
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 1–10
July 5–10, 2020. ©2020 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_001

1

Understanding Unintended Memorization in Language Models
Under Federated Learning

Om Thakkar and Swaroop Ramaswamy and Rajiv Mathews and Françoise Beaufays
Google LLC,

Mountain View, CA, U.S.A.
{omthkkr, swaroopram, mathews, fsb} @google.com

Abstract

Recent works have shown that language mod-
els (LMs), e.g., for next word prediction
(NWP), have a tendency to memorize rare or
unique sequences in the training data. Since
useful LMs are often trained on sensitive data,
it is critical to identify and mitigate such un-
intended memorization. Federated Learning
(FL) has emerged as a novel framework for
large-scale distributed learning tasks. It differs
in many aspects from the well-studied central
learning setting where all the data is stored
at the central server, and minibatch stochas-
tic gradient descent is used to conduct train-
ing. This work is motivated by our observa-
tion that NWP models trained under FL exhib-
ited remarkably less propensity to such mem-
orization compared to the central learning set-
ting. Thus, we initiate a formal study to under-
stand the effect of different components of FL
on unintended memorization in trained NWP
models. Our results show that several differing
components of FL play an important role in
reducing unintended memorization. First, we
discover that the clustering of data according
to users—which happens by design in FL—
has the most significant effect in reducing such
memorization. Using the Federated Averaging
optimizer with larger effective minibatch sizes
for training causes a further reduction. We also
demonstrate that training in FL with a user-
level differential privacy guarantee results in
models that can provide high utility while be-
ing resilient to memorizing out-of-distribution
phrases with thousands of insertions across
over a hundred users in the training set.

1 Introduction

There is a growing line of work (Fredrikson et al.,
2015; Wu et al., 2016; Shokri et al., 2017; Carlini
et al., 2018; Song and Shmatikov, 2019) demon-
strating that neural networks can leak information
about the underlying training data in unexpected
ways. Many of these works show that language

models (LMs), which include commonly-used next
word prediction (NWP) models, are prone to unin-
tentionally memorize rarely-occurring phrases in
the data. Large-scale LM training often involves
training over sensitive data, and such memorization
can result in blatant leaks of privacy (e.g., (Munroe,
2019)). Thus, it is crucial to measure such mem-
orization in trained LMs, and identify mitigation
techniques to ensure privacy of the training data.

The framework of Federated Learning
(FL) (McMahan et al., 2017a; McMahan and
Ramage, 2017) has emerged as a popular approach
for training neural networks on a large corpus
of decentralized on-device data (e.g., (Konečný
et al., 2016; Konecný et al., 2016; Bonawitz et al.,
2017; Hard et al., 2018; Bonawitz et al., 2019)).
FL operates in an iterative fashion: in each round,
sampled client devices receive the current global
model from a central server to compute an update
on their locally-stored data, and the server aggre-
gates these updates using, for e.g., the Federated
Averaging (FedAvg) algorithm (McMahan et al.,
2017a), to build a new global model. A hallmark
of FL is that each participating device only sends
model weights to the central server; raw data never
leaves the device, remaining locally-cached. This,
by itself, is not sufficient to provide formal privacy
guarantees for the training data. However, this
work is motivated by the observation (described
in detail in Section 3) that NWP models trained
under the canonical setting of FL exhibited
resilience to memorize rare phrases in spite of
hundreds of occurrences in the training data. Note
that FL does differ in many aspects from the
well-studied (Shokri et al., 2017; Carlini et al.,
2018; Song and Shmatikov, 2019) central learning
setting where all the data is stored at a central
server, and minibatch stochastic gradient descent
(SGD) is used to conduct training. While training
NWP models via central learning, we observed that
phrases with even tens of occurrences were easily

2

(a) A user selected as a secret sharer
for a canary.

(b) An example in a secret sharer’s lo-
cal dataset being replaced by the ca-
nary.

Figure 1: An illustration of our federated secret-sharer framework, using the canary “My SSN is 123-45-6789".

memorized, in line with prior work (Carlini et al.,
2018) that showed the propensity of such models
to memorize phrases with even one occurrence in
the training set. Thus, we initiate a formal study to
understand the effect of the different components
of FL, compared to the central learning setting, on
unintended memorization in trained NWP models.

We also study the extent to which a guarantee of
Differential Privacy (DP) (Dwork et al., 2006c,a)
reduces such memorization. DP has become the
standard for performing learning tasks over sensi-
tive data, and has been adopted by companies like
Google (Erlingsson et al., 2014; Bittau et al., 2017;
Erlingsson et al., 2020), Apple (Apple, 2017), Mi-
crosoft (Ding et al., 2017), and LinkedIn (Rogers
et al., 2020), as well as the US Census Bureau (Kuo
et al., 2018). Intuitively, DP prevents an adver-
sary from confidently making conclusions about
whether any particular user’s data was used to train
a model, even while having access to the model
and arbitrary external side information.

The Federated Secret Sharer: We build on the “se-
cret sharer" framework (Carlini et al., 2018) that
was designed to measure the unintended memoriza-
tion in generative models. At a high-level, out-of-
distribution examples (called canaries) are inserted
into a training corpus, and a model trained on this
corpus is then evaluated using various techniques
to measure the extent to which the model has mem-
orized the canaries. Since datasets in FL are in-
herently partitioned according to users, we adapt
the secret sharer framework to the FL regime by
introducing two parameters to control the presence
of a canary in such settings. An illustration of our
federated secret sharer framework is shown in Fig-
ure 1. Given a canary with parameters pu and pe,
we let pu be the probability with which each user
in a dataset is selected to be a “secret sharer" of the

canary (Figure 1a), whereas pe denotes the prob-
ability with which each example in such a secret
sharer’s data is replaced by the canary (Figure 1b).
We use Poisson sampling for both user-selection
and example-replacement. The secret sharer selec-
tion phase precedes canary insertion to model real-
world settings where occurrences of user-specific
unique or rare out-of-distribution canaries are typ-
ically limited to a small group of users, but such
users can exhibit high usage for those canaries.

Contributions: Our empirical evaluations demon-
strate the following key contributions. First, we
observe that clustering training data according to
users, which happens by design in distributed learn-
ing settings like FL, has a significant effect in re-
ducing unintended memorization for NWP models.
Next, given a dataset partitioned by users, we show
that replacing the learning optimizer from SGD to
Federated Averaging and increasing the effective
minibatch size provides a further reduction in such
memorization. Lastly, we demonstrate that training
in FL with user-level differential privacy (DP) re-
sults in models that can provide comparable utility
while being resilient to memorizing canaries with
thousands of insertions spread across over a hun-
dred users in the training set. Prior work (Carlini
et al., 2018) has shown that models trained with
record-level DP do not exhibit unintended mem-
orization for a single insertion of a canary. We
provide evidence of models being resilient to mem-
orizing canaries for orders of magnitude higher
insertions, at the stronger user-level privacy.

1.1 Related Work

Apart from (Carlini et al., 2018) which this work
builds upon, other works (Song and Shmatikov,
2019) have also studied memorization in generative
text models. The FL paradigm, which is a major

3

focus of this work, has been used to train mul-
tiple production scale models (Hard et al., 2018;
Ramaswamy et al., 2019; Chen et al.). Kairouz
et al. (2019) provides an excellent overview of the
state-of-the-art in the field, along with a suite of in-
teresting open problems. This work also studies the
effectiveness of a user-level DP guarantee in reduc-
ing unintended memorization. While many works
on DP focus on record-level DP guarantees (which
usually cannot be directly extended to strong user-
level DP guarantees), recent works (e.g., (McMa-
han et al., 2017b; Jain et al., 2018; Augenstein
et al., 2020; Andrew et al., 2021)) have designed
techniques tailored to user-level DP guarantees.

2 Contrasting Federated Learning with
Central Learning

Now, we take a deeper look at how the well-studied
central learning framework differs from the canoni-
cal setting of FL for LM training. We are interested
in differences that might have an effect on unin-
tended memorization. We identify three such com-
ponents: (1) Data Processed per Update: Central
learning typically ingests data as records/sentences.
On the other hand, FL operates at the granularity
of a user, with each user having their own set of
sentences locally. Typically, the amount of data pro-
cessed per model update in central learning is much
smaller in comparison to FL. (2) Learning Tech-
nique: In central learning, the model is updated via
SGD on a minibatch of records. In the canonical
setting of FL, a model update typically corresponds
to Federated Averaging over a minibatch of users:
an average of the differences between the current
model and the model obtained after several SGD
steps on the local data of a user. (3) Independent
and Identically Distributed (IID) Data: To reduce
variance in learning, the data in central learning
is shuffled before training (and/or each update in-
volves a randomly sampled minibatch). Thus, each
minibatch can be estimated to be drawn IID from
the data. Datasets in FL are naturally grouped
according to potentially heterogeneous users, re-
sulting in non-IID data even though each minibatch
of users may be randomly sampled.1

1We do not discuss unbalanced datasets, i.e., the fact that
users can have varying amounts of local data, since Federated
Averaging in FL deals with such imbalances by weighing each
client update according to the size of its local data.

3 Empirical Evaluation

Experimental Setup: Our model architecture
(1.3M parameters) mirrors the one used in Hard
et al. (2018). We create a modified version of the
Stack Overflow dataset (Overflow, 2018) hosted by
TensorFlow Federated (Ingerman and Ostrowski,
2019), containing 392K users (93M records). For
an IID version of this dataset, we randomly shuf-
fle all the records, and create synthetic users hav-
ing data assigned sequentially from the shuffled
records. Since our model is a word-level language
model, we follow the methodology used by Carlini
et al. (2018) for their experiments with the GMail
Smart Compose model (Chen et al., 2019). We in-
sert random 5-word canaries with configurations in
the cross product of pu ∈ {1/50K, 3/50K, 1/5K}
and pe ∈ {1%, 10%, 100%}, with 10 different ca-
naries for each (pu, pe) configuration, resulting in
the insertion of 90 different canaries. Given a pre-
fix of a canary, we use two methods to evaluate the
unintended memorization of the suffix for a model:
Random Sampling (RS), which for a 2-word prefix
measures if the canary has the least log-perplexity
among 2M random suffixes, and Beam Search (BS),
which uses a greedy beam search to see if the ca-
nary is in its top 5 most-likely 5-word continuations
from a 1-word prefix. We measure the utility of
a model with accuracy and perplexity on the test
partition of the unmodified Stack Overflow dataset.

Empirical Results: We present the results of our
experiments on evaluating unintended memoriza-
tion under different training regimes ranging from
canonical FL to central learning. For all our ex-
periments using SGD, we train models for 37.5M
steps, whereas we train for 8000 rounds for the ex-
periments using FedAvg. For the largest minibatch
sizes used in both settings (256 records for SGD,
and 5000 users for FedAvg), these checkpoints cor-
respond to training for 100 epochs. Table 1 shows
the number of canaries (out of 90) that show up
as memorized via both the RS and BS methods.
The utility of all the evaluated models is similar;
accuracy varies from 23.7− 24.6%, and perplexity
varies from 57.3− 64.3 across all models.2

Training in FL with DP Federated Averaging
(DP-FedAvg): Next, we evaluate the extent to
which training using DP-FedAvg is resilient to such

2We defer the utility measurements to Table 3.

4

Optimizer Data Batch Size RS BS

500 users 21 0
1K users 23 1

Non-IID 2K users 19 1
FedAvg 5K users 26 2

500 users 66 56
IID 1K users 69 58

2K users 67 56
5K users 65 58

32 records 37 19
64 records 49 36

Non-IID 128 records 48 34
256 records 51 39

SGD 32 records 54 42
IID 64 records 54 42

128 records 52 45
256 records 53 43

Table 1: Results for the number of inserted canaries
(out of 90) memorized via the Random Sampling (RS)
and Beam Search (BS) methods for various models
evaluated at 8000 rounds when sampling users (Fe-
dAvg), and 37.5M steps when sampling records (SGD).

memorization. To provide the strongest user-level
DP while obtaining high utility, we conduct exper-
iments only for our largest minibatch size of 5K
users. The results are presented in Table 2.

Optimizer RS BS Acc. % Perp.

FedAvg 26 2 24.5 58.2
DP-FedAvg 12 0 23.3 68.5

Table 2: Unintended memorization and utility for a
model trained with (18.8, 10−7)-DP in FL (non-IID
users) with 5k users/round for 100 epochs.

3.1 Discussion

Clustering data according to users: The results
from our experiments strongly indicate that cluster-
ing data according to users significantly reduces un-
intended memorization. This is evident by consider-
ing the measurements in Table 1 in pairs where the
only differing component among them is whether
the data is IID or not. The number of epochs taken
over the dataset to train the models on which we
measure memorization is the same for any particu-
lar minibatch size, irrespective of whether the data

is IID. Thus, the number of times the inserted ca-
naries were encountered during training is the same.
However, the amount of memorization observed
is always lower when the data is Non-IID. This
effect is more pronounced in the settings where Fe-
dAvg is used as the training method. For instance,
for a minibatch size of bu = 500 users, training
with FedAvg on IID data results in 66 (56) canaries
showing up as memorized via the RS (BS) method.
The same configuration on Non-IID data results
in the RS method classifying only 21 canaries as
memorized, and the BS method not being able to
extract any canary even after 8000 rounds of train-
ing. In addition to the data being clustered, the
inserted canaries are clustered as well, which we
conjecture to be playing a crucial role in reducing
such memorization.

Varying data per update: Fixing the optimizer to
SGD/FedAvg and the data to be IID/non-IID, we
do not see any significant effect of varying the
minibatch size on such memorization.3

Training non-IID user data with FedAvg and
larger effective minibatches: The smallest mini-
batch size for our FedAvg experiments is 500
users,4 and as each user contains ≈ 250 records,
the effective minibatch size is ≈ 125K records. In
comparison, the largest minibatch size for which
we are able to conduct SGD training is 256 records.
Focusing on the results in Table 1 using Non-IID
data, we find that using FedAvg and having larger
effective minibatches per round causes a signifi-
cant reduction in unintended memorization when
compared to training with SGD and smaller mini-
batches.5

Training with DP-FedAvg in FL: Our aim is to
test the extent to which NWP models trained with
DP-FedAvg in FL are resilient to such memoriza-
tion. By definition, a user-level DP guarantee is
intended to be resilient to changes w.r.t. any one

3For the case of SGD and Non-IID data, while unintended
memorization does seem to increase with the minibatch size,
we do not observe the increase consistently. Additional inves-
tigation for potential causes of such a trend are beyond the
scope of this work.

4We do not train with smaller user minibatch sizes as we
want the number of training epochs for the lowest settings in
FedAvg and SGD to be similar at 8000 training rounds.

5Looking at the same set of results for IID data, the trend
seems to be moving in the direction of increasing memoriza-
tion. However, since the magnitude of the effect is much
smaller, we deem that further investigation is required for this
case, which we leave for future work.

5

user’s data. Some of our inserted canaries are
shared by ∼100 users (with ∼24.5K occurrences
in the training data). In spite of such high levels
of canary insertion, and our FL models exhibiting
the least amount of unintended memorization (Ta-
ble 1), we see that training with DP-FedAvg results
in a significantly reduced memorization. Our re-
sults are noteworthy as, in spite of our DP model
exhibiting extremely low unintended memoriza-
tion, it also provides comparable utility as a model
trained via FedAvg, along with a user-level guar-
antee of (18.8, 10−7)-DP. While strengthening the
privacy guarantee of DP-FedAvg by increasing the
noise added to the model update in each training
round can further reduce such memorization, it can
also start significantly affecting model utility. De-
signing methods that improve the privacy-utility
trade-offs is an interesting direction, which is be-
yond the scope of this work.

4 Conclusion

In this work, we conduct a formal study to under-
stand the effect of the different components of Fed-
erated Learning (FL), on the unintended memoriza-
tion in trained next word prediction (NWP) models,
as compared to the well-studied central learning.
From our results, we observe that the components
of FL exhibit a synergy in reducing such memo-
rization. To our surprise, user-based clustering of
data (which occurs as a natural consequence in the
FL setting) has the most significant effect in the
reduction. Moreover, training using Federated Av-
eraging and larger effective minibatches reduces
such memorization further. Lastly, we observe that
training in FL with a user-level differential privacy
guarantee results in models that can provide com-
parable utility while being resilient to memorizing
canaries with thousands of insertions across over a
hundred users in the training set.

Recent work (Karimireddy et al., 2019) has
shown that, in general, such heterogeneity in the
training data can result in a slower and unstable
convergence due to factors such as “client-drift".
For all of the experiments with non-IID data, we
observe that the utility of the trained models is com-
parable to those trained on IID data, and we leave
further exploration into why client-drift may not
play a significant role in our experiments for future
work. Next, while our extensive evaluation is for a
practical NWP model on a real-world benchmark
dataset, the degree of unintended memorization in

general can depend on the model architecture and
the dataset used for training. Lastly, the secret-
sharer line of methods for measuring unintended
memorization operate at the granularity of a record.
For future work, it will be interesting to design
stronger attacks targeting data at the granularity of
a user, and measure the resilience of models trained
via FL, against such memorization.

Acknowledgements

The authors would like to thank Mingqing Chen,
Andrew Hard, and Gautam Kamath for their helpful
comments towards improving the paper.

References

Galen Andrew, Om Thakkar, H. Brendan McMahan,
and Swaroop Ramaswamy. 2021. Differentially pri-
vate learning with adaptive clipping.

Differential Privacy Team Apple. 2017. Learning with
privacy at scale.

Sean Augenstein, H. Brendan McMahan, Daniel
Ramage, Swaroop Ramaswamy, Peter Kairouz,
Mingqing Chen, Rajiv Mathews, and Blaise Agüera
y Arcas. 2020. Generative models for effective
ML on private, decentralized datasets. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya
Mironov, Ananth Raghunathan, David Lie, Mitch
Rudominer, Ushasree Kode, Julien Tinnés, and Bern-
hard Seefeld. 2017. Prochlo: Strong privacy for ana-
lytics in the crowd. In Proceedings of the 26th Sym-
posium on Operating Systems Principles, Shanghai,
China, October 28-31, 2017, pages 441–459. ACM.

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov,
Chloé Kiddon, Jakub Konecný, Stefano Mazzocchi,
H. Brendan McMahan, Timon Van Overveldt, David
Petrou, Daniel Ramage, and Jason Roselander. 2019.
Towards federated learning at scale: System design.
CoRR, abs/1902.01046.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Anto-
nio Marcedone, H. Brendan McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. 2017.
Practical secure aggregation for privacy-preserving
machine learning. In Proceedings of the 2017
Association for Computing Machinery (ACM) Spe-
cial Interest Group on Security, Audit and Control
(SIGSAC) Conference on Computer and Communi-
cations Security, CCS ’17, pages 1175–1191, New
York, NY, USA. ACM.

http://arxiv.org/abs/1905.03871
http://arxiv.org/abs/1905.03871
https://openreview.net/forum?id=SJgaRA4FPH
https://openreview.net/forum?id=SJgaRA4FPH
https://doi.org/10.1145/3132747.3132769
https://doi.org/10.1145/3132747.3132769
http://arxiv.org/abs/1902.01046
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982

6

Nicholas Carlini, Chang Liu, Jernej Kos, Úlfar Erlings-
son, and Dawn Song. 2018. The secret sharer: Mea-
suring unintended neural network memorization &
extracting secrets. Computing Research Repository
(CoRR), abs/1802.08232.

Mia Xu Chen, Benjamin N Lee, Gagan Bansal, Yuan
Cao, Shuyuan Zhang, Justin Lu, Jackie Tsay, Yinan
Wang, Andrew M Dai, Zhifeng Chen, et al. 2019.
Gmail smart compose: Real-time assisted writing.
In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, pages 2287–2295.

Mingqing Chen, Ananda Theertha Suresh, Rajiv Math-
ews, Adeline Wong, Cyril Allauzen, Françoise Bea-
ufays, and Michael Riley. Federated learning of
n-gram language models. In Proceedings of the
23rd Conference on Computational Natural Lan-
guage Learning, CoNLL 2019, Hong Kong, China,
November 3-4, 2019.

Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin.
2017. Collecting telemetry data privately. In Ad-
vances in Neural Information Processing Systems
30: Annual Conference on Neural Information Pro-
cessing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pages 3571–3580.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSh-
erry, Ilya Mironov, and Moni Naor. 2006a. Our data,
ourselves: Privacy via distributed noise generation.
In EUROCRYPT, pages 486–503.

Cynthia Dwork, Krishnaram Kenthapadi, Frank Mcsh-
erry, Ilya Mironov, and Moni Naor. 2006b. Our data,
ourselves: Privacy via distributed noise generation.
In EUROCRYPT, pages 486–503.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. 2006c. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography
Conference, pages 265–284. Springer.

Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov,
Ananth Raghunathan, Shuang Song, Kunal Talwar,
and Abhradeep Thakurta. 2020. Encode, shuffle, an-
alyze privacy revisited: Formalizations and empiri-
cal evaluation. CoRR, abs/2001.03618.

Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Ko-
rolova. 2014. Rappor: Randomized aggregatable
privacy-preserving ordinal response. In Proceedings
of the 2014 Association for Computing Machinery
(ACM) SIGSAC conference on computer and commu-
nications security, pages 1054–1067. Association
for Computing Machinery (ACM).

Matt Fredrikson, Somesh Jha, and Thomas Risten-
part. 2015. Model inversion attacks that exploit
confidence information and basic countermeasures.
In Proceedings of the 22Nd Association for Com-
puting Machinery (ACM) SIGSAC Conference on
Computer and Communications Security, CCS ’15,
pages 1322–1333, New York, NY, USA. Association
for Computing Machinery (ACM).

Andrew Hard, Kanishka Rao, Rajiv Mathews,
Françoise Beaufays, Sean Augenstein, Hubert
Eichner, Chloé Kiddon, and Daniel Ramage. 2018.
Federated learning for mobile keyboard prediction.
CoRR, abs/1811.03604.

Alex Ingerman and Krzys Ostrowski. 2019. Introduc-
ing tensorflow federated.

Prateek Jain, Om Thakkar, and Abhradeep Thakurta.
2018. Differentially private matrix completion revis-
ited. In Proceedings of the 35th International Con-
ference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018,
pages 2220–2229.

Peter Kairouz, H. Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Keith Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, Rafael G. L. D’Oliveira,
Salim El Rouayheb, David Evans, Josh Gard-
ner, Zachary Garrett, Adrià Gascón, Badih Ghazi,
Phillip B. Gibbons, Marco Gruteser, Zaïd Har-
chaoui, Chaoyang He, Lie He, Zhouyuan Huo,
Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Ja-
vidi, Gauri Joshi, Mikhail Khodak, Jakub Konecný,
Aleksandra Korolova, Farinaz Koushanfar, Sanmi
Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal,
Mehryar Mohri, Richard Nock, Ayfer Özgür, Ras-
mus Pagh, Mariana Raykova, Hang Qi, Daniel Ra-
mage, Ramesh Raskar, Dawn Song, Weikang Song,
Sebastian U. Stich, Ziteng Sun, Ananda Theertha
Suresh, Florian Tramèr, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Fe-
lix X. Yu, Han Yu, and Sen Zhao. 2019. Advances
and open problems in federated learning. CoRR,
abs/1912.04977.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar
Mohri, Sashank J. Reddi, Sebastian U. Stich, and
Ananda Theertha Suresh. 2019. SCAFFOLD:
stochastic controlled averaging for on-device feder-
ated learning. CoRR, abs/1910.06378.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Jakub Konecný, H. Brendan McMahan, Felix X. Yu,
Peter Richtárik, Ananda Theertha Suresh, and Dave
Bacon. 2016. Federated learning: Strategies for im-
proving communication efficiency. Computing Re-
search Repository (CoRR), abs/1610.05492.

Jakub Konečný, H. Brendan McMahan, Daniel Ram-
age, and Peter Richtárik. 2016. Federated optimiza-
tion: Distributed machine learning for on-device in-
telligence. ArXiv, abs/1610.02527.

Yu-Hsuan Kuo, Cho-Chun Chiu, Daniel Kifer, Michael
Hay, and Ashwin Machanavajjhala. 2018. Dif-
ferentially private hierarchical count-of-counts his-
tograms. PVLDB, 11(11):1509–1521.

http://arxiv.org/abs/1802.08232
http://arxiv.org/abs/1802.08232
http://arxiv.org/abs/1802.08232
http://papers.nips.cc/paper/6948-collecting-telemetry-data-privately
http://arxiv.org/abs/2001.03618
http://arxiv.org/abs/2001.03618
http://arxiv.org/abs/2001.03618
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
http://arxiv.org/abs/1811.03604
https://medium.com/tensorflow/introducing-tensorflow-federated-a4147aa20041
https://medium.com/tensorflow/introducing-tensorflow-federated-a4147aa20041
http://arxiv.org/abs/1912.04977
http://arxiv.org/abs/1912.04977
http://arxiv.org/abs/1910.06378
http://arxiv.org/abs/1910.06378
http://arxiv.org/abs/1910.06378
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1610.05492
https://doi.org/10.14778/3236187.3236202
https://doi.org/10.14778/3236187.3236202
https://doi.org/10.14778/3236187.3236202

7

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Agüera y Arcas. 2017a.
Communication-efficient learning of deep networks
from decentralized data. In Proceedings of the 20th
International Conference on Artificial Intelligence
and Statistics, AISTATS 2017, 20-22 April 2017,
Fort Lauderdale, FL, USA, pages 1273–1282.

Brendan McMahan and Daniel Ramage. 2017. Feder-
ated learning: Collaborative machine learning with-
out centralized training data. Google Research Blog,
3.

H. Brendan McMahan, Daniel Ramage, Kunal Talwar,
and Li Zhang. 2017b. Learning differentially private
language models without losing accuracy. CoRR,
abs/1710.06963.

I. Mironov. 2017. Rényi differential privacy. In
2017 Institute of Electrical and Electronics Engi-
neers (IEEE) 30th Computer Security Foundations
Symposium (CSF), pages 263–275.

Randall Munroe. 2019. xkcd: Predictive models.
https://xkcd.com/2169/.

Stack Overflow. 2018. The Stack Overflow
Data. https://www.kaggle.com/
stackoverflow/stackoverflow.

Ning Qian. 1999. On the momentum term in gradi-
ent descent learning algorithms. Neural Networks,
12(1):145–151.

Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao,
and Françoise Beaufays. 2019. Federated learning
for emoji prediction in a mobile keyboard.

Ryan Rogers, Subbu Subramaniam, Sean Peng, David
Durfee, Seunghyun Lee, Santosh Kumar Kan-
cha, Shraddha Sahay, and Parvez Ahammad. 2020.
Linkedin’s audience engagements api: A privacy
preserving data analytics system at scale.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov.
2017. Membership inference attacks against ma-
chine learning models. In 2017 Institute of Electri-
cal and Electronics Engineers (IEEE) Symposium on
Security and Privacy (SP), pages 3–18.

Congzheng Song and Vitaly Shmatikov. 2019. Au-
diting data provenance in text-generation models.
In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, KDD 2019, Anchorage, AK, USA, August
4-8, 2019, pages 196–206. ACM.

Yu-Xiang Wang, Borja Balle, and Shiva Prasad Ka-
siviswanathan. 2019. Subsampled renyi differen-
tial privacy and analytical moments accountant. In
The 22nd International Conference on Artificial In-
telligence and Statistics, AISTATS 2019, 16-18 April
2019, Naha, Okinawa, Japan, pages 1226–1235.

X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton. 2016.
A methodology for formalizing model-inversion at-
tacks. In 2016 Institute of Electrical and Electronics
Engineers (IEEE) 29th Computer Security Founda-
tions Symposium (CSF), pages 355–370.

A Preliminaries

A.1 Measuring Unintended Memorization

Following (Carlini et al., 2018), this work assumes
a threat model of curious or malevolent users hav-
ing a black-box query access to models, in that
they see only the models’ output probabilities (or
logits). We also assume that users can adaptively
query models multiple times, thus posing a threat
of extracting uncommon word combinations.

Now, we describe the Secret Sharer framework
of (Carlini et al., 2018). First, random sequences
called canaries are inserted into the training data.
The canaries are constructed based on a prefixed
format sequence. For instance, to design the frame-
work for a character-level model, the format could
be “My SSN is xxx-xx-xxxx", where each x can
take a random value from digits 0 to 9. Next, the
target model is trained on the modified dataset con-
taining the canaries. Lastly, methods like Random
Sampling and Beam Search (both formally defined
in Section 3) are used to efficiently measure the
extent to which the model has “memorized" the in-
serted random canaries, and whether it is possible
for an adversary with partial knowledge to extract
the canary. For instance, if a canary is classified
as memorized via our Beam Search method, then
given black-box access to the trained model, an ad-
versary with the knowledge of only the first word of
the inserted canary can extract it completely with a
simple beam search.

A.2 Differential Privacy

To establish the notion of differential privacy
(Dwork et al., 2006c,b), we first define neighboring
datasets. We will refer to a pair of datasets D,D′

as neighbors if D′ can be obtained by the addition
or removal of all the examples associated with one
user from D, to be able to provide a user-level DP
guarantee.6

Definition A.1 (Differential privacy (Dwork et al.,
2006c,b)). A randomized algorithm A is (ε, δ)-
differentially private if, for any pair of neighboring

6This is in contrast to a record-level DP guarantee, where
neighboring datasets differ in the addition/removal of exactly
one example.

http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
http://arxiv.org/abs/1710.06963
http://arxiv.org/abs/1710.06963
https://doi.org/10.1109/CSF.2017.11
https://xkcd.com/2169/
https://www.kaggle.com/stackoverflow/stackoverflow
https://www.kaggle.com/stackoverflow/stackoverflow
http://dblp.uni-trier.de/db/journals/nn/nn12.html#Qian99
http://dblp.uni-trier.de/db/journals/nn/nn12.html#Qian99
http://arxiv.org/abs/1906.04329
http://arxiv.org/abs/1906.04329
http://arxiv.org/abs/2002.05839
http://arxiv.org/abs/2002.05839
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1145/3292500.3330885
https://doi.org/10.1145/3292500.3330885
http://proceedings.mlr.press/v89/wang19b.html
http://proceedings.mlr.press/v89/wang19b.html
https://doi.org/10.1109/CSF.2016.32
https://doi.org/10.1109/CSF.2016.32

8

datasets D and D′, and for all events S in the
output range of A, we have

Pr[A(D) ∈ S] ≤ eε · Pr[A(D′) ∈ S] + δ

where the probability is taken over the random
coins of A.

For meaningful privacy guarantees, ε is assumed
to be a small constant, and δ � 1/|D|.

To train models with DP guarantees, we fol-
low the variant of DP Federated Averaging (DP-
FedAvg) (McMahan et al., 2017b) used in (Au-
genstein et al., 2020), where the only change is
sampling fixed-sized minibatches in each training
round.7

A.3 Differentially Private Federated
Averaging

We now present the technique used to train our DP
model in FL. It closely follows the DP-FedAvg
technique in (McMahan et al., 2017b), in that per-
user updates are clipped to have a bounded L2

norm, and calibrated Gaussian noise is added to the
weighted average update to be used for computing
the model to be sent in the next round. A slight
difference between the DP-FedAvg algorithm in
(McMahan et al., 2017b) and our approach is the
way in which client devices are sampled to partic-
ipate in a given federated round of computation.
DP-FedAvg uses Poisson sampling, where for each
round, each user is selected independently with a
fixed probability. In this work (also, following (Au-
genstein et al., 2020)), we instead use fixed-size
federated rounds, where a fixed number of users
is randomly sampled to participate in each round.
For reference, we provide a pseudo-code for the
technique in Algorithm 1.

Privacy analysis: Following the analysis of this
technique in (Augenstein et al., 2020), we obtain
our DP guarantees by using the following:

1. the analytical moments accountant (Wang
et al., 2019) to obtain the Rényi differential
privacy (RDP) guarantee for a federated round
of computation that is based on the subsam-
pled Gaussian mechanism,

2. Proposition 1 (Mironov, 2017) for computing
the RDP guarantee of the composition involv-
ing all the rounds, and

7Due to a technical limitation of the simulation framework,
our experiments use sampling with replacement instead of
without replacement; this should have negligible impact on
the metrics of the trained models.

Main training loop:
parameters: round participation fraction q ∈ (0, 1], total
user population N ∈ N, noise scale z ∈ R+, clip parame-
ter S ∈ R+

Initialize model θ0, moments accountantM
Set σ = zS

qW
for each round t = 0, 1, 2, . . . do
Ct ← (sample without replacement qN users from pop-
ulation)
for each user k ∈ Ct in parallel do

∆t+1
k ← UserUpdate(k, θt)

∆t+1 = 1
qN

∑
k∈Ct

∆t+1
k

θt+1 ← θt + ∆t+1 +N (0, Iσ2)
M.accum_priv_spending(z)

printM.get_privacy_spent()

UserUpdate(k, θ0):
parameters: number of local epochs E ∈ N, batch size
B ∈ N, learning rate η ∈ R+, clip parameter S ∈ R+,
loss function `(θ; b)

θ ← θ0

for each local epoch i from 1 to E do
B ← (k’s data split into size B batches)
for each batch b ∈ B do
θ ← θ − η5 `(θ; b)

∆ = θ − θ0

return update ∆k = ∆ ·min
(

1, S
‖∆‖

)
// Clip

Algorithm 1: Differentially Private Federated Aver-
aging (DP-FedAvg) with fixed-size federated rounds,
used to train our DP NWP model.

3. Proposition 3 (Mironov, 2017) to obtain a DP
guarantee from the composed RDP guarantee.

B Additional Empirical Evaluation

In this section, we present the results of our addi-
tional empirical evaluation that was omitted from
the main body.

Utility Metrics: Here, we present the utility metrics
for all the models for which the unintended memo-
rization results were presented in Table 1. It is easy
to see that the utility of all the evaluated models
is similar; the accuracy varies from 23.7− 24.6%,
and the perplexity varies from 57.3− 64.3 across
all the models.

Using Different Optimizers: In Table 4, we pro-
vide the results for using different optimizers like
Momentum (Qian, 1999) and Adam (Kingma and
Ba, 2015) for training. We conduct experiments
using only the smallest batch size in both the granu-
larities (32 records, or 500 users). For Momentum,
we set the momentum parameter to 0.9, and for

9

Optimizer Data Batch size Acc. Perp.

500 users 24.4 58.8
Non- 1K users 24.3 59.5
IID 2K users 24.5 58.3

FedAvg 5K users 24.5 58.2

500 users 24.6 57.5
IID 1K users 24.6 57.3

2K users 24.6 57.4
5K users 24.6 57.3

32 records 23.7 64.3
Non- 64 records 24.1 61.8
IID 128 records 24.1 61.5

256 records 24.1 61.3

SGD 32 records 24 62.2
IID 64 records 24.1 61.5

128 records 24 62
256 records 24.1 61.1

Table 3: Results for the utility metrics for various mod-
els evaluated at 8000 rounds when sampling users (Fe-
dAvg), and 37.5M steps when sampling records (SGD).
Acc. denotes test accuracy (in %), and Perp. denotes
test perplexity.

Adam, we set the learning rate to 10−4. First, we
observe that using Momentum increases the ob-
served unintended memorization but has a similar
utility as SGD. On the other hand, we see that using
Adam decreases such memorization, but the utility
of the models is also noticeably reduced as com-
pared to SGD. We observe a similar trend when
Adam is combined with FedAvg.

Training with DP-FedAvg on IID data: Now, we
present in Table 5 the results of using DP-FedAvg
as the optimizer on IID data consisting of synthetic
users. We observe that using DP-FedAvg provides
a significant reduction in unintended memorization
compared to using FedAvg.

Only Clipping: To bound the contribution by each
participating user, DP-FedAvg clips each user up-
date before aggregating them from a minibatch of
users and adding calibrated noise to guarantee DP.
Following (Carlini et al., 2018), we present results
(rows containing “FedAvg+Clip" in Table 6) for the
case when user updates are clipped to a value of
0.2, but no noise is added. This results in an (∞, δ)-
DP guarantee for any δ ∈ (0, 1), which is vacuous
as a privacy guarantee. However, this experiment

Data Batch Opt. RS, Acc. (%),
Size BS Perp.

SGD 54, 42 24, 62.2
32 Mom. 64, 50 24.2, 60.6

IID rec. Adam 56, 42 22.7, 70.8

FedAvg 66, 56 24.6, 57.5

500 FedAvg 60, 46 23.7, 63.7
users + Adam

SGD 37, 19 23.7, 64.3
32 Mom. 48, 36 24.3, 59.9

Non- rec. Adam 21, 13 21.5, 84.1

IID FedAvg 21, 0 24.4, 58.8

500 FedAvg 8, 0 23.3, 66.5
users + Adam

Table 4: Unintended memorization, and utility met-
rics for models using different optimizers evaluated
at 37.5M steps when sampling records (e.g., SGD),
and 8000 rounds when sampling users (e.g., FedAvg).
Mom. denotes the Momentum optimizer.

Optimizer RS BS Acc. % Perp.

FedAvg 65 58 24.6 57.3
DP-FedAvg 48 42 23.9 63

Table 5: Unintended memorization and utility for mod-
els trained with (18.8, 10−7)-DP using DP-FedAvg on
IID data and 5K users/round for 100 epochs.

helps us observe the extent to which only clipping
reduces the propensity of unintended memorization
exhibited by trained models. With IID data, for the
setting evaluated in Section 3 (8000 rounds, i.e.,
100 epochs for minibatch size of 5000 users), we
observe that the RS method extracts 58 canaries
with clipping, which is 7 fewer canaries when com-
pared to without clipping. The BS method extracts
49, which is 9 fewer than without clipping. For
Non-IID data, we observe a similar trend but it is
more pronounced: the RS method extracts 11 ca-
naries with clipping, which is 15 fewer canaries
when compared to without clipping, whereas the
BS method is not able to extract any of the inserted
canaries.

Evaluating for Same Training Epochs: In Ta-
ble 7, we provide the results for evaluating models
trained for the same number of epochs over the
training data. For the runs using SGD, we start

10

Data Optimizer RS, Acc. (%),
BS Perp.

IID FedAvg 65, 58 24.6, 57.3
FedAvg+Clip 58, 49 24.2, 60

Non-IID FedAvg 26, 2 24.5, 58.2
FedAvg+Clip 11, 0 24, 61.5

Table 6: Unintended memorization, lowest (by inser-
tion frequency) canary configuration memorized, and
utility for models trained with Clipping/DP and 5000
users/round for 100 epochs. The models trained with
DP-FedAvg satisfy (18.8, 10−7)-DP.

with a batch size of 32 records and a tuned learning
rate of 0.005, and we increase the learning rate by
≈
√
2 for every 2x increase in the batch size. For

all the experiments with FedAvg, we find that us-
ing a constant learning rate provides the best utility
across the different batch sizes, and thus, we keep
it fixed.

Opt. Data Batch RS, Acc. (%),
Size BS Perp.

32 rec. 49, 43 23.9, 63
IID 64 rec. 51, 39 23.5, 65.1

128 rec. 46, 36 23.2, 67.6
SGD 256 rec. 46, 32 23, 69.7

32 rec. 40, 29 23.7, 64.2
Non- 64 rec. 38, 32 23.6, 65.6
IID 128 rec. 35, 26 23.2, 68.2

256 rec. 40, 31 23, 69.8

500 users 66, 56 24.6, 57.5
IID 1k users 27, 18 24.5, 58

2k users 28, 18 24.4, 59.3
Fed- 5k users 28, 18 24, 62.5

Avg 500 users 21, 0 24.4, 58.8
Non- 1k users 10, 0 24, 61.2
IID 2k users 0, 0 24, 61.9

5k users 0, 0 23.3, 67.9

Table 7: Results for the number of inserted canaries
(out of 90) memorized via the RS and BS methods,
and utility metrics for various models evaluated at ≈10
epochs of training.

For the models trained with SGD, for both IID
and non-IID data we observe that unintended mem-
orization remains comparable for models trained
with different batch sizes. However, we see a de-
crease in the utility as the batch size increases. The

decrease in utility is observed for models trained
using FedAvg as well, but we also observe a signif-
icant drop in the such memorization when training
is performed with at least 1000 users per round.
Moreover, once the training involves at least 2000
users on non-IID data, both the RS and BS meth-
ods are unsuccessful in classifying any of the 90
inserted canaries as memorized.

