch and Fiszman, 2003). Designed
for the biomedical domain, the tool extracts triples
such as “imatinib TREATS Gastrointestinal Stromal
Tumors” but with concepts mapped to Unified Med-
ical Language System metathesaurus (UMLS) (Bo-
denreider, 2004) concept unique identifiers, CUIs
(i.e. yielding C0935989 - TREATS - C0238198
for the example). This addresses the problem
of multi-word identification (recognizing gastroin-
testinal stomal tumours rather than merely tumours)
and word sense disambiguation (distinguishing be-
tween occurrences of concepts with multiple mean-
ings, such as COLD, which could - among other
options - represent the common cold or chronic
obstructive airway disease).

3.1.2 Identifying Important Triples
To train a machine learning classifier, a training set
of important triples is needed. Since an abstract
usually summarizes the main findings of an article,
we hypothesize that important triples can be consid-
ered to be those that appear in both the body and an
abstract. It is important to note that the training set
of important triples does not need to be complete,

i.e. not every important triple from the body needs
to be identified. The dataset should be as noise free
as possible, and therefore background knowledge
triples (which may appear in both the abstract and
the body of an article) should not be included. To
reduce noise, the following filtering is performed:

• Previously published triples. The construction
of positive examples in the training set hinges
on the identification of important triple(s). If
these triples are defined as those which de-
scribe the novel contribution(s) of an article,
an identical triple (i.e. contribution) should not
have appeared in abstracts prior to the current
paper. Therefore triples appearing in SemRep
processed Medline (V40, released October
2019, i.e. before the CORD-19 dataset), a vast
collection of biomedical abstracts (Lozano-
Kühne, 2013), are removed from the dataset.

• Frequent concepts. Some frequent concepts
often appear in non important triples, such as:

– therapeutic procedure TREATS disease
– malaise PROCESS OF patients
– lung PART OF homo sapiens

Since the training set does not need include an
annotation for every triple encountered and
there is high probability of mis-annotation
with triples involving these concepts, triples
involving the top 1% of concepts appearing
in V40 of SemRep processed Medline are re-
moved. The top 1% includes patients, ther-
apeutic procedure, homo sapiens and other
very general terms. Note that this does not
mean that the system will be unable to clas-
sify triples including these concepts.

In some cases, an identical triple is used both
in the abstract and the body of an article, how-
ever, when repeated, novel contributions of a paper
are sometimes rephrased using (near) synonyms.
Therefore a measure of triple similarity needs to
be defined. Since the triples are of the format
subjectCUI -predicateword-objectCUI , this mea-
sure can be defined on each component (subject,
predicate, object) separately. Word (CUI) embed-
dings represent each word (CUI) as a vector which
captures information about the contexts it appears
in, therefore yielding similar – close – vectors for
synonyms. A triple similarity measure can there-
fore be implemented based on cui2vec (Beam et al.,
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2019) (for subject and object similarity) and GloVe
(Pennington et al., 2014) embeddings (for predi-
cate similarity).1 Similarity between two triples,
cui11−rel1−cui12 and cui21−rel2−cui22, is then
given by the formula cs(c2v(cui11), c2v(cui21))+
cs(g(rel1), g(rel2)) + cs(c2v(cui12), c2v(cui22))
where cs represents the cosine similarity, c2v(x)
the cui2vec vector of x and g(x) x’s GloVe vector.
As the maximum value for cosine similarity is 1,
the triple similarity is a decimal between 0 and 3
inclusive, 0 corresponding to complete lack of sim-
ilarity between triples and 3 an exact match. For
each body-triple, a similarity can be computed be-
tween it and each abstract-triple in the same article,
with the highest becoming the body-triple’s similar-
ity value. A threshold can be set on the similarity
value to decide which triples are deemed important.

3.2 Deep Learning Algorithm
The machine learning component consists of three
parts: 1) feature extraction, 2) architecture selec-
tion, and 3) experiment settings.

3.2.1 Feature Extraction
The ability to extract important triples (described in
Section 3.1.2) makes it possible to use supervised
machine learning approaches to train a classifier.
To this end a number of features are extracted for
each body-triple.

Frequency based features: 1) the number of
times the triple appeared in the body of the arti-
cle, and 2) the total number of relations within the
body of the publication.

UMLS based features: 1) the frequency count
of the CUIs in the body triple as extracted from
SemRep processed Medline – while the top 1% of
CUIs have been discarded, it is believed that CUIs
with lower frequencies are more likely to be part
of novel contributions, 2) the UMLS source vocab-
ulary of the CUIs – the metathesaurus consists of
many different types of biomedical vocabularies
and the information pertaining to which one(s) a
CUI belongs to can serve to give an overall idea
of its category, and 3) the depth of the body triple
CUIs within UMLS. For some source vocabularies,
a hierarchy is present, allowing the computation
of the concept’s distance to the root – assuming a
concept further away from the root is more likely to
be more fine-grained, this feature also investigates
whether important triples are more likely to contain

1GloVe embeddings were chosen since the predicate words
are being compared in isolation.

more specific CUIs (the shortest path to the root is
taken if a concept appears in multiple hierarchies).

Semantics based features: 1) the relation used,
2) the title of the section the body triple appeared
in – since the majority of articles in this collection
have relatively rigid structure, this was restricted
to the commonly prescribed sections such as intro-
duction, background, methods etc, and is based on
the hypothesis that a novel contribution of a work
is likely to appear in the discussion and / or conclu-
sion sections, and 3) the rank of the sentence the
triple appeared in as ranked by TextRank (Mihalcea
and Tarau, 2004). TextRank is a graph based algo-
rithm, often used in summarization, which can be
used to order the sentences in an article according
to importance, and therefore we hypothesize that a
sentence with a low TextRank (high importance) is
more likely to yield an important triple.

After performing one hot encoding of the rela-
tion feature, this gives 129 features for the 55,745
triples in the dataset.

3.2.2 Architecture Selection
While the similarity value of a body-triple calcu-
lated as described in Section 3.1.2 can be predicted
directly, initial experiments with regression showed
that this is hard to do exactly. The problem was
therefore framed as binary classification. In this
case, a threshold is set on the similarity value and
triples with a value above the threshold are used as
positive, important, instances.

Deep learning model is chosen due to its abil-
ity to cope with feature dependencies. The model,
implemented using Keras, was designed with fully
connected (dense) layers of halving sizes with the
final layer of size 1. ReLU was used for all layers
except the last, where the sigmoid activation func-
tion was employed. The loss function was binary
entropy and accuracy was used as the metric when
classes weren’t extremely imbalanced, F1 was used
otherwise. A number of parameters were tuned: 1)
the depth of the model (with halving sizes, thus
depth one model has a single dense layer of size
int(129/2), depth two model has two dense layers
of sizes int(129/2), int(129/4), and so on), 2) the
number of epochs, 3) dropout, and 4) whether class
weights were used.

3.2.3 Experiments
As suggested above – by exploring the use of class
weights within the model – the dataset is highly im-
balanced with, as expected, the majority of triples
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Similarity Buffer Majority Best model Accuracy /
value band proportion Depth Dropout F-measure
≥ 3 ON 50 2 0.0 a=72.7
≥ 3 OFF 50 2 0.0 a=67.2
≥ 3 ON 83.3 2 0.0 a=85.2
≥ 3 OFF 83.3 2 0.0 a=84.2
≥ 2 OFF 88.3 3 0.0 f=0.975

Table 1: Performance of informative triple classifier

not appearing in the abstract. The following meth-
ods for addressing this bias were explored:

• Using class weights within the deep learning
algorithm: this allows more emphasis to be
given to the minority class.

• Under-sampling: randomly sampling the ma-
jority class such that the number of examples
used in training corresponds to a pre-decided
ratio. The minority and majority class can
be made equal (1:1) but other ratios were ex-
plored, making the majority class more fre-
quent but not overpowering.

While all the minority, important, class triples
are included in the training set, this does not have
to be the case for the majority class. As mentioned
above, the triples to include in the minority class
are selected by a threshold. However, this can lead
to a triple with, say, similarity of 2.5 being included
in important triples, while a triple with similarity
of 2.499 appearing in the non important triples
class. Such small difference may be detrimental to
the performance of the machine learning algorithm
and a buffer band of similarities between the two
classes was also explored. I.e. two thresholds, t1
and t2 are set such that t1 − t2 > 0 and all triples
with similarity >= t1 are assigned to the impor-
tant class while triples with similarity <= t2 are
deemed not important.

4 Results And Discussion

A 5-fold cross validation was performed, and each
explored model was trained on (a possibly balance
adjusted version of) the training portion giving rise
to an accuracy or F-measure on the test portion.
This allows an average to be computed and the best
model to be determined. The results are presented
in Table 1: the similarity value refers to the thresh-
old from Section 3.1.2 used to determine which
triples are considered important, the buffer band –

when on – removes the cases close to the similar-
ity value threshold from training as described in
Section 3.2.3, and the majority column represents
the percentage of the training dataset attributed to
the majority class. The final columns present the
hyperparameters of the best model for the specific
combination and the average accuracy / F-measure.

With under-sampling, the accuracies for simi-
larities >= 2 were all within 2% of the best per-
formance, supporting the hypothesis regarding fre-
quent use of synonyms. To avoid a uniform assign-
ment of the majority class, the F-measure metric
(which rewards both precision and recall) is used
in models without under-sampling. An F-measure
of 1 represents perfect precision and recall, and the
highest F-measure achieved is 0.975.

SHapley Additive exPlanations (SHAP) (Lund-
berg et al., 2018) uses ideas from game theory to
explain feature contributions to machine learning
decisions. Figure 1 depicts the feature contribu-
tions on a randomly selected sample of 100 triples
for the best model without under-sampling. Each
dot represents a single triple, with the intensity
(blue→ pink) indicating whether the feature value
was low or high. The horizontal position indicates
whether the contribution caused the prediction to
go up – towards being classified as an important
triple – or down. The top three rows show expected
results: that high values in the number of relations
in the document, very frequently occurring CUIs or
relations arising from sentences low in importance
ranked by TextRank (giving a high rank) impact
the prediction very negatively. Unsurprising posi-
tive contributors are: 1) the frequency of the triple
in the document: a new contribution may be reit-
erated in the document, 2) the triple appearing in
the conclusion: this often contains a summary of
contributions, 3) the triple including the TREATS
relation: the filtering ensures this is a new triple
and being treatment specific, is likely the focus
of the work, 4) the triple appearing in the intro-
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Figure 1: Feature contributions

duction, where the novelties of the work are often
highlighted. The contributions of a higher depth
value is also, as expected, positive.

Contributions are also due to the CUIs’ UMLS
source vocabulary (indicated by source ). In some
cases, these categorize the CUI: for example, AOD
(alcohol and other drug thesaurus) and PSY (psy-
chological index terms) are not unexpected. Sur-
prising may be the pair MSHNOR and MSHJPN,
representing the Norwegian and Japanese transla-
tions of Medical Subject Headings, as they appear
to have opposite effect. However, MSHJPN’s con-
tribution is very limited, suggesting that its com-
pleteness may not match that of MSHNOR.

5 Conclusions And Future Work

We have demonstrated that a dataset of semantic
triples created from full articles based on similarity
between triples in the body of the text and triples
in the abstract can be used to train a deep learn-
ing classifier to make predictions about a semantic
triple’s importance. An analysis of feature contri-
butions was also performed.

While a direct prediction of the similarity score
appeared difficult with the quantity of data avail-
able, converting the similarity scores into categori-
cal values may be trainable and would provide the
basis of a ranking. Again with greater quantity of
data, features based on medical subject headings
of each CUI could be beneficial indicated by the
success of the UMLS source vocabulary features.

The work undertaken was in the biomedical do-
main based on a tool tuned for biomedical do-
main grammatical relation extraction. Porting the
approach to another domain, where subject-verb-
object triples would need to be extracted using a

generic grammatical relation extraction algorithm
and some features would require re-engineering,
would also form an interesting extension of the
work.
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