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Abstract

We address the compositionality challenge pre-
sented by the SCAN benchmark. Using data
augmentation and a modification of the stan-
dard seq2seq architecture with attention, we
achieve SOTA results on all the relevant tasks
from the benchmark, showing the models can
generalize to words used in unseen contexts.
We propose an extension of the benchmark by
a harder task, which cannot be solved by the
proposed method.

1 Introduction

Compositionality describes the property of lan-
guage that the syntactic and semantic aspects of
complex language units are composed of the syntac-
tic and semantic aspects of primitive units (Fodor
and Lepore, 2002). The SCAN benchmark (Lake
and Baroni, 2018) has been designed to assess the
ability of current neural networks to utilize com-
positionality of language to deal with systematic
difference between the training and test data distri-
butions (see Table 1 for examples).

We use a novel combination of existing ideas
(data augmentation, adding noise and predicting
outputs based only on the weighted average of in-
put embeddings) to achieve high accuracy in all
the relevant tasks of the SCAN benchmark. An ap-
proach working well for all the tasks has not been
reported yet.1 Seeing the good results, we analyze
some underlying assumptions of the tasks and pro-
pose a new split of the SCAN data (i.e. a new task)
that proves to be more difficult for our approach.

In Section 2, we describe the SCAN benchmark
for testing the systematic use of compositionality
in detail. Then we present some approaches tested
on the benchmark so far (Section 3), introduce our

1The model by Lake (2019) achieves very good results, but
it relies on seeing test input sequences (tohough with modified
output) during training.

own method of solving the tasks (Section 4) and
its results and analysis of some of the decisions
(Section 5). In Section 6, we discuss the existing
tasks and propose a new one. We conclude the
paper in Section 7.

2 The tasks (SCAN dataset)

Lake et al. (2017) discussed the differences be-
tween human and machine learning and stressed
systematic compositionality as an important ingre-
dient. It makes human learning fast and data effi-
cient, compared to slow and data-hungry training
of current deep learning models. Neural networks
struggle when provided with familiar concepts in
new combinations, while people can use known
concepts productively.

The SCAN dataset (Lake and Baroni, 2018) was
designed to test this specific aspect of learning. It
represents the problem of sequence transduction
(sequence to sequence transformation). An agent
in a grid world environment is supposed to perform
a sequence of primitive actions (output) based on
a sequence of commands (input). However, nei-
ther the agent nor the environment play any role
in the generation of the next examples (there is no
‘state’ as known from reinforcement learning tasks)
or in the interpretation of the commands. SCAN
is designed to test traditional supervised learning
models, namely those that translate from the “com-
mand language” into the “action language”.

Some examples taken from the dataset are given
in Table 1. There are 13 input tokens (jump, look,
run, walk, turn, left, right, and, after, opposite,
around, twice, thrice). These are governed by an
underlying non-recursive phrase-structure grammar
that produces 20, 910 possible input sequences in
total. Each command sequence is translated into
an output action sequence. The output vocabulary
contains 6 tokens: (JUMP, LOOK, RUN, WALK,
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Commands Actions
(look twice) and (turn right twice) (LOOK LOOK) (RIGHT RIGHT)
(run thrice) after (look left) (LEFT LOOK) (RUN RUN RUN)
(walk around right) (RIGHT WALK RIGHT WALK RIGHT WALK RIGHT WALK)
jump JUMP
(walk opposite left) after (run) (RUN) (LEFT LEFT WALK)
. . . . . .
(walk opposite left) after (jump) (JUMP) (LEFT LEFT WALK)
jump twice JUMP JUMP
(jump thrice) and (walk) (JUMP JUMP JUMP) (WALK)
. . . . . .

Table 1: Examples from the SCAN dataset (brackets are added for clarity). Each example consists of a command
sequence (input) and a corresponding action sequence (output). Two horizontal lines separate the training (top)
from the test (bottom) data. This particular split illustrates the jump task, where jump appears in the training data
in isolation only.

LEFT, RIGHT). For more detail, see the Supple-
mentary in Lake and Baroni (2018).

As far as the training and test data are produced
randomly, standard seq2seq models achieve high
accuracy of 99.8% (Lake and Baroni, 2018). (The
accuracy is computed over whole sequences, i.e.
the models make errors in about 0.2% of the test-
ing sequences). Once the training and test data
reflect a systematic distribution change, the models
struggle. In this work, we address two main sets of
tasks presented by SCAN: generalization to a new
primitive (JUMP) and generalization to a new com-
bination of learned concepts (AROUND RIGHT).
We discuss them in the following subsections.

2.1 Generalization to a new primitive

In this scenario, a primitive command (jump) and
its corresponding action are excluded from the
training data except for the simplest case where the
command and action stand in isolation (jump →
JUMP). The test data consist of examples with the
primitive in all possible contexts (e.g. jump twice;
walk opposite twice after jump around thrice). The
models need to learn to generalize the information
about the contextualized behavior of other primi-
tives (run twice, walk right) and apply this infor-
mation to a new primitive (jump twice, jump right).

A simplified version of the task above arises
when turn left is held out from the training data
instead of jump. The difference is that the corre-
sponding output action (LEFT) still remains in the
training data in different contexts: e.g. (jump left
→ LEFT JUMP)

2.2 Generalization to a new combination of
learned concepts

Loula et al. (2018) pointed out that while the tasks
above are aimed at testing compositionality, there
is not much information about the newly added
primitives that the models are asked to utilize. We
return to this argument later in Section 6. For this
reason, a new set of tasks has been added to the
benchmark. In these, it is a single combination of
well established words that is unique to the test set.
There are four such tasks, given here in increasing
complexity:

• jump around right – unlike the jump task in
Section 2.1, here jump appears during train-
ing in different contexts (e.g. jump around
left; jump right; . . . ), the only instances left
out from the training contain the jump around
right sequence

• Primitive right – during training, right can
only follow the two manner adverbs (around,
opposite) but it never follows a verb (jump,
look, run, walk, turn) directly

• Primitive opposite right – the models are
asked to infer the meaning of this sequence
(i.e. RIGHT RIGHT ACTION) from seeing
examples such as (jump opposite left; look
around right, walk right)

• Primitive around right – is analogous to the
previous task, the only difference being the
complexity (length) of the targeted output se-
quences (jump around right→ RIGHT JUMP
RIGHT JUMP RIGHT JUMP RIGHT JUMP)
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3 Existing methods

We describe notable approaches to the SCAN
benchmark, selected because of their good perfor-
mance and/or relevance to our proposed method:

Seq2seq model with the LSTM encoder and de-
coder and the attention (Bahdanau et al., 2015)
mechanism is the baseline method evaluated by
Lake and Baroni (2018).

Dessı̀ and Baroni (2019) employ convolutional neu-
ral networks (CNN) and observe substantial in-
crease in accuracy in the SCAN tasks. This seems
to support the conclusion of Bastings et al. (2018),
who argue that SCAN tasks inherently prefer sim-
pler models (mainly because of very limited tem-
poral dependencies within the output sequences).

Andreas (2020) employs the baseline recurrent
models (Lake and Baroni, 2018) together with
a general data augmentation technique (GECA)
to expand the training data. After the augmenta-
tion, the training set contains 5% (JUMP) and 1%
(AROUND RIGHT) of the test data, which leads
to an increase in performance.

Russin et al. (2020) modify the baseline model
by using different attention values: in each de-
coding step, they keep the computation of the at-
tention weights over the input sequence, but for
attention values, the encoder hidden states are re-
placed with a second set of input word embeddings.
(These word embeddings are different from the
embeddings used as the encoder input). It is an
attempt to separate syntactic (computation of at-
tention weights) and semantic (attention values)
information (SyntAttn).

Li et al. (2019), in the same vein, separate the
flow of information into two streams, which they
call primitive (i.e. semantic) and functional (i.e.
syntactic). Again, syntactic embeddings are used
to determine the attention weights over the input
sequence and semantic embeddings are used as the
actual values the attention mechanism produces.
Moreover, the approach uses regularization (adding
noise to the embeddings, L2 norm) leading to more
stable training (and better results) compared to the
previous method (Li19).

Finally, Lake (2019) uses a seq2seq model with
the combination of external memory, data augmen-
tation and meta-learning and achieves good perfor-
mance on multiple SCAN tasks (MetaSeq2seq).

4 Model

Our architecture is a straightforward extension of
the baseline LSTM seq2seq model with attention
(Lake and Baroni, 2018). We modify the attention
mechanism by using input word embeddings as
the attention values (as opposed to using contex-
tualized representations produced by the encoder).
This can also be seen as a simplified version of the
architectures introduced by Li et al. (2019); Russin
et al. (2020). Unlike them, we train only one set of
embeddings that are used both as the encoder input
and as attention values. Also, we use the traditional
autoregressive decoder (the previous predicted out-
put serves as the input for the decoder at each step),
which is not the case in the two cited approaches.

We added standard Gaussian noise to the input
embeddings during training, as suggested by Li
et al. (2019), but did not use the L2 regularization.

We also experimented with weight tying, known
for example, from some language modelling liter-
ature (Inan et al., 2017). We tried to avoid using
a separate output layer and instead, we computed
similarity (dot product) of the attention output with
the output token embeddings (the embeddings used
by the decoder) and used these vectors as logits.

Similarly to Lake (2019), we experiment with
adding artificial primitives to the training data. We
hope this would make the encoder more robust as it
should recognize the syntactic patterns (X opposite
right) rather than memorize each instance (walk op-
posite right) using the available embedding (walk).

For the jump task, we introduce artificial action
commands action1, action2, action3, . . . with the
corresponding actions ACTION1, ACTION2, AC-
TION3, . . . . For all the other tasks (lturn, jump
around right, Primitive right, Primitive opposite
right, Primitive around right), we introduce ar-
tificial directions: dir1 → DIR1, dir2 → DIR2,
dir3 → DIR3 . . . . Unlike Lake (2019), we are
not permuting the command – action assignment
during training and we do not introduce the held-
out phrases to either the input or the output of the
training examples.

4.1 Training details

We trained all the models using the Adam optimizer
with the learning rate 0.001 exponentially decaying
to 0.0001 over 60 epochs (regardless of the task).
The batch size was set to 32. We experimented with
different sizes of the input and output embeddings
and LSTM dimensions (64, 128, 256, 512), and the
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Method jump around right
seq2seq 1.2 2.46± 2.68
CNN 69.2 ± 8.2 56.7 ± 10.2
GECA 87 ± 2 82 ± 4
SyntAttn 91.0 ± 27.4 28.9 ± 34.8
Li19 98.8 ± 1.4 83.2 ± 13.2
MetaSeq2seq 99.95± 0.08 99.96± 0.08

ours 98.90± 1.40 99.82± 0.47

Table 2: Test accuracy (mean ± std %) on the two
most challenging SCAN tasks. Results are given as
reported by their authors. Seq2seq is from Lake and
Baroni (2018) for the jump and Loula et al. (2018)
for the around right task, CNN from Dessı̀ and Baroni
(2019), GECA from Andreas (2020), SyntAttn from
Russin et al. (2020), Li19 from Li et al. (2019) and
MetaSeq2seq from Lake (2019). Results are reported
over 5 random seeds with the exception of GECA (10
seeds), SyntAttn (median value, 25 seeds) and ours (25
seeds).

encoder layers (1, 2). The decoder was initialized
by the final hidden state of the encoder. We did not
employ dropout and we clipped gradients whose
norm was larger than 1. Teacher forcing was used
during training. In preliminary experiments, we
settled on the model with one layer bidirectional
LSTM encoder, embedding size of 256 and LSTM
dimension of 256. We experimented with adding
10, 50, 75 and 100 artificial command – action
pairs.

5 Results and analysis

We provide the test accuracy of our model on the
two most widely discussed SCAN tasks (jump and
around right) in Table 2. For completeness, the
results for the remaining tasks are given in Table 3.
The reported model was trained using data augmen-
tation with 75 additional command – action pairs,
Gaussian noise added to the input embeddings dur-
ing training and no parameter tying. Below, we
investigate the effect of these choices. If not stated
otherwise, we always report a mean and standard
deviation computed over 25 runs with different ran-
dom seeds.

5.1 Data augmentation

Arguably, the biggest benefit comes from the data
augmentation. We illustrate this in Table 4, where
we compare the baseline model trained with and
without data augmentation on all the discussed
SCAN tasks. With the exception of the jump and

around right tasks, data augmentation seems to be
enough to achieve good results.

5.2 Parameter tying
The effect of replacing a separate output layer with
a dot product with decoder embeddings was most
prominent with less intensive data augmentation.
When adding only 10 additional command – ac-
tion pairs to the training data of the around right
task, our top model achieved the mean accuracy
of 59.47% (±18.27%) with the output layer and
90.4% (±7.5%) without it. The effect disappeared
with heavier data augmentation and/or with other
tasks. Therefore, parameter tying was not included
in the overall results.

5.3 Input embeddings as attention values
In contrast, the other architectural change with re-
spect to the seq2seq baseline, i.e. using the in-
put embeddings as attention values, had an effect
even with stronger data augmentation. Models with
modified attention trained with 100 additional com-
mand – action pairs achieved the mean accuracy
of 99.44% (±0.61%) on the jump task, compared
to 68.51% (±10.67%) achieved by corresponding
models, where the attention values were formed by
the encoder output.

5.4 Embedding noise
Adding standard Gaussian noise to the input em-
beddings plays also an important role by making
the training more stable. Our overall best model
without the noise added in training achieves only
89.12% (±12.91%) accuracy on the jump task
(compared to 98.9% (±1.4%) by the same model
with the noise).

5.5 Single jump proportion
During training on the jump task, the models were
sensitive to the proportion of isolated jump exam-
ples in the training data. In the original dataset,
such examples are upsampled so that they form
about 10% of the training data (without this, mod-
els would encounter jump only once each episode).
We found the best results, when these examples
were treated as all the other ones, i.e. they were
also eligible for command replacement with uni-
form probability.

6 Discussion

We show that task-specific data augmentation with
simple architecture modification leads to good re-
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Method turn left jump ar. right right opposite right
seq2seq 90.3 98.43± 0.54 23.49± 8.09 47.62± 17.72
SyntAttn (Russin et al., 2020) 99.9 ± 0.16 98.9 ± 2.3 99.1 ± 1.8 10.5 ± 8.8
Li et al. (2019) 99.7 ± 0.4 100.0 ± 0.0 99.7 ± 0.5 89.3 ± 5.5

ours 99.99± 0.02 99.98± 0.05 99.99± 0.04 99.98± 0.04

Table 3: Test accuracy (mean± std %) on the remaining SCAN tasks. The baseline (seq2seq) results were reported
by Lake and Baroni (2018) for the turn left task and by Loula et al. (2018) for the other tasks. Results are reported
over 5 random seeds with the exception of ours (25 seeds).

Task extra0 extra100
jump 0.11± 0.11 57.92± 15.91
around r. 0.0 ± 0.0 98.69± 1.33
turn l. 49.55± 8.89 99.92± 0.24
jump ar. r. 82.97± 11.14 99.62± 0.96
right 3.18± 2.3 99.90± 0.2
opposite r 0.04± 0.07 99.97± 0.04

Table 4: The effect of data augmentation: the same
baseline seq2seq model trained on the original data (ex-
tra0) and with 100 additional command – action pairs
(extra100). Test accuracy (mean ± std %, 25 seeds)

sults on tasks from the SCAN benchmark.
We acknowledge that adding tens of additional

command–action pairs to the training data might
seem problematic. At the same time we argue that,
fundamentally, the tasks remain unchanged and
the models still need to generalize to a new primi-
tive (jump) or combine two concepts in a new way
(around right). Moreover, we do not present our
work to claim superiority over previous research
but mainly to shed some light on how composition-
ality is represented by the SCAN benchmark.

As seen above (Table 4, around right task) the
baseline seq2seq architecture struggles when asked
to cope with examples such as look around right
if it was only trained on look right, look left, look
around left, and the like. However, when provided
with more diverse training data, it succeeds in the
vast majority of instances. Does this mean the
network mastered compositionality and is ready to
combine the information productively? Or does
it mean that the modified task no longer tests for
compositionality?

We hypothesize that current methods (including
ours) manage to solve this compositionality chal-
lenge without using much compositionality. Specif-
ically, what is enough for all the tasks as they have
been defined is to learn to attend to correct posi-
tions and then use a one to one mapping from the
input to the output space. This “align and translate”

(Bahdanau et al., 2015) approach exhibits some de-
gree of compositionality. However, having learned
somewhat complex information (say in the case of
grammatical words such as around or opposite),
this needs to be combined with just the identity
of another word. This was actually the motivation
of Loula et al. (2018) to introduce new tasks into
the benchmark (e.g. around right, see Section 2.2).
We believe that in this respect, the new tasks suf-
fer from the same weaknesses as the old ones (as
evidenced by the possibility of easily using data
augmentation).

6.1 Proposed task

Based on the presented results and the discussion
above, we propose another task for the SCAN
benchmark: around Direction twice. 2

Here, we form the test set by selecting all the
SCAN examples where the input string contains the
sequence around right/left twice. Ideally, a model
should be able to combine the information about
doing something while turning around and doing
something twice based on such examples as jump
around left, jump around right thrice, jump twice,
jump opposite right twice.

At face value, this task is almost identical to the
tasks discussed in Section 2.2 (e.g. around right):
we held out a certain combination of well estab-
lished words from the training and tested on them.
What we believe is the substantial difference is the
fact that neither around nor twice have a direct
‘translation’ counterpart in the output ‘language’.
This makes the proposed task less suitable for the
above-mentioned “align and translate” approach.

Another practical effect of this is that it is not
very obvious how data augmentation could be used.
We would need to generate alternatives to either
twice, which would quickly lead to uncomfortably
long output sequences (e.g. run around right thirty-

2The data are available at https://github.com/
michal-au/scan-around-twice

https://github.com/michal-au/scan-around-twice
https://github.com/michal-au/scan-around-twice
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seven times) and/or around, which seems even
more obscure.

We trained 3 types of models for the new task:
the baseline seq2seq architecture without modi-
fications; our seq2seq model with added noise
and modified attention values; the same model
with 100 additional augmented directions (e.g.
run around dir3 thrice). All the models failed
with results: 10.05%(±2.30%), 8.78%(±2.48%)
and 5.53%(±2.12%) respectively (each model was
trained with 5 different random seeds).

7 Conclusion

The SCAN benchmark is a very accessible dataset
used for investigating compositionality. Cherry-
picking from previous research, we introduced the
first approach that is successful in all the relevant
tasks from the benchmark. Analyzing the impor-
tant features defining our approach, we introduced
a new task, where this approach fails. We hypoth-
esize the new task is more challenging than the
existing ones since it tests for deeper aspects of
compositionality.
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