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Abstract

Since the inception of Generative Adver-
sarial Networks (GANs), synthetic im-
age generation has taken a giant leap
because of the ability of these networks
to generate high-quality images, however,
the same cannot be said for text genera-
tion. A major challenge encountered in
text generation using GAN’s is the non-
differentiability of the discrete text. Most
of the previous studies for text genera-
tion using GANs focus on solving this,
but none of them incorporate any addi-
tional features in the GAN. These fea-
tures could be useful in the training of
the models, especially in the case of low-
resource languages. In this paper, we pro-
pose a novel model called the POS-Senti-
GAN (PS-GAN), where we show that the
use of Parts-Of-Speech tag and sentiment
features aid in the generation of better
sentences. We also provide ‘Pravar’, a
first-ever dataset consisting of stories from
different categories that enable text/story
generation for Telugu, a low resource lan-
guage. Finally, we show the performance
of the proposed models on three datasets,
namely, Pravar1, Telugu Wikipedia2 and
Telugu News3.

∗ The authors contributed equally to this work.
1Pravar is a Hindi word that translates to “good” or

“important”.
2https://www.kaggle.com/disisbig/telugu-wikipedia-

articles
3https://github.com/AnushaMotamarri/Telugu-

Newspaper-Article-Dataset

1 Introduction

Text generation strives towards generating text
close to human written text by leveraging syn-
tactic, semantic knowledge and artificial intelli-
gence in the formation of sentences. This field of
text generation can be applied to many natural
language processing tasks such as generating re-
sponses to users’ queries, translating a sentence
or a document from one language into another,
offering suggestions to help write a story, gen-
erating summaries, etc.

GANs were first introduced by (Goodfellow
et al., 2014). They learn by solving the min-
max optimization problem, i.e., the discrimina-
tor seeks to maximize the likelihood for the ac-
tual data to be identified as real and the gener-
ated data to be identified as fake, whereas the
generator seeks to minimize the likelihood for its
generated data to be identified as fake. When
using GANs on text, we run into issues while
back-propagating the discriminator loss to the
generator. As mentioned in (Iqbal and Qureshi,
2020), differentiating a pixel of an image makes
sense, whereas differentiating a word (discrete
stochastic unit) doesn’t. This problem was ad-
dressed in two ways, (Jang et al., 2016) used
an efficient gradient estimator that replaces the
non-differentiable sample from a categorical dis-
tribution with a differentiable sample from a
novel Gumbel-Softmax distribution, and (Yu et
al., 2017) used reinforcement learning.

Out of the many features present in the text,
Parts-Of-Speech(POS) tags and sentiment are



the most prominent ones. POS tags carry the
semantic features of a sentence. They are a
crucial part of every language as they serve as
building blocks for its grammar, particularly in
the linguistic domain. POS tags are an essen-
tial feature used in multiple fields like informa-
tion retrieval, text classification, etc. We can
utilize them to make assumptions about seman-
tics since they define the characteristic structure
of lexical phrases within a sentence or text. On
the other hand, sentiment refers to the tone con-
tained in a sequence of words that is utilized
to better understand the emotions and opinions
conveyed through the text. When it comes to
domains like user reviews, feedback, recommen-
dations, stories, etc., sentiment is used as a fea-
ture for various applications. Going forward, we
show that by considering these features when
generating sentences, there is a significant in-
crease in the generated sentences’ quality com-
pared to standard text generation.

Most of the advances in deep learning hap-
pen on images followed by text, which predomi-
nantly happen in the English language followed
by others. English being the most spoken lan-
guage around the world and being widely avail-
able on the internet enhances the feasibility of
conducting a wide variety of experiments. On
the other hand, the availability of digital content
for low-resource languages like Telugu, Hindi,
Tamil, etc., is low. Although text generation
has been pursued in other languages, it has not
yet been experimented on Indian languages like
Telugu. We attempt to solve this problem by
providing Pravar, a dataset consisting of short
stories in Telugu, which can be used as a baseline
for text/story generation and further processed
for solving various other problems like story clas-
sification, emotion extraction, etc.

2 Related work

Text generation using GAN’s has been explored
quite a bit. Initially, (Yu et al., 2017) pro-
posed a sequence GAN to solve the problem of
back-propagating gradients and used reinforce-
ment learning to train the generator. With
time, many variations have been made in gener-

ators and discriminators to solve different prob-
lems in text generation. One such variation was
proposed by (Lin et al., 2017), where rather
than predicting true or false for an individ-
ual data sample, the discriminator is trained to
rank a collection of human-written and machine-
written sentences. (Che et al., 2017) propose a
Maximum-Likelihood based objective involving
importance sampling and other reduction tech-
niques to make the training more stable. (Wang
and Wan, 2018) try to address the problem of
generating different categories of text by adopt-
ing multiple generators and back-propagating
the loss for each category from the multi-class
discriminator. On similar lines, (Li et al.,
2018) proposed category sentence GAN (CS-
GAN), which uses recurrent neural networks
and reinforcement learning to generate category-
based sentences. To increase the diversity of
the generated sentences, (Xu et al., 2018) in-
troduced the Diversity-Promoting GAN (DP-
GAN), which assigns low reward for repeatedly
generated text and high reward for novel and flu-
ent text, encouraging the generator to produce
diverse and informative text. An entirely novel
framework called LeakGAN was proposed by
(Guo et al., 2018), which allows the discrimina-
tor to leak its hidden features to the generator.
This information is incorporated into the gener-
ator through an additional MANAGER module
which guides the WORKER module in gener-
ating the next word. Without using reinforce-
ment learning to optimize the GAN objective,
(Chen et al., 2018) consider matching the latent
feature distributions of real and synthetic sen-
tences using the feature mover’s distance (FMD)
and convert it to a differential quantity for the
back-propagation of the loss. Adopting Gumbel-
Softmax relaxation in the GAN architecture,
(Nie et al., 2018) introduce RelGAN, which com-
prises of a relational memory-based generator
and multiple embedded representations in the
discriminator to optimize the quality, diversity
as well as performance.

POS and sentiment features are notable fea-
tures that help solve numerous use-cases in
natural language processing. (Sreeram and
Sinha, 2018) talk about how POS features can



be used to improve the textual modeling of
Code-Switched (Hindi-English) data by the lan-
guage models trained on native (Hindi) lan-
guage. (Gómez-Rodríguez et al., 2019) discuss
how important the structure of a sentence (se-
mantics) is, while performing specific natural
language tasks. They investigate how parsing
quality affects the performance of a sentiment
analysis system that determines the polarity of
sentences based on their parse trees. As POS
tags contain information about the semantics of
a sentence, this is an invaluable feature. Com-
ing to sentiment, (Chelaru et al., 2013) show
how sentiment can be exploited in query recom-
mendation and discovering controversial topics.
(Canuto et al., 2016) use new features for the
sentiment analysis of small messages, like the
information present in the sentiment distribu-
tion of the K-nearest-neighbors of a given mes-
sage, etc. Similarly, (Bahrainian and Dengel,
2013) show that their method beat the state-of-
the-art baseline by utilizing a Sentiment Lexi-
con to generate a set of features that help train
a linear Support Vector Machine (SVM) classi-
fier. (Kong et al., 2019) introduce a new method
where the sentiment vector is concatenated with
the output of the encoder present in the dis-
criminator. This allows the model to generate
a semantically correct response given a dialogue
history and a sentiment label and control the
polarity of the generated sentences. This shows
that sentiment is a useful feature that carries
information on how a polar sentence is formed.

3 Dataset

3.1 News and Wikipedia
News and Wikipedia, being the standard
datasets available in Telugu, we have chosen
these to establish baselines for the proposed
GAN models. The statistics of the datasets are
present in Table 1. (Jang and Yoon, 2018) dis-
cuss how the news data is connected to the key-
words, repeats the same terms, and covers a lim-
ited number of topics. In contrast, Wikipedia
data consists of general topics and a relatively
varied set of sentences. The major reason be-
hind experimenting on different datasets is to

shed light on how well the models can learn and
understand various features from different types
of data.

3.2 Pravar
In order to create Pravar, we col-
lected data from four different websites,
namely, te.vikaspedia.in 4 an educa-
tive website, telugubaalalu.blogspot.com
5, podupukathalu.blogspot.com 6 and
kathalu.wordpress.com 7 which are blogs
dedicated to stories. Some of these websites
contain stories written in other languages like
Hindi, Bengali, etc., but we (the authors),
proficient only in English and Telugu, chose
to create a dataset specific to Telugu. The
anonymized code and dataset can be found at
https://bit.ly/3ihRig6. There are 1,823 stories
in Pravar, where every story has 425 words
and 50 sentences on average. The statistics of
Pravar can be found in Table 1. Each story in
Pravar has a Title, Story, and Moral. Charac-
ters, setting, narrative, conflict, and resolution
are the five basic yet essential components of
any tale. These important aspects keep the tale
moving along smoothly and allow the action to
unfold in a logical and understandable manner
for the reader. Pravar can not only be used for
solving the text generation problem but also
help understand various aspects of stories like
how sentiment flows from the narrative to con-
flict to resolution or how a sentence somewhere
in the conflict is linguistically connected to a
sentence in the narrative, etc.

4 Preprocessing

Once we collected the raw data, the next step
was to preprocess it. Online data can have a
lot of noise and can lead to a lot of bias during
prediction if given to the model. Extraction of
sentences from the raw news articles required
removal of various non-ASCII characters, un-
necessary details about the articles, etc. Raw

4https://te.vikaspedia.in/education
5http://telugubalalu.blogspot.com/
6http://podupukathalu.blogspot.com/
7https://kathalu.wordpress.com

https://bit.ly/3ihRig6


Wikipedia articles consisted of code mixed sen-
tences, email IDs, etc., which had to be filtered.
In case of Pravar, we manually checked each
story and removed the unnecessary information
such as author details, morals, titles, epilogue,
etc. Some stories had sentences in direct speech,
which were also removed as they tend to be in
a different tense. For all three datasets, we con-
sidered the sentences having a sequence length
between 10 and 20.

4.1 Dataset Statistics
After preprocessing the datasets, we were left
with 13,623 sentences in News, 10,941 sentences
in Wikipedia and 8,830 sentences in Pravar to
experiment upon. Other statistics can be found
in Table 1.

Dataset News Wiki Pravar
Words 1,321,794 958,877 775,366

Sentences 129,743 77,698 92,846
Documents 8,230 17,554 1,823
Avg-WPD 160 54 425
Avg-SPD 15 4 50

Nouns 594,036 417,179 232,604
Adjectives 22,914 33,924 17,443
Adverbs 7,871 8,343 8,685

Table 1: Statistics of the News, Wikipedia and
Pravar datasets. Here document refers to a
News/Wikipedia article or a story. Avg-WPD de-
notes the average number of words per document
and Avg-SPD denotes the average number of sen-
tences per document.

5 Experiments
5.1 Experimental setup
We performed multiple experiments using Seq-
GAN(SG) and LeakGAN(LG) as the base mod-
els. All the improvements and proposed novelty
has been added on top of them. We used the
default values from the original papers for the
batch size, optimizer, and other hyperparame-
ters. For models with SG as the base model,
we trained the models for 150 epochs in Maxi-
mum Likelihood Estimation and 100 epochs in
Adversarial training. For models with LG as

the base model, we have trained the generator
for 10 epochs in every epoch of 15 interleaved
epochs in Maximum Likelihood Estimation and
100 epochs in Adversarial training. We calcu-
lated the BLEU, NLL-Gen and NLL-Div scores
proposed by (Papineni et al., 2002), (Zhu et al.,
2018) and (Liu et al., 2020), respectively, for all
the models to help analyze their performance.

5.2 Features
5.2.1 Word embeddings

Instead of allowing the model to generate
word embeddings dynamically by itself, we used
the pre-generated embeddings and let the model
train using these. We used the Word2Vec al-
gorithm in (Řehřek et al., 2011)’s Gensim li-
brary to generate word embeddings for every
word from the dataset. Using word embeddings
helped boost the BLEU and NLL scores by a
good factor because they pack a lot more in-
formation based on the words present around
them, hence allowing the generator to generate
better sentences. We experimented with vectors
of three different dimensions, i.e., 50, 100, and
300 as shown in Table 2.

5.2.2 POS Tag vector
We used the Parts-of-Speech (POS) tagger

provided by (Reddy and Sharoff, 2011) to tag
the sentences. A unique index was assigned to
each tag from the tagset8. Once the sentence is
tagged, we create a pos tag vector with dimen-
sions as the size of the sentence using the unique
indexes. The POS tag specific statistics can be
found in Table 1.

5.2.3 Sentiment vector
We used the Telugu-Senti-WordNet provided

by (Das and Bandyopadhyay, 2010) for gener-
ating the sentiment vector. This lexicon con-
tains 30,889 Telugu synsets. As multiple words
present in our datasets were missing from the
lexicon, we translated them to English using
(Loria, 2018)’s TextBlob and took the polarity
of that word instead of the exact sentiment value

8https://bitbucket.org/sivareddyg/telugu-part-of-
speech-tagger/src/master/posguidelines.pdf
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Figure 1: Architecture of the proposed PS-GAN. Sentiment and Parts-of-Speech features are provided to
the discriminator so that it can help the generator to generate better sentences.

and mapped it to the Telugu word. We main-
tained three sentiment classes, namely positive,
negative and neutral, where each class was given
a unique index. We then generated a sentiment
vector with dimensions as the size of the sen-
tence using the indexes defined.

5.3 PS-GAN
As shown in Figure 1, the proposed PS-GAN ar-
chitecture with SG as the base model takes in
latent space information and tries to generate
text. The generator essentially has an LSTM
(Hochreiter and Schmidhuber, 1997) layer fol-
lowed by a softmax layer at the end. The
discriminator consists of a Convolution layer
(Zhang et al., 2015) followed by pooling and sig-
moid layers. Pre-trained embeddings are given
to both the generator and discriminator. Sen-
tences generated by the generator go through
a feature generation module to produce a new
vector called the ‘generated_vec’. The output
of this feature module is a single concatenated
vector consisting of the sentence, POS Tag, and
the sentiment vectors. The concatenated feature
vector is also generated for the real data and is
called the ‘real_vec’. These two vectors go as
inputs to the discriminator and the total loss is
backpropagated to the generator. The intuition
behind PS-GAN is that, if we can provide the
discriminator with information about the struc-
ture of a sentence (Parts-of-speech tags) i.e.,

where a noun should be present or where an ad-
jective should be present, the ability of the gen-
erator forming a linguistically correct sentence
will increase drastically. Over time the discrim-
inator will help the generator learn to form a
sentence having a correct parse tree. Similarly,
providing discriminator with the sentiment vec-
tor will help the generator understand the flow
of sentiment within the sentence.

5.4 Leaky-PS-GAN
According to the intuition behind PS-GAN, the
discriminator will have the POS Tag and sen-
timent information in its hidden layer, but it
attempts to help the generator by backpropa-
gating the loss. Instead of backpropagating the
loss, if we can leak the hidden features in PS-
GAN’s discriminator directly to the generator,
we would be able to generate larger and mean-
ingful sentences. Figure 2 shows the architecture
of Leaky-PS-GAN with LG as the base model.

6 Results and Analysis
Table 2 shows the BLEU and NLL scores ob-
tained by experimenting with the baseline and
the proposed models on all three datasets. The
best scores have been highlighted in green for
SG and blue for LG models. When embeddings
are used (SG-E50, SG-E100, SG-E300), we can
see a significant boost in the BLEU and NLL-
Gen scores compared to the original SG models.
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Figure 2: Architecture of the proposed Leaky-PS-GAN. Discriminator’s hidden features are leaked to the
generator to help generate better sentences.

However, the increment in these values is ac-
companied by a considerable drop in the NLL-
Div values. As the BLEU metric assigns greater
points to words that match sequentially i.e., if
a string of four words in the produced phrase
matches the given reference in the same precise
sequence, it will have a greater positive influence
on the BLEU score than a string of two matching
words. This means that a correctly generated
sentence might earn a lesser score if it utilizes
different but related words. As a result of this,
we can see higher BLEU scores in case of 100
and 300-dimensions. This is also evident from
the NLL-Gen and NLL-Div values which tend to
decrease as we move from 50 to 300-dimensional
embeddings, indicating that the model tends to
over-fit on the training data with an increase in
the dimension size. On manual inspection of the
sentences generated by SG-E100 and SG-E300,
it was found that most of the sentences were al-
ready present in the training data. In the case
of SG-E50, the generated sentences were better
in quality and strikingly different from those al-
ready present in the training data. Although
there is a slight decrease in the diversity as sug-
gested by the dip in the NLL-Div value com-
pared to SG, the sentences generated by SG-E50
are considerably better. This can be inferred
from the BLEU and NLL-Gen values, making
this a reasonable trade-off. As the results from

all the three datasets point towards the same
conclusions, we have performed further exper-
iments using the 50-dimensional word embed-
dings.

Using embeddings (SG-E50) has shown a
tremendous increase in the BLEU-5 scores, from
0.158 to 0.266 for News, 0.233 to 0.379 for
Wikipedia, and 0.357 to 0.568 for Pravar over
the original SG model. We can see a similar
increase in the other BLEU scores as well, as
shown in Table 2. The NLL-Gen values of SG-
E50 have also significantly reduced from 2.4661
to 1.4409, 1.5896 to 1.0441, and 1.0274 to 0.6496
for News, Wikipedia, and Pravar, respectively,
as compared to SG model. This is an expected
result because generating Telugu text is a com-
plex task because of the fact that it’s morpholog-
ically rich. The model needs to have some extra
information to understand the relationship be-
tween the words and generate meaningful sen-
tences. As we can see, by adding word embed-
dings, the networks have more defined informa-
tion about the context of the words, increasing
the ability to generate good quality sentences.

On incorporating POS tag information into
the discriminator, a significant increase in
BLEU scores was seen in both SG (SG-EP) and
LG (LG-EP) models over the SG-E50 and LG-
E50 models, respectively, as shown in Table 2.
In case of SG models (SG-EP), the BLEU-5



Dataset Scores SG SG-E50 SG-E100 SG-E300 SG-EP SG-EPS LG-E50 LG-EP LG-EPS

News

BLEU-2 0.74 0.77 0.89 0.963 0.782 0.779 0.826 0.89 0.871
BLEU-3 0.463 0.536 0.75 0.913 0.556 0.553 0.651 0.773 0.75
BLEU-4 0.259 0.371 0.631 0.868 0.387 0.397 0.535 0.7 0.678
BLEU-5 0.158 0.266 0.546 0.83 0.279 0.298 0.467 0.656 0.64
NLL-Gen 2.4661 1.4409 0.8345 0.5626 1.3908 1.4031 1.3123 0.6704 0.7
NLL-Div 2.2028 1.632 0.9863 0.6781 1.6658 1.6373 0.8532 0.9018 0.8744

Wikipedia

BLEU-2 0.689 0.787 0.942 0.988 0.821 0.799 0.901 0.925 0.916
BLEU-3 0.449 0.583 0.888 0.968 0.638 0.598 0.817 0.861 0.843
BLEU-4 0.31 0.456 0.844 0.951 0.518 0.466 0.776 0.825 0.8
BLEU-5 0.233 0.379 0.812 0.94 0.443 0.378 0.755 0.805 0.778
NLL-Gen 1.5896 1.0441 0.5479 0.5084 0.9444 1.0328 0.7511 0.7095 0.7205
NLL-Div 2.047 1.2985 0.6978 0.5416 1.3121 1.3178 0.674 0.6723 0.6871

Pravar

BLEU-2 0.788 0.889 0.977 0.992 0.904 0.91 0.929 0.952 0.959
BLEU-3 0.589 0.742 0.939 0.977 0.789 0.805 0.864 0.906 0.926
BLEU-4 0.445 0.635 0.907 0.965 0.704 0.721 0.828 0.882 0.907
BLEU-5 0.357 0.568 0.888 0.955 0.642 0.66 0.808 0.869 0.895
NLL-Gen 1.0274 0.6496 0.4868 0.4861 0.6321 0.6276 0.4805 0.464 0.4865
NLL-Div 1.344 0.8681 0.5726 0.4847 0.8692 0.8654 0.6083 0.6019 0.6037

Table 2: These are the BLEU and NLL scores obtained for News, Wikipedia and Pravar datasets. SG is
SeqGAN; SG-E50, SG-E100 and SG-E300 are SeqGan with 50, 100 and 300 dimensional embeddings; SG-EP
is SeqGan with word embeddings and POS Tag vector, SG-EPS is SeqGan with word embeddings, POS Tag
and sentiment vectors. LG is LeakGan; LG-E50 is LeakGan with 50 dimensional word embeddings. LG-EP
is LeakGan with word embeddings and POS Tag vector, and LG-EPS is LeakGan with word embeddings,
POS Tag and sentimenet vectors. BLEU-2, BLEU-3, BLEU-4, BLEU-5 denote the scores considering bi-
grams, tri-grams, four-grams and five-grams respectively whereas NLL-Gen and NLL-Div denote the quality
and diversity of the generated sentences.

scores have increased from 0.266 to 0.279, 0.379
to 0.443, and 0.568 to 0.642 in News, Wikipedia,
and Pravar respectively, over the SG-E50 mod-
els. A similar increase in BLEU-5 scores of LP-
EP models, from 0.467 to 0.656 for News, 0.755
to 0.805 for Wikipedia, and 0.808 to 0.869 for
Pravar, is seen over the LG-E50 models. This
is accompanied by, a decrease in NLL-Gen val-
ues from 1.4409 to 1.3908, 1.0441 to 0.9444, and
0.6496 to 0.6321 in SG models, and 1.3123 to
0.6704, 0.7511 to 0.7095, and from 0.4805 to
0.464 in LG models for News, Wikipedia, and
Pravar respectively. This depicts the enhance-
ment in the quality of the sentences generated.
The overall increment in BLEU scores from E50
to EP/EPS models is on a higher side in LG
models than in SG models. This is expected as
these features are leaked from the discrimina-
tor to the generator in case of LG, whereas it
is back-propagated as loss in case of SG. The
higher quality and lower diversity of the sen-
tences generated in case of LG models as com-
pared to the SG models is in conjunction with

the previously reported studies by (Zhu et al.,
2018). Apart from showing a considerable im-
provement in BLEU and NLL-Gen scores, an
important observation is that the NLL-Div val-
ues in case of EP models have either increased
or are similar to that of E50 models. This is
possible because, unlike word embeddings which
make the model generate words surrounding a
particular word, POS tag features help under-
stand the formation of the sentence on a linguis-
tic level and thus help generate sentences with
better/similar diversity.

An increase in quality of the generated sen-
tences with POS as a feature is quite apparent
from the BLEU and NLL-Gen scores of E50 and
EP models, but it is not so evident when con-
sidering sentiment (EPS). On average, the sen-
tences in News, Wikipedia, and Pravar consist
of about one to two polar words. As the max-
imum sentence length in this paper is only 20,
the overall effectiveness of the sentiment feature
is not prominent. Sentiment might start adding
increased value when generating larger text such



as whole articles or stories. In general, News and
Wikipedia articles tend to have a lot of proper
nouns such as the names of people, places, or
things, i.e., a lot of words with a neutral sen-
timent. Due to this, adding sentiment showed
no improvement in case in Wikipedia and News
datasets. On the other hand, a slight improve-
ment is seen in both SG and LG models for sto-
ries, as each sentence has a considerable number
of words with some polarity (either positive or
negative).

6.1 Human Evaluation
In order to make sure the scores we got were
in line with the quality of the generated sen-
tences, we performed a manual evaluation on
the sentences generated by LG-E50 and LG-EPS
models. We followed the scaling procedure as
proposed in (Liu et al., 2020), by assigning a
score between 1 - 5 according to the grammat-
ical and semantic correctness. We considered
50 sentences per model-dataset pair over all the
three datasets and averaged the scores. The hu-
man evaluation scores present in Figure 3 are
seen to correlate with the BLEU and NLL scores
in Table 2.
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Figure 3: Bar plot showing human evaluation rat-
ing for LG-E50 and LG-EPS models over the three
datasets.

6.1.1 Qualitative Examples
The below examples have been picked from

sentences generated by LG-EPS GAN. Ratings
mentioned for the examples are the averaged

ratings post human evaluation.

Dataset - News
Sentence - జలవనరులశాఖఇచిచ్నహామీలనునెరవేరచ్-

కుండావచిచ్ ఎనిన్కలకాలపరిమితినివేదికనుకోరుతూకేందార్ నికి
సిఫారుస్చేయాలనిఆమెఆదేశించారు .

Translation - She ordered the Water Re-
sources Department not to fulfill the given
promises and to request the central government
for the upcoming election’s timeline report.

Explanation - The model was able to gen-
erate this sentence completely on its own by
picking words from various contexts and joining
them meaningfully.

Rating - 4.5

Dataset - Wikipedia
Sentence - కొనిన్సందరాభ్లలోయుదధ్ ంవలల్ పర్ యోజనం

లేదని గర్ హించియుదధ్ చారితిర్ క పదారాథ్ లుకూడాఈతరావ్తపై పై
సామరథ్ య్ం ఉంటుంది ..

Translation - Realizing that war is of no use
in some situations, historical war materials will
have lesser potential here after.

Explanation - In this example, the model
has taken half the sentence from the dataset and
completed it meaningfully with the relevant con-
text. The words of the other half of the sentence
were picked from different contexts spread all
over the dataset. Although the sentence is holis-
tically meaningful, the rating was penalized be-
cause of the incorrect grammar used while con-
flating the contexts.

Rating - 4

Dataset - Pravar
Sentence - ఒకరోజుఆయనతనముగుగ్ రుకొడుకులీన్పి-

లిచి , ఒకరికిపనిచేసాత్నుఅనాన్డు .
Translation - One day, he called his three

sons and said that he will work for one of them.
Explanation - In this example, the model

was able to merge phrases from three different
contexts and form a meaningful sentence.

Rating - 5



7 Conclusion and future work

In this work, we provide Pravar, a dataset con-
sisting of stories. Telugu being a low resource
language, Pravar can be used to solve various
natural language problems apart from text gen-
eration, making it is an important contribution
to the community. Even though Telugu is an ag-
glutinative and morphologically rich language,
the model was able to understand and gener-
ate good quality sentences. Further, we show
that using POS tags and sentiment, as features
in the proposed PS-GAN helped significantly
boost the BLEU and NLL scores. Experiment-
ing on varied datasets helped establish baselines
and show that the model is able to learn well.
We plan on extending the current work to gener-
ate larger sentences/paragraphs while maintain-
ing context. When training the discriminator,
incorporating features like n-gram based senti-
ment, emotions, etc., could further enhance the
sentence quality. Another vital extension to this
would be to increase the size of Pravar by adding
stories from multiple other languages to make
the dataset even more useful. Generating text
in local languages would help in creating more
content and reach out to a larger audience.
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