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Abstract

Significant progress in sentiment analysis and
emotion recognition has been made recently,
and there has also been an increase in the re-
quirements for solving real-world problems.
However, human language is complicated and
multimodal, making it difficult for computers
or artificial intelligence systems to understand.
In this study, we adopt several self-supervised
learning models to strengthen the learning of
representations for multi-modalities (i.e., lan-
guage, acoustic and visual modalities) to im-
prove the performance of sentiment analysis
systems. We also recommend effective fu-
sion and ensemble methods that are easy to
apply to obtain a stronger performance. In
this study, considering the preliminary exper-
iments, we use a freely available sentiment
analysis benchmark, CMU-MOSI. Our rec-
ommended techniques and constructed mul-
timodal sentiment analysis systems empiri-
cally demonstrate the improvements in the
experiment results by approximately 9% and
10.4% for binary classification and multi-
classification, respectively, in terms of accu-
racy, and a 32% reduction in the mean abso-
lute error.

1 Introduction

Sentiment analysis (also known as opinion mining)
is a task that aims to systematically identify, ex-
tract, quantify, and study emotional states. Sen-
timent analysis and emotion recognition are both
key applications of artificial intelligence (AI). AI
has also become indispensable to tasks involving
human-computer interaction (HCI).

Some related studies have demonstrated their
state-of-the-art (SOTA) result evaluations based on
or compared with the sentiment analysis systems
constructed using low-level features for single or
multiple modalities. Further, it is challenging to
determine the amount of improvement that can be
achieved using a newly proposed method in com-
parison to more robust systems built using high-
level representations and how effective the method
is. This indicates the necessity to know whether
the proposed technique or the artificial neural net-
works (ANNs) can solve new problems or slightly
improve the results that have already been addressed
or achieved elsewhere.

The main focus of this study was to construct
a robust and reliable multimodal sentiment analy-
sis system using several artificial techniques from
three perspectives: (1) high-level representations for
multi-modalities; (2) robust neural network architec-
ture with an effective fusion strategy; (3) easily ap-
plicable and available for solving real-world prob-
lems in different fields, such as customer service and
clinical medicine (Valstar et al., 2016; Venek et al.,
2017).

This study introduces three specific techniques for
strengthening the performance of multimodal sen-
timent analysis and empirically demonstrates how
they are applied to improve the experimental results.
We also investigate how these techniques improve
the performance of sentiment analysis, either singly
used or fusion with each other. We also discuss
how these empirical experiments and findings can
be used to understand the factors affecting the sys-
tem construction. Our recommended techniques in-



clude:

• Utilize self-supervised learning (SSL) models
as feature extractors for every single modality.
Considering language modality, we also use a
fine-tuned pre-trained SSL model to strengthen
the textual (language) representations.

• Introduce a robust crossmodal attention net-
work as the fusion mechanism for overcoming
the heterogeneities and long-range dependency
problems that may occur across the modalities.

• Predict sentiments by relying on the ensem-
ble of different independent models trained on
variant features extracted for the same modal-
ity.

The remainder of this paper is organized as fol-
lows. Section 2 reviews the related studies and re-
cent progress in deep neural networks (DNNs), sen-
timent analysis, representations, and fusion tech-
niques. Section 3 introduces a crossmodal attention
network for multimodal sentiment analysis. We use
it as our basic network architecture for further learn-
ing and fusing representations of different modali-
ties. Thereafter, we describe several pre-trained self-
supervised learning models applied in our system
construction. Section 4 presents the experimental
data used, experimental settings, evaluation results,
and analysis of the results. We conclude and provide
recommendations for future studies in Section 5.

2 Related Studies

Recently, sentiment analysis and emotion recogni-
tion have become a popular area for both research
and development, meanwhile, a significant progress
has been made in the field of machine learning (ML)
using deep learning (DL) approaches. The main
tasks involved in sentiment analysis include vi-
sion/image recognition, natural language process-
ing (NLP), and speech processing.

Some researchers proposed the used of a deep
convolutional neural network (CNN) for visual
recognition tasks (Simonyan and Zisserman, 2014;
Szegedy et al., 2015; He et al., 2016). Several
deep learning methods have been applied to dif-
ferent tasks in the field of natural language pro-
cessing. For instance, the recurrent neural net-
work (RNN) (Sutskever et al., 2014) was used for

learning phrase representations for statistical ma-
chine translation (SMT) (Cho et al., 2014). Fur-
thermore, by introducing an attention mechanism,
RNN’s encoder-decoder models improved neural
machine translation (NMT) accuracy by jointly
learning to align and translate in an end-to-end man-
ner (Bahdanau et al., 2015). On the contrary, the
Transformer model (Vaswani et al., 2017) used a
new neural network architecture with an attention
mechanism that differed from the previous recur-
rent neural networks or convolutional sequence-to-
sequence (ConvS2S) network. The Transformer
model computes the representation of a sequence by
introducing position-encoding and entirely relying
on self-attention mechanisms. The main advantage
of the Transformer is that it helps solve the problem
of long-range dependencies that are present in the
RNNs and ConvS2S. Moreover, it can extract rele-
vant and essential information globally. Another sig-
nificant advantage is that the Transformer allows the
training process to be more parallelizable and faster.
In the recent times, the Transformer architecture has
also been widely used in speech processing tasks
such as automatic speech recognition (ASR) (Wang
et al., 2020).

Sentiment analysis has already made progress in
terms of unimodal performance (Kontopoulos et al.,
2013); however, there still exists a challenge with
regard to using multimodal representations and dif-
ferent neural networks to make better AI; in the
words, to make it possible for AI to “understand”
the sentiments/emotions or intentions of humans
more precisely. Sentiments/emotions of humans
can be expressed verbally (spoken words or natural
language), which refers to language/textual modal-
ity as well as nonverbally, that is, via nonverbal
behaviors (speech and facial attributes), indicating
acoustic and visual modalities. Some previous stud-
ies on multimodal representations and fusions were
based on pre-aligned human multimodal language
sequences. For example, Gu et al. (2018) classified
emotions and performed sentiment analysis by intro-
ducing a hierarchical multimodal architecture with
attention mechanism and word-level fusion of tex-
tual and speech modalities.

We aimed to construct a robust and reliable mul-
timodal sentiment analysis system based on “un-
aligned” language sequences. Our cases can be im-



plemented as a regression and classification problem
relying on the high-level representations for differ-
ent modalities. We used language, acoustic, and vi-
sual modalities as a trimodal task.

3 Sentiment Analysis System

The robust representations of single modalities are
the cornerstone of multimodal intelligence. Based
on the success of adopting pre-trained language
models to downstream tasks in natural language pro-
cessing, we propose the use of several pre-trained
self-supervised learning (SSL) models trained by
leveraging large-scale single modal datasets to im-
prove the fusion of multi-modalities (i.e., the per-
formance of sentiment analysis systems) with high-
level representations (see Figure 1).

3.1 Multimodal Transformer

To construct a robust multimodal sentiment analy-
sis system, we decided to use the multimodal Trans-
former (MulT) (Tsai et al., 2019) as the basic fusion
architecture for multi-modalities.

Based on the standard Transformer net-
work (Vaswani et al., 2017), the MulT was
built from multiple stacks of pairwise and bidirec-
tional crossmodal attention blocks. The critical
procedures of this fusion and learning mechanism
for language (L), acoustic (A) and visual (V )
modalities can be illustrated using four steps (see
Figure 1):

(1) Similar to the idea of position-wise encod-
ing proposed in (Vaswani et al., 2017), abso-
lute positional encoding (PE(T{L,A,V }, d), where
T{L,A,V } is the sequence length), is added to the
embeddings (X̂{L,A,V }) obtained based on one-
dimensional (1D) convolutional layer. This process
is applied for the initial input features of each modal-
ity to obtain the local structure of the sequences,
project the features to the same dimension d, and
input the resulting features (Z [0]

{L,A,V }) into N layers
of crossmodal attention blocks.

(2) The streams from a single modality are po-
tentially transformed to another by repeatedly rein-
forcing one modality’s features (e.g., L as the target
modality) with those from the other modalities (e.g.,
A and V as the source modalities) via the scaled
dot-product attention-based multi-head crossmodal

attention.

(3) Production of reinforced feature vectors of
each target modality is concatenated by a simple
concatenation operation. As the example shown in
Figure 1, language is the target modality that repeat-
edly receives information from the acoustic and vi-
sual modalities: ZL =

[
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Figure 1: Overview of the sentiment analysis system con-
structed based on the multimodal Transformer on lan-
guage (L), acoustic (A), and visual (V ) modalities uti-
lizing several pre-trained SSL models. The figure is an
illustration of passing an acoustic and visual information
to language modality (denoted by A, V → L). This is
similar to A,L→ V , and L, V → A.



(4) Finally, the concatenated feature vectors can
be used with a sequence of the self-attention Trans-
former blocks to output information and are inte-
grated to pass through fully-connected layers for the
final prediction.

3.2 RoBERTa with GPT-2

In our study, instead of using a pre-trained “lan-
guage understanding” model, BERT (Devlin et
al., 2019) for language modality, we used the
RoBERTa (Liu et al., 2019). RoBERTa is a robustly
optimized BERT-like pre-trained model that can be
trained on longer sequences with bigger batches and
using more training data by following the basic pre-
training procedure of BERT. However, compared
to BERT, during RoBERTa’s pre-training, the sub-
sequent sentence prediction objective is removed,
and the masking pattern is dynamically changed.
RoBERTa has demonstrated better performances on
several downstream tasks (Rajpurkar et al., 2016;
Rajpurkar et al., 2018; Wang et al., 2018; Wang et
al., 2019).

Regarding text encoding, we used a byte-level
language model known as GPT-2 (Radford et al.,
2019), which introduces mapping tables between
bytes and their corresponding Unicode strings for
subword tokenization, regardless of the word seg-
mentation.

3.3 SpeechBERT with VQ-WAV2VEC

The VQ-WAV2VEC (Baevski et al., 2020), as a
new discretization approach, was proposed to learn
discrete representations for speech by encoding
raw consecutive audio signals into fixed-length dis-
cretized sequences. It facilitates the direct use of
discretized speech sequences in several NLP tasks
and applications, including speech recognition and
spoken question answering (SQA) and can also be
used to train a “speech understanding” model. In our
study, we propose the use of a BERT-like pre-trained
model trained with the RoBERTa training task on
discrete representations of audio segments obtained
by VQ-WAV2VEC, to obtain the initial representa-
tions for the acoustic modality.

As the acoustic feature extractor, we used a pre-
trained SpeechBERT model trained on a discretized
960 h Librispeech dataset (Panayotov et al., 2015).

3.4 FAb-Net with Insightface

For pre-processing, we used “Insightface” (Deng
et al., 2019) to perform face recognition from raw
video clips. This pre-trained face recognition model
trained using an Additive Angular Margin Loss
function (ArcFace) capable of highly discriminating
features is expected to further improve the accuracy
of the face recognition task. This method and its cor-
responding pre-trained model have been proven to
be more discriminatively efficient, compared to the
recent state-of-the-art face recognition methods (Liu
et al., 2017) applied on different large-scale, image
and video datasets (Huang et al., 2007; Wolf et al.,
2011).

We also used a pre-trained model trained on
a self-supervised framework Facial Attributes-
Net (FAb-Net ) (Wiles et al., 2018) to encode each
facial frame recognized by “Insightface”. The
FAb-Net is known for its ability to learn meaning-
ful face embeddings that encode facial attributes
such as head pose, expression, and facial landmarks.
A pre-trained affectnet model enables the acquisi-
tion of emotion-related representations for the visual
modality.

4 Experiments

This section presents the results of a sequence of ex-
periments that were performed for constructing ro-
bust multimodal sentiment analysis systems. Be-
yond reporting the significant improvements in dif-
ferent evaluation metrics compared to the baseline
system and the previous studies, we also conducted
an in-depth analysis to show the underlying rea-
son for the effectiveness and improvements that we
achieved and to describe the inherent weaknesses (of
the baseline system and the previous studies) that we
addressed. We also performed a sequence of abla-
tion studies.

4.1 Data Preparation and Evaluation Metrics

CMU-MOSI (Zadeh et al., 2016) is one of the most
frequently used human multimodal sentiment anal-
ysis datasets in English, which comprises 2,199
short monologue video clips (train: 1,284; valida-
tion: 229; test: 686) with their corresponding tran-
scripts, and audio information. Human annotators
label each example (lasting the duration of a sen-



tence) in CMU-MOSI with a sentiment score from
-3 (strongly negative) to 3 (strongly positive).

CMU-MOSI is also a speaker-independent and
fine-grained sentiment analysis dataset that does
not focus on only the [negative and positive] sen-
timents. Thus, we also evaluate the performance
of our constructed models using various metrics,
similar to those applied in previous studies, includ-
ing the seven-class (i.e., Acc7: sentiment score
classification in [-3, 3]) and binary (that is, Acc2:
positive/negative sentiments) accuracies, weighted
F1 score (based on the binary classification), MAE
of the scores (mean absolute error, based on the
seven-class sentiment score prediction), and correla-
tion (Corr) of the model’s prediction with humans.

4.2 Baseline System

The experiments for CMU-MOSI reported in (Tsai
et al., 2019) has two versions: (i) “word-aligned”
and (ii) “unaligned” versions. The former aligns the
timesteps of acoustic and visual modalities based on
the words in the language modality. Considering
the latter, the length of the textual sequences is the
same as the length obtained in the former; neverthe-
less, it keeps the original length of the acoustic and
visual features without any word-segmented align-
ment. The feature dimension mentioned in (Tsai et
al., 2019) is 35 for Facet (iMotions, 2017) and 74 for
COVAREP (Degottex et al., 2014).

The initial features used as our baseline for
the “unaligned” version is different from the feature
dimensions used in (Tsai et al., 2019). Here, we pre-
fer our “unaligned” baseline features to be the fea-
ture sets used in (Chen et al., 2017) for CMU-MOSI
provided on the Web1. These features are 20 best se-
lected features from Facet feature and five features
from COVAREP feature by using univariate linear
regression tests. Furthermore, the selected Facet and
COVAREP features are linearly normalized by the
maximum absolute value in the training set. In this
study, we use these three groups of evaluation results
in Table 1.

4.3 Experimental Setting

To compare the behavior of our systems to the base-
line system and the previous studies, we conduct ex-

1http://immortal.multicomp.cs.cmu.edu/raw datasets/processed

periments using the same hyperparameter settings
described in (Tsai et al., 2019) for the CMU-MOSI
dataset. The main differences between our experi-
mental setting and performance provided in (Tsai et
al., 2019) are as follows.

(1) We use subword-based tokenization instead
of word-based tokenization to prepare for the initial
textual representations. In (Tsai et al., 2019), textual
data are segmented per word and are expressed as
discrete word embeddings using pre-trained Glove
word embeddings (glove.840B.300d) (Pennington et
al., 2014). The embedding for each word is a 300-
dimensional vector.

(2) There is maximum utilization of subword-
based pre-trained SSL models. Alternatively, the
RoBERTa language model prefers roberta.large
or roberta.large.mnli, which is a fine-tuned
roberta.large on a sentence pair classification
task (model the textual interaction between a pair
of sentences, e.g., contradiction or entailment). Be-
cause the last layer of the pre-trained model is too
close to the target functions during the pre-training,
we average the second-to-last hidden layer of each
token ([CLS] + subword tokens + [SEP]) to produce
a single 1024-dimension embedding as the entire
sentence representation.

(3) Another difference refers to the use of CO-
VAREP. We use a pre-trained model SpeechBERT
(bert kmeans) with vq-wav2vec kmeans for audio
tokenization and speech feature extraction as de-
scribed in Section 3.3. This is a similar process for
acoustic representation by averaging the second-to-
last hidden layer of each speech token to obtain a
single 768-dimension embedding as an entire audio
representation.

(4) Regarding visual modality, instead of using
Facet as described in (Chen et al., 2017; Tsai et
al., 2019), we extracted emotion-related facial at-
tributes using the FAb-Net-based pre-trained model
for frames that were recognized based on “Insight-
face” facial frame recognition model introduced in
Section 3.4. The maximum time-depth is set to 300
for frame recognition, and the feature dimension for
each frame is 256.

(5) The final technique that we proposed refers
to combine using multiple sentiment analysis mod-
els for the final prediction, indicating the ensemble
of the two best models by averaging their predic-



tions (regression results). The idea of ensembling
multiple models is powerful and is widely used in
machine learning and NLP fields.

Evaluation is conducted by averaging the evalua-
tion scores obtained over multiple runs. We shuffled
the training, validation, and test data for each exper-
imental condition, performed ten runs, and reported
averaged metric scores. All the test results (evalua-
tion scores) are presented in Table 1, 2, and 3.

4.4 Analysis of the Results and Discussion
As can be seen from Table 1, the independent appli-
cation or a combination of these techniques led to a
consistent improvement in a large margin across all
the scenarios compared to their corresponding base-
lines.

Our systems outperform the baseline system by a
margin of 5.1∼9% and 3∼10.4% on the binary accu-
racy and seven-class metric, respectively. The pro-
posed methods also attribute to MAE and Corr be-
cause they decrease or increase with a large margin
of 32.2% and 16.7%, respectively. Our experiments
show that when the techniques are combined using
several pre-trained SSL models with the crossmodal
Transformer as the fusion mechanism, it facilitates
the achievement of the SOTA results compared to
the “unaligned” scenario and “word-aligned” setting
with low-level features.

Another observation is that the advantages pro-
vided by a well pre-trained SSL model comprising
rich semantic and contextual information benefits
the training process of sentiment analysis systems.
In our study, instead of using roberta.large (L1), we
used roberta.large.mnli (L2), which was fine-tuned
on the sentence pairs classification task, for the rep-
resentation extraction for language modality. Us-
ing a fine-tuned pre-trained SSL model overcomes
the underlying problems of initial low-level features
of baseline systems. It also alleviates the “non-
finetuned” problem in which we did not perform any
“fine-tuning” on the sentiment analysis task itself.

In addition, in our experiments, we maintained
the original features (A and V ) and only replaced L
with L1/L2 or replaced both L and V with L1/L2
and V 1, respectively, enabled us to obtain a better
Acc7, MAE, and Corr at the cost of a decreased Acc2
sometimes (L1+A+V and L2+A+V ), compared
to replacing A with A1 in any case. We hypothe-

Acc7 Acc2 F1 MAE Corr

CMU-MOSI Sentiment in (Tsai et al., 2019)
(i) Word-aligned 40.0 83.0 82.8 0.871 0.698
(ii) Unaligned 39.1 81.1 81.0 0.889 0.686

CMU-MOSI Sentiment (Multi-modal, unaligned)

Baseline
34.5 78.3 78.2 1.013 0.648

(L+A+ V )
L1 +A1 + V 37.5 84.3 84.3 0.841 0.740

(+3.0) (+6.0) (+6.1) (-0.172) (+0.092)

L1 +A1 + V 1 40.3 83.9 83.9 0.799 0.758
(+5.8) (+5.6) (+5.7) (-0.214) (+0.110)

L1 +A+ V 1 41.5 84.3 84.3 0.755 0.787
(+7.0) (+6.0) (+6.1) (-0.258) (+0.139)

L1 +A+ V 41.6 83.4 83.5 0.757 0.777
(+7.1) (+5.1) (+5.3) (-0.256) (+0.129)

L2 +A1 + V 39.7 85.9 85.9 0.792 0.783
(+5.2) (+7.6) (+7.7) (-0.221) (+0.135)

L2 +A1 + V 1 40.7 86.0 86.0 0.775 0.786
(+6.2) (+7.7) (+7.8) (-0.238) (+0.138)

L2 +A+ V 1 41.9 85.9 85.9 0.733 0.810
(+7.4) (+7.6) (+7.7) (-0.280) (+0.162)

L2 +A+ V 43.3 85.2 85.1 0.740 0.795
(+8.8) (+6.9) (+6.9) (-0.273) (+0.147)

Ensemble of 44.9 86.6 86.6 0.703 0.808
two L2 +A+ V (+10.4) (+8.3) (+8.4) (-0.310) (+0.160)

Ensemble of 43.1 87.3 87.3 0.758 0.796
L2 +A1 + V & L2 +A1 + V 1 (+8.6) (+9.0) (+9.1) (-0.255) (+0.148)

Ensemble of 44.5 87.0 87.0 0.691 0.815
L2 +A+ V 1 & L2 +A+ V (+10.0) (+8.7) (+8.8) (-0.322) (+0.167)

Table 1: Evaluation results of the construction of stronger
multimodal sentiment analysis systems on CMU-MOSI
benchmark using our proposed techniques. The evalu-
ation metrics (excluding MAE) indicate a desirable per-
formance when their values are high. {L,A, V } repre-
sents the {Glove, COVAREP, Facet}-based features for
each modality. {L1, L2, A1, V 1} denotes {roberta.large,
roberta.large.mnli, SpeechBERT, FAb-Net}-based new
representations. “+” refers to multimodal Transformer
functions for each modality and fusion making.

sized that such a performance drop occurred because
A1 was the only pre-trained SSL model unrelated
to emotions, and it lacked fine-tuning. Nonetheless,
they still outperformed the baseline system.

Two strategies apply the ensemble for construct-
ing our more robust sentiment analysis systems: (1)
ensembling two best models trained on the same
feature sets with different runs; (2) ensembling two
best models trained on different feature sets, indicat-
ing that they are fully independent and more diverse
models.

We empirically found that a more significant im-
provement was obtained when the prediction moved
from a single model to model ensembles. Further-
more, an ensemble of two best fully independent



models trained on different feature sets (ensemble of
L2+A1+V & L2+A1+V 1 and L2+A+V & L2+
A+V 1) achieved better results than ensembling two
best models trained on the same feature sets with dif-
ferent runs (ensemble of two L2+A+ V ) on Acc2,
F1, MAE, and Corr. Similar to the trends of the pre-
dictions performed based on the single model, two
models that include the COVAREP-based features
for acoustic modality always yielded better seven-
class accuracy (Acc7). In contrast, replacing the
COVAREP-based features (A) with SpeechBERT-
based representations (A1) led to a better binary ac-
curacy (Acc2).

Considering these experiments, we empirically
concluded that the ensemble of L2 + A + V &
L2 + A + V 1 is a better option for achieving more
balanced and robust results. Our experimental re-
sults demonstrated both the effectiveness of ensem-
ble and the importance of model diversity for obtain-
ing more robust sentiment analysis systems.

4.5 Ablation Studies
To further understand the origin of these improve-
ments and the influence of individual representation
functions for each modality in our sentiment analy-
sis system construction, we performed ablation anal-
ysis, similar to the performance by (Tsai et al., 2019)
for CMU-MOSEI (Bagher Zadeh et al., 2018).

We separated the performance for different cases:
(1) using only a single modality with self-attention
Transformer (uni-modal); (2) repeatedly reinforcing
only one modality’s features with those from other
modalities (e.g., Only A, V → L2).

Based on the results presented in Table 2, the per-
formance of uni-modal is extremely good under both
“non-finetuned” and “fine-tuned” conditions for the
language modality represented as entire sentence
embeddings using the pre-trained RoBERTa model.
Using only “non-finetuned” RoBERTa resulted in a
better performance on Acc7, MAE, and Corr, com-
pared to L1 + A1 + V and L1 + A1 + V 1 (see
Table 1). However, considering other cases, the
crossmodal Transformer performed better. Shift-
ing the “non-finetuned” to “fine-tuned” RoBERTa
led to approximately the best results on Acc2, com-
pared to the multimodal case presented in Table 1.
Language modality may be negatively affected by
acoustic and visual modalities during crossmodal

Acc7 Acc2 F1 MAE Corr

CMU-MOSI Sentiment (Uni-modal)

Language-only Glove 35.2 77.4 77.3 0.996 0.640
Language-only roberta.large 41.1 83.1 83.1 0.781 0.764
Language-only roberta.large.mnli 42.6 86.7 86.6 0.722 0.807

Audio-only
COVAREP 16.8 49.5 54.8 1.443 0.183

Audio-only SpeechBERT 16.2 51.8 54.7 1.419 0.116

Vision-only
Facet 19.2 56.1 55.8 1.389 0.174

Vision-only FAb-Net 18.1 57.6 59.7 1.392 0.101

CMU-MOSI Sentiment (Multi-modal, target modality-dependent)
Only A, V → L (Baseline) 35.9 76.4 76.3 1.047 0.592
Only A1, V → L2 39.2 85.3 85.3 0.810 0.775
Only A1, V 1→ L2 40.4 85.4 85.4 0.794 0.773
Only A, V 1→ L2 42.5 86.2 86.2 0.735 0.809
Only A, V → L2 43.3 85.6 85.6 0.727 0.793

Only L, V → A (Baseline) 33.7 77.1 77.0 0.999 0.645
Only L2, V → A1 41.1 86.6 86.6 0.764 0.792
Only L2, V 1→ A1 40.0 86.6 86.6 0.769 0.798
Only L2, V 1→ A 40.9 85.8 85.8 0.731 0.810
Only L2, V → A 43.0 86.4 86.4 0.716 0.808

Only L,A→ V (Baseline) 34.7 79.0 79.0 0.971 0.652
Only L2, A1→ V 39.3 86.7 86.7 0.808 0.786
Only L2, A1→ V 1 38.4 85.6 85.6 0.830 0.772
Only L2, A→ V 1 40.6 86.1 86.0 0.755 0.815
Only L2, A→ V 41.8 86.3 86.2 0.732 0.801

Table 2: Experimental results of the ablation studies on
the benefit of using several pre-trained self-supervised
models for constructing more robust sentiment analysis
systems on unaligned CMU-MOSI.

fusion. Nonetheless, we empirically observed that
better results cannot be obtained by ensembling
two language-only “roberta.large.mnli”-based sin-
gle models. Considering the experimental results,
we also found that the lower the level of the fea-
tures for the single modalities, the more necessary
the multi-modality fusion becomes. The specific im-
provement in a single modality (which is language)
can be particularly helpful for handling low-level
feature problems in baseline systems.

Replacing the original features used in the base-
line system with new ones for acoustic or visual
modalities in uni-modal performance did not show
large improvements. This may be because they
are either not sentiment/emotion-related or not fine-
tuned on any related task.

Regarding the previous MulT experiments,
among the three targeted modality-dependent cross-
modal Transformers, language (as the target modal-
ity) worked the best, compared to the other two cases
on CMU-MOSEI. Considering our experiments, we
empirically observed that language and acoustic be-



Acc7 Acc2 F1 MAE Corr

CMU-MOSI Sentiment (Bi-modal, unaligned)

L+A (Baseline) 35.3 79.5 79.4 0.965 0.675
Only L→ A 34.6 76.8 76.7 1.033 0.620
Only A→ L 34.9 78.5 78.4 1.005 0.649

L2 +A1 40.3 85.5 85.5 0.802 0.774
Only L2→ A1 41.1 86.4 86.3 0.764 0.798
Only A1→ L2 39.3 84.9 84.8 0.817 0.764

L2 +A 42.2 86.5 86.5 0.733 0.809
Only L2→ A 41.9 86.8 86.8 0.709 0.814
Only A→ L2 42.6 86.3 86.3 0.719 0.809

Ensemble of two A→ L2 43.3 87.8 87.8 0.690 0.824
Ensemble of 44.6 87.3 87.4 0.690 0.821
L2 +A & A→ L2

Table 3: Evaluation results for the bi-modal sentiment
analysis system for unaligned CMU-MOSI.

ing the target modalities were of approximately the
similar strength (only A, V → L2, and only L2, V
→ A) as a full crossmodal Transformer (L2 +A+
V ). Moreover, the target modality-dependent Trans-
former performed slightly better on most of the eval-
uation metrics.

In summary, the designed and finished experi-
ments confirmed that the strength of the language
representation plays a crucial role in multimodal
sentiment analysis (i.e., the tri-modal case). On the
contrary, this study also proved that it should work
for bi-modal sentiment analysis if one of the non-
verbal modalities’ information may be missing (e.g.,
only the language and acoustic modalities). Table 3
shows our confirmed results. Without the nega-
tive effect during the crossmodal fusion, only using
a fine-tuned RoBERTa (L2) modal and COVAREP
features (A) for language and acoustic modalities
enabled us to obtain even better results for approxi-
mately all the evaluation metrics. Furthermore, al-
though only one modality with strong representa-
tions performs well (i.e., language), the ensemble
mechanism, using more diverse models and lever-
aging the complementarity of multi-modalities, can
represent richer information to make the predictions
more robust. Our analysis also indicated that using
the target modality-dependent crossmodal Trans-
former with strong representations instead of the full
crossmodal Transformer is beneficial for faster train-
ing and saves time without any loss of accuracy.
This will be especially helpful for training models
on large datasets.

5 Conclusion and Future Studies

This study empirically recommends and introduces
different pre-trained SSL models that can be rela-
tively easily applied on different modalities to ex-
tract robust representations, resulting in stronger
sentiment analysis systems.

Considering the predictive power of deep learn-
ing, we empirically demonstrate the effectiveness of
high-level representations, effective fusion mecha-
nism, and independent model ensembling for con-
structing a stronger sentiment analysis system for
robust results. Our proposed system can serve as a
strong baseline capable of capturing long-range con-
tingencies, regardless of the alignment assumption,
and solving lower accuracy suffers from the low-
level feature problem.

Our experiments only used CMU-MOSI in the se-
quence of in-depth studies that we conducted sev-
eral times to obtain stable and reliable results. In
the future, we plan to use CMU-MOSEI (approx-
imately ten times the size of CMU-MOSI) and
IEMOCAP (Busso et al., 2008) as the experimen-
tal data for emotion recognition. We also plan to
apply a similar idea to other sentiments or emotion
benchmarks in different languages and modalities.
Fine-tuning for the pre-trained SSL models used in
this study on the sentiment analysis task itself is one
of our future work. We intend to perform another
comparison in our subsequent studies.

We believe that the current work will facilitate
future studies in the field of multimodal sentiment
analysis. We also believe that our proposed systems
can be used for different applications to solve real-
world problems because our methods can be easily
extended and work effectively, regardless of the size
of the training dataset. Therefore, we recommend
the evaluation of new model extensions and algo-
rithms for use in sentiment analysis systems that are
as strong as the ones we have proposed, in order to
obtain reliable results.
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