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Abstract

Pretraining-based neural network models have
demonstrated state-of-the-art (SOTA) perfor-
mances on natural language processing (NLP)
tasks. The most frequently used sentence rep-
resentation for neural-based NLP methods is a
sequence of subwords that is different from the
sentence representation of non-neural methods
that are created using basic NLP technologies,
such as part-of-speech (POS) tagging, named
entity (NE) recognition, and parsing. Most
neural-based NLP models receive only vec-
tors encoded from a sequence of subwords
obtained from an input text. However, ba-
sic NLP information, such as POS tags, NEs,
parsing results, etc, cannot be obtained explic-
itly from only the large unlabeled text used
in pretraining-based models. This paper ex-
plores use of NEs on two Japanese tasks; docu-
ment classification and headline generation us-
ing Transformer-based models, to reveal the ef-
fectiveness of basic NLP information. The ex-
perimental results with eight basic NEs and ap-
proximately 200 extended NEs show that NEs
improve accuracy although a large pretraining-
based model trained using 70 GB text data was
used.

1 Introduction

In statistical NLP technologies, which were widely
employed before neural-based NLP emerged, ba-
sic information, such as POS tags and NEs were
often used as features for document classifica-
tion (Higashinaka et al., 2012) and other NLP tasks.
However, since neural-based NLP technologies
have emerged with state-of-the-art (SOTA) perfor-
mances, basic NLP technologies, such as POS tag-
ging and NE recognition are no longer used for
obtaining features from given text. This is because
most neural-based NLP methods attain higher ac-
curacy using only sentence representation encoded
by a pretraining model learned from the large scale

unlabeled text.
However, we think there are some rooms that

basic information, such as POS tags and NEs con-
tribute to recent neural-based NLP even if large
scale pretrained models such as BERT (Devlin
et al., 2019) and BART (Lewis et al., 2020) are
used for obtaining sentence representations.

One of the reasons is that POS tags and NEs are
usually obtained from outputs of analyzers trained
from labeled training data created by human-beings
for each specific purpose. For example, NE rec-
ognizers can identify single words or phrases with
their classes, such as PERSON, ORGANIZATION,
and so on, which are not explicitly given from pre-
trained models. Therefore, we think different kinds
of information compared with pretraining ones are
obtained from outputs of such NLP tools and we
expect such information contributes to further im-
prove accuracy.

We propose the incorporation of basic NLP in-
formation to neural NLP architectures and evalu-
ate their effectiveness on two Japanese NLP tasks.
In this paper, two NE categories, eight basic NEs
(Sekine and Isahara, 2000) and approximately 200
extended NEs (Sekine and Nobata, 2004), are con-
sidered. By combining NE information with a pre-
trained model, we train a model of each task.

Experimental results on document classification
using the BERT model and headline generation us-
ing the BART model, show that combining NEs
with a large pretrained model contributes to signifi-
cantly improved accuracy.

2 Experimental Design

This paper investigates the effectiveness of NE in-
formation for SOTA NLP models. In order to in-
vestigate effectiveness of NEs for SOTA NLP tech-
nologies, we conducted experiments on the two
tasks. The first one is document classification for



941

investigating the effectiveness on a classifcation
task. The one is headline generation for investigat-
ing the effectiveness on a generation task. We use
BERT (Devlin et al., 2019) for document classifi-
cation and BART (Lewis et al., 2020) for headline
generation as pretraining models.

To evaluate these tasks, we defined an architec-
ture that uses NE class embeddings in addtion to
subword embeddings given by one of the pretrained
models, for each task. We refer to the architectures
as BERTNE and BARTNE, where NE indicates the
NE class definition. For the inputs of BERTNE and
BARTNE, we recognize NEs in texts with an NE
recognizer. Finally, using BERTNE and BARTNE,
we evaluated the models with and without NE an-
notations on the two tasks for examining the effec-
tiveness of NE annotations in each task.

One expected effect is the impact of granularity
of NE classes on the accuracy of each task. To
investigate such an effect, we use the following
Japanese NE categories, described in Section 5.

• Basic Named Entity (BNE): eight types the
basic NEs defined by the IREX commit-
tee (Sekine and Isahara, 2000).

• Extended Named Entity (ENE): approxi-
mately 200 types of ENE classes (Sekine and
Nobata, 2004).

Furthermore, to evaluate the impact of NE recog-
nition accuracy, we use the following two NE recog-
nition methods.

• FNER: a feature-based NE recognizer (NER)
(Iwakura, 2011)

• NNER: a neural-based NER (Akbik et al.,
2018)

For FNER and NNER, we trained models of the
two NE class definitions for each NE recognizer.
Four NE recognizers were used in this experiment.

The accuracy of NNER exceeds that of FNER.
In our internal evaluation with the IREX GEN-
ERAL data for the BNE definition, the accuracy
of NNER for BNE is 93.44, which is 2.07 points
higher F-measure than 91.37 of FNER. With these
two NE recognizes, we investigate the impacts of
NER accuracy on the performance of document
classification and headline generation.

We use the following terms for the different set-
tings.

PRETRAINNEC
NER,

where PRETRAIN is BERT or BART, NEC is one
of BNE and ENE, and NER is one of FNER and
NNER. For example, BERTENE

FNER indicates BERT
with ENE classes gives from FNER.

3 Baseline Models

Here, we use two pretraining architectures, a pre-
trained BERT model for document classification
and a pretrained BART model for headline genera-
tion.

3.1 BERT-based Document Classification
BERT is a Transformer-based pretraining architec-
ture showing high performances in various NLP
tasks. It generates encoded embeddings of each in-
put token using a Transformer-based bidirectional
encoder. Then, a target task architecture uses the
embeddings.

For the document classification task, docu-
ment classifiers use h[CLS], encoded embedding
of [CLS] token by BERT, and classify the docu-
ment based on h[CLS]. This is because h[CLS] is
used as the aggregate sequence representation for
document classification task in BERT architecture.

o[CLS] = classifier(h[CLS]),

where [CLS] is a special token corresponding to
the beginning of input tokens; h[CLS] ∈ RD is an
embedding of [CLS] token encoded with BERT; D
is the number of dimensions of the encoded embed-
dings, o[CLS] ∈ RC is a score vector of classes and
C is a number of document classes. We employ
argmax(o[CLS]) as a predicted document class.

The embeddings of the [CLS] of each document
is obtained with up to first 510 tokens in an input
and [SEP] token that is also one of special tokens
indicating the end of an input. The embeddings of
each token of BERT is represented as

einput = epos + ettype + etoken, (1)

where epos is relative position embeddings for rela-
tive position pos of a token from the [CLS]; ettype
is token type embeddings for ttype indicating id
(such as a natural number) of each sentence in-
cluded in an input; etoken is token embeddings for
a token token. Figure 1 shows an example of gen-
erating input embeddings from input tokens.

3.2 BART-based Headline Generation
BART is also a Transformer-based pretraining
architecture, especially for sequence-to-sequence
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Figure 1: Example of generation of input embeddings of BERT.

tasks. This architecture shows high performance
sequence-to-sequence tasks, such as headline gen-
eration and document summarization. BART com-
posed of an encoder and a decoder in contrast to
BERT, which consists of only an encoder. The pre-
training follows an autoencoder approach in which
an input sentence is generated from the input sen-
tence. For example, “A B C” is an input, BART
uses a variant of the sentence, in which words are
shuffled like “B A C” or a masked sentence like “A

C” as inputs for generating “A B C”.
BART encoder generates encoded contextual em-

beddings of subwords, Henc ∈ RD×N , from an in-
put subword sequence with a bidirectional encoder
as in BERT, where D is a dimension of contex-
tual embeddings and N is the length of an input
sentence. Eq. (1) is used of each subword for the
BART encoder.

Then, the BART decoder generates the i-th token
ti from the encoded embeddings and previously
generated i − 1 token embeddings with a left-to-
right Transformer-based decoder,

ti = BARTDEC(tdec,i−1,Henc),

where ti is the i-th token of the decoded to-
kens; tdec,i is i decoded tokens (i.e., tdec,i =
(t0, t1, ..., ti−1)). The t0 is a special token rep-
resenting the head of the decoded tokens and is
denoted by “<s>”.

4 Named Entity-based Models

This section describes a BERT-based document
classification and BART-based headline generation
using NE information.

4.1 Use of NE Information
The difference for both base models is the repre-
sentation of einput defined by Eq. (1).

To incorporate NE information into BERT and
the encoder of BART, we use eNE

input instead of

einput defined as

eNE
input = epos + eNE + etoken,

where eNE corresponding to each NE class is use,
instead of ettype.

Figure 2 shows an example of input embeddings
from input tokens with NE classes.

4.2 Parameter Updates for NE-based Models
Since we used eNE instead of ettype, accuracy may
be degraded by using the same fixed pretrained
parameters of BERT/BART. To avoid this degrada-
tion, we finetune all parameters of BERT/BART
using the training data of the target task .1

Another option is training BERT and BART
models with NE classes from scratch. However,
we chose to finetune the original pretrained models
that do not have eNE for the following reasons:

• Our method takes advantage of existing pre-
training models to easily incorporate different
definitions of NEs since it does not require
any pretraining to incorporate NEs.

• The maximum NE class types are approxi-
mately 200 of the ENE definition. Therefore,
the finetuning approach can adopt NE embed-
dings based inputs.

• For the BERT, the use of a publicly available
model is a fair comparison because the model
was trained not for our purpose. 2

The proposed method can be applied to other
huge pretraining methods, such as RoBERTa (Liu
et al., 2019) for document classification and PEGA-
SUS (Zhang et al., 2020) for headline generation.
Even if we cannot obtain the same huge pretraining
dataset, we can use existing pretraining models to
enhance them with NEs.

1The finetuning of BERTNE and BARTNE from pretrained
BERT and BART excludes eNE.

2Unfortunately, we could not find any models of BART for
Japanese. Therefore, we trained a Japanese model for BART.
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Figure 2: Example of generating input embeddings with NE information.

NE class Example
ARTIFACT Nobel Prize in Chemistry
LOCATION Bulgaria
ORGANIZATION King’s College
PERSON John Smith
DATE May
MONEY 100 USD
PERCENT 100%
TIME 10:00 a.m.

Table 1: NE examples of BNE.

5 Named Entity Definition

This section introduces the two NE definitions used
in our experiments, a basic NE category defined at
Retrieval and Extraction Exercise (IREX) (Sekine
and Isahara, 2000) and Extended Named Entity
(ENE) definition (Sekine and Nobata, 2004).

• Basic Named Entity (BNE): Table 1 shows
an example of the BNE definition. BNE con-
sists of eight NE classes, PERSON, ORGANI-
ZATION, DATE, TIME, LOCATION, PER-
CENT, MONEY and ARTIFACT, and a spe-
cial class OPTIONAL. The OPTIONAL is
used when annotators cannot uniquely decide
the NE class of each NE. In our experiments,
we excluded the OPTIONAL NE annotations
in the training and evaluation phases.

• Extended Named Entity (ENE): The ENE
definition has over 200 NE classes associated
with a hierarchy. The IGNORE class of ENE
represents the excluded parts. The CONCEPT
class of ENE represents entities that cannot
be classified into other ENE classes. In our
experiments, we excluded IGNORE and CON-
CEPT NE classes in the training and evalua-
tion phases.

Table 2 shows examples of NE class annotations
with the two definitions. The ENE definition is
more elaborated than that of BNE. For example,
the BNE class of “King’s College” is ORGANIZA-
TION, however, that of ENE falls under School,
which is a subcategory of ORGANIZATION.

6 Data Sets

This section introduces data sets for document clas-
sification and headline generation, created from the
articles of Mainichi newspaper3.

6.1 Document Classification Data Set

The document classification dataset was created
from Mainichi newspaper data4 (Mai-news). In
this dataset, we used 2019 year articles as test data,
2018 year articles as development data, and articles
of 2013-2017 years as training data. We used this
split setting because, in practical situations, we usu-
ally have to train a model to predict future target in-
formation using past data. We used a pre-processed
main body text of each Mai-news article by a pro-
cedure described in the Appendix, as an input text
on document classification.

Table 3 shows the document classes. We used 14
categories of news articles as the target classes of
our document classification task5. The document
class of each article is recorded in its AD attribute.
We refer to this dataset for document classification
as Mai-news-dc. The second column of Table
4 shows the statistics of Mai-news-dc.

6.2 Headline Generation Data Set

The dataset for headline generation was also cre-
ated from Mai-news. As in the document classi-

3This new paper is released from The Mainichi Newspa-
pers Co., Ltd.

4https://www.nichigai.co.jp/sales/
mainichi/mainichi-data.html

5We excluded four categories such as “front page”, which
are listed in Appendix.

https://www.nichigai.co.jp/sales/mainichi/mainichi-data.html
https://www.nichigai.co.jp/sales/mainichi/mainichi-data.html
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NE category Example of Annotations
Without NE Alan Turing educated at King’s College.
BNE <PERSON>Alan Turing</PERSON> educated at <ORG>King’s College</ORG>.
ENE <Person>Alan Turing</Person> educated at <School>King’s College</School>.

Table 2: Examples of annotation each NE category. “ORG” indicates ORGANIZATION NE class of BNE.

Document Class
Commentary Editorial World
Economy Special Topic Culture
Household Sports Society
Science Life Entertainment
Multi Discipline Reading books

Table 3: Document classes used in document classifica-
tion.

fication, we used pre-processed main body text of
Mai-news as input text. We used the headline of
each article as targets (i.e., headline models should
generate). In Mai-news, the headline is identified
by T1 attribute in each data corresponding to an
article. We refer to this dataset for headline gen-
eration as Mai-news-hg. The third column of
Table 4 shows the statistics of Mai-news-hg.

Mai-news
DC HG

train 378,779 426,214
dev 68,287 77,535
test 58,628 66,866

Table 4: The statistics of each dataset. “DC” and
“HG” represent Mai-news-dc and Mai-news-hg,
respectively.

7 Experimental Setting

This section shows the preprocess of input texts,
hyperparameters, evaluation metrics, and so on.

7.1 Pretrained Models
We used cl-tohoku/bert-base-japanese-whole-word-
masking6 as our Japanese BERT pretrained model.
This model was pretrained with approximately 17
million sentences of Japanese Wikipedia articles.
The configuration is the same as the original BERT.

For BART, we used the 70 GB Japanese dataset
of CC-100 7 for pretraining BART. This is because

6https://huggingface.co/cl-tohoku/
bert-base-japanese-whole-word-masking

7http://data.statmt.org/cc-100/

no Japanese BART models were publicly avail-
able. The Japanese version of BART is pretrained
178,000 steps with a mini-batch size of 1,024 on 64
NVIDIA Volta 100 GPUs. For tokenizing texts, we
used a unigram language model-based subword to-
kenization (Kudo and Richardson, 2018) trained on
the same data used to pretrain the Japanese version
of BART.

7.2 Training Models
We fine-tuned BERTNE models using
Mai-news-dc annotated by BNE and ENE cate-
gories, and BARTNE models with Mai-news-hg
annotated by the two NE categories only one time.
For each evaluation, these models were run once.
The Appendix includes other hyperparameters.

7.3 Named Entity Annotation to Text
We annotated texts of Mai-news-dc and
Mai-news-hg datasets with NE classes using
NE recognizers, a classic feature-based NE recog-
nizer (Iwakura, 2011) and a pretraining-based NE
recognizer (Akbik et al., 2018). We refer to the
former as FNER and the latter as NNER.

Each NE recognizer has two models; the BNE
and ENE. The BNE-based models were trained
using the IREX CRL dataset (Sekine and Isahara,
2000) and training data annotated by the authors.
Also, the ENE-based models were trained using
the GSK ENE training data 8.

7.3.1 Document Classification
First, tokenization of the input texts was per-
formed. Here, a text is first tokenized by MeCab9,
a Japanese morphological analyzer that segments
words with their POS tags from a text, with IPA
dictionary10. Then, cl-tohoku/bert-base-japanese-
whole-word-masking’s tokenizer based on the
WordPiece (Schuster and Nakajima, 2012) was
applied to tokenized text with MeCab to de-
compose each word into subwords. We en-

8https://www.gsk.or.jp/catalog/gsk2014-a/
9https://taku910.github.io/mecab/

10https://drive.google.com/uc?export=
download&id=0B4y35FiV1wh7MWVlSDBCSXZMTXM

https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking
https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking
https://taku910.github.io/mecab/
https://drive.google.com/uc?export=download&id=0B4y35FiV1wh7MWVlSDBCSXZMTXM
https://drive.google.com/uc?export=download&id=0B4y35FiV1wh7MWVlSDBCSXZMTXM
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hanced the cl-tohoku/bert-base-japanese-whole-
word-masking’s tokenizer with special tokens
for NE classes such as “<PERSON>” and
“</PERSON>”. Then, each eNE was assigned
to its corresponding subword and NE class tokens
were removed.

After preprocessing, we fine-tuned a model not
only targeting model-specific layers but also BERT
layers.11

The model was evaluated using development
data every 1,000 batch steps in a training phase
and if the model achieves the best accuracy on the
development data, we kept the model. The final
accuracy of the experiments was calculated using
the kept model.

7.3.2 Headline Generation
We tokenized the input source and target texts us-
ing the SentencePiece tokenizer described in sec-
tion 7.1 and cut the texts by border characters (i.e.,
“<” and “>”) between an NE class token, such as
“<PERSON>” and other strings. Then, each eNE

was assigned to its corresponding subword and NE
class tokens were removed.

After preprocessing, we fine-tuned a model us-
ing BARTNE architecture.12

7.4 Evaluation Metrics

The following metrics were employed for evalua-
tion.

Document Classification: We evaluated the
outputs of document classification models using
the macro F-measure of all classes.

Headline Generation: The outputs of head-
line generation models were evaluated using the
F-measure of ROUGE-1 (R-1), ROUGE-2 (R-2),
and ROUGE-L (R-L) (Lin, 2004), widely used as
automatic evaluation metrics for headline genera-
tion. R-1 and R-2 are calculated based on overlap
of uni-grams and bi-grams between a generated
summary and its reference summary, respectively.
Similarly, R-L is calculated based on overlap of the
longest common subsequences between them.

8 Experimental Results

Table 5 shows the experimental results of docu-
ment classification. Three models trained using
NEs achieved higher F-measure than those with-
out NEs. All models using NEs improved Recall.

11We used an NVIDIA Tesla P100 GPU.
12We used an NVIDIA Tesla P100 GPU.

DC
P R F1

BERT 0.7402 0.7102 0.7147
BERTBNE

FNER 0.7375 0.7142 0.7149
BERTENE

FNER 0.7263 0.7120 0.7080
BERTBNE

NNER 0.7348 0.7128 0.7159
BERTENE

NNER 0.7355 0.7177 0.7166

Table 5: Results of the document classification task.
The bold fonts indicate better classification than the
baseline BERT. P, R, and F1 denote the precision, re-
call, and F1-score, respectively.

We see from the results that NEs contribute to im-
prove the score of document classification task with
Transformer-based models.

Table 6 shows the results of the headline gen-
eration task. We also see that NE information
contributed to improved accuracy of the headline
generation task. Three models trained using NEs
achieved higher accuracy than BART without NEs.
The BARTBNE

NNER showed the same accuracy as
BART.

HG (ROUGE F1)
R-1 R-2 R-L

BART 0.299 0.148 0.265
BARTBNE

FNER 0.301 0.150 0.266
BARTENE

FNER 0.301 0.149 0.266
BARTBNE

NNER 0.297 0.148 0.263
BARTENE

NNER 0.305 0.152 0.270

Table 6: Evaluation results on headline generation. The
bold fonts indicate better accuracy than the baseline
BERT. The underlined one is the same ROUGE score.
R-1, R-2 and R-L indicate ROUGE-1, ROUGE-2 and
ROUGE-L, respectively.

BERTENE
NNER showed the best accuracy on docu-

ment classification. BARTENE
NNER also showed the

best accuracy on headline generation as in docu-
ment classification. Our preliminary evaluation
shows that NNER exhibited better accuracy than
FNER. These results imply that accurate ENE in-
formation improved accuracy.

9 Related Work

There are several variants of BERT (Lan et al.,
2020; Liu et al., 2019; He et al., 2020). Addition-
ally, recent studies for neural document summa-
rization focus more on pretraining methods (Lewis
et al., 2020; Qi et al., 2020; Zhang et al., 2020). Al-
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though we used BERT and BART, other methods
can combine with the proposed method because the
proposed method uses embeddings of NEs from
finetuning, which is left as future work.

Marek et al. (2021) proposed an extractive sum-
marization method that uses density of named en-
tities to calculate the importance of a sentence.
Furthermore, they proposed an abstractive sum-
marization method that concatenates one-hot rep-
resentation of named entity categories with token
embeddings. Different from Marek et al. (2021),
we investigate the effectiveness of the use of NEs in
subword-based neural network models and differ-
ent types of NEs, i.e., BNE and ENE. Additionally,
we used embeddings to represent NEs instead of
one-hot vectors to obtain further representation.

In addition to document summarization, some
works use NEs for improving neural machine trans-
lation, which uses similar architectures as neural
document summarization. Ugawa et al. (2018) pro-
posed incorporating an additional LSTM layer to
encode the sequence of NEs. Li et al. (2018) pro-
posed inserting NE tags into the sequence of words
in the source language. Different from Ugawa et al.
(2018), we simply used embeddings for encoding
NEs because Transformer-based models have self-
attention mechanism that uses contextual informa-
tion to obtain encoded results. Different from Li
et al. (2018), our proposed method does not in-
sert NE tags into the sequence of words because
the time and memory complexities of Transformer-
based models quadratically increase depending on
the length of the sequence, which can be a signifi-
cant problem in headline generation where a source
document is long. Additionally, because subword
tokenization is not used, their motivation differs
from ours that investigates the effectiveness of NEs
on subword-based neural networks.

Du et al. (2015) investigated the use of NEs in
non-neural network models on document classifi-
cation. While they reported use of NEs improve
the accuracy of document classification, the con-
tribution to subword-based neural network models
was not investigated. Pivovarova and Yangarber
(2018) compared the representation of NEs for neu-
ral network-based models in document classifica-
tion task. They reported that replacing tokens of
named entities with special tokens representing NE
categories does not improve the accuracy of docu-
ment classification. Our experiments showed that
combining NE and token embeddings improved the

accuracy of document classification.

10 Conclusion

This paper explored the effectiveness of NE in-
formation in large-scale pretraining models. We
evaluated the effectiveness of NEs in document
classification and headline generation tasks. The
experimental results showed that NE informa-
tion improved the accuracy of large-scale SOTA
pretraining-based models. We incorporated NE
information to pretrained models trained from sub-
word sequences. For future work, we look to ex-
plore pretraining methods from subword sequences
annotated with NE information from scratch.
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Appendix

A Preprocessing for Data Sets

A.1 Mainichi News Articles
We pre-processed the main texts of Mainichi Shim-
bun in five steps.

1) We remove articles with no main contents due
to copyright.

2) We normalized the texts based on normaliza-
tion form compatibility composition (NFKC)
with unicodedata.normalize function
of Python 3.6.9.

3) “<” and “>” in normalized texts were replaced
by “〈” and “〉”, respectively. This character-
replacing process was needed to distinguish
the original and attached characters by attach-
ing the NEC label to text.

4) The texts were attached NEs in XML format
with two NE recognizers.

5) We extracted NEs from annotated texts in
BRAT13 format, then we re-attached NEs for
the texts because the NE recognizer rarely
changed the text.

B Excepted Publication Side Classes

Four classes of Mai-news were excluded (i.e.,
the four classes are front page (01), second page
(02), third page (03), and the unknown genre that
is not explained (27)) from the 18 classes on only
document classification task because the classes
were not related to the content of the article.

C Hyper Parameters

Table 7 shows hyperparameters of our experiments
on document classification and headline generation.

13https://brat.nlplab.org/

https://brat.nlplab.org/
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Hyper Parameter Document Classification Headline Generation
Optimizer AdamW (Loshchilov and Hutter, 2019)
Model Size BASE LARGE
Learning Rate 2e-5 3e-5
Batch Size 16 1
Update Freq 16 32
Max Input Token Length 512 1,024
Max Epoch 3 3
Number of Target Classes 14 -
Warm Up Step 0 500
Loss Function cross entropy cross entropy
Learning Rate 5e-05 3e-05
Learning Rate Scheduler linear decay polynomial decay
Validation Freq. 1,000 20,000
#Max Train Data - 50,000
#Max Test Data - 10,000
#Max Dev Data 5,000 3,000
Beam Search Size - 4
Upper Limit of Length of Token Generation - -

Table 7: The hyperparameters in our experiments “#Max Train/Test/Dev Data” show the maximum numbers of
data that were used in each experiment (“-” means no upper limit). “Validation Freq.” show how many time to
process batch size data per one validation in the training phase. The model size of BASE and LARGE indicate that
we used BERT BASE and BART LARGE, respectively.


