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Abstract

The number of research articles is increasing
exponentially. It has become difficult for re-
searchers to stay updated with the latest devel-
opment in science with the deluge of papers.
Hence, keeping abreast with the current litera-
ture is one of the most significant challenges
to present-day researchers. However, if one
can query a scientific article, they can quickly
comprehend it and elicit the required informa-
tion. Hence, a question-answering (QA) sys-
tem on scholarly articles would be a helpful
assistant for researchers to survey the litera-
ture. Recently logic-infused deep networks
have been showing good promise for solving
several downstream NLP tasks. Here in this
paper, we implement a neural network-based
symbolic approach for QA on scholarly arti-
cles. We incorporate logical boolean functions
into the deep network, significantly improving
the model’s performance without additional pa-
rameters. Further, we reduce the dependency
on domain-specific training data by using ex-
ternal knowledge from the ConceptNet. We
perform our experiments on the benchmark
ScholarlyRead dataset and achieve significant
performance improvement (∼ double) over the
baseline approach. We would make our code-
base available here 1.

1 Introduction

The explosive growth in the number of scholarly ar-
ticles is posing a significant information overload

1https://github.com/92noname/Neuro-Symbolic-QA-
Model-on-Scholarly-Articles

to the present-day researcher. Researchers spend a
considerable amount of their time finding relevant
articles and reading them to find answers to their
queries. As we all know literature survey is an es-
sential part of the research life cycle; however, it is
gradually becoming impossible to keep abreast with
all the knowledge even in a particular domain. With
the intrusion of Artificial Intelligence in almost all
spheres of life, it makes sense to have an intelligent
tool to query the scholarly literature to extract de-
sired answers. If researchers can get answers to some
usual and fundamental questions related to the article,
they can consume more literature in a given time and
hence tackle the scholarly burden. With this motiva-
tion, we explore the problem of question answering
(QA) on scholarly articles. We attempt to develop
a scientific article query model to help researchers
save time. Given a paragraph and a query, the aim
is to select start and end indices from the context (a
sequence of the words) that answers the question. A
usable QA model should comprehend the scholarly
text and extract target information from the discourse
upon a user query.

Our method makes use of symbolic logic (Besold
et al., 2017) incorporated into neural networks for
reasoning (Cingillioglu and Russo, 2018) over the
discourse upon a user query. In this paper, we take
advantage of the subtle connection between neural
networks and logic (Anthony, 2003). We use the do-
main knowledge articulated as the first-order logic
predicates. We directly incorporate the structural
knowledge into a deep neural network model (BiDAF
(Seo et al., 2016)) without any changes in the train-
ing. We use the popular BiDAF (Bidirectional Atten-



tion Flow) model as the baseline here. In this model,
query words line up with the context words in the hid-
den layer for finding the answer indices. We consider
augmenting an external resource, ConceptNet, to find
relations (such as synonyms, is-a, distinct) between
the words in our proposed model. Our main contri-
bution in the current work is to build a robust QA
system by injecting logical rules into a deep neural
framework that achieves state-of-the-art performance
for the benchmark ScholaryRead dataset (Saikh et
al., 2020).

We organize the rest of our paper as follows. Sec-
tion 2 discusses the related work. Section 3 defines
the task. Section 4 and Section 5 explain the prob-
lem setup and augmented BiDAF model with logic,
respectively. We present the dataset description in
Section 6. Section 7 presents our results and error
analysis. Analysis and observation are in Section 7.5.
Finally, Section 8 concludes with our findings and
directions to work further.

2 Related Work

In this section, we focus on some notable works for
question answering in NLP. We also perform surveys
of some recent works where the infusion of logic
in neural models has proven effective for the down-
stream NLP tasks.

2.1 Question Answering

Question answering from document discourse is a
very popular NLP task that simulates machine read-
ing comprehension. Kadlec et al. (2016) used a sim-
ple model which directly extracts the answer from
the context via the neural attention mechanism. The
answer is only one word in the model. Hermann et al.
(2015) presents a dynamic attention-based model that
performs better than a single fixed query vector to
attend on context words on CNN/Daily Mail dataset.
Allam and Haggag (2012) provides an overview of
QA and its system architecture and the previous
related work comparing each research against the
others concerning the cover components and the ap-
proaches that follow. Usbeck et al. (2019) present
a new online benchmarking framework for QA that
relies on the FAIR (Findable, Accessible, Interopera-
ble, Re-Usable) principles to support the fine-grained
evaluation of QA systems. Gupta et al. (2021) pro-

posed a hierarchical-based deep multi-modal neural
network that classifies end-user questions and then
incorporates a query-specific approach for answer
prediction. Esteva et al. (2020) presented a retriever-
ranker semantic search engine designed to handle
complex queries over the COVID-19 articles, poten-
tially aiding overburdened health workers in finding
scientific answers during a time of crisis. Liakata et
al. (2013) presented an approach that exploits auto-
matically generated scientific discourse annotations
to create a content model for summarising scientific
articles and finally demonstrated the usefulness of
the summaries by evaluating them in a complex ques-
tion answering task. Kolomiyets and Moens (2011)
presented the QA task from an information retrieval
perspective. It emphasizes the importance of retrieval
models, i.e., representations of questions and infor-
mation documents and retrieval functions used to
estimate the relevance between a query and an an-
swer candidate.

2.2 Neural Networks with Logic

Anthony (2003) investigate the bridge between the
neural network and the boolean functions. Hu et al.
(2016) implements a systematic distillation method
that conveys the structural knowledge of logic rules
into the neural network’s weights. In Chang et al.
(2012), the authors present a Constrained Condi-
tional Models (CCMs) framework that augments lin-
ear models with declarative constraints as a way to
support decisions in an expressive output space while
maintaining modularity and tractability of training.
In this work, (Srikant and O’Reilly, 2021) reviewed
three sets of recent results in human cognition exper-
iments in natural language comprehension, in natural
language inference, and computer program compre-
hension, a field bearing similarities to natural lan-
guage. In this paper, (Ma et al., 2019) performed a
survey of recent commonsense QA methods. They
systematically analyzed the popular knowledge re-
sources and knowledge integration methods across
benchmarks from multiple commonsense datasets.
Liu and Singh (2004) introduced a large-scale knowl-
edge base such as ConceptNet, which we also use in
our current work for injecting additional knowledge
to our model.

Our work is inspired from Saikh et al. (2020) for
QA on scholarly papers, but with an additional infu-



Figure 1: Example of reading comprehension from the
ScholarlyRead dataset (Saikh et al., 2020).

sion of logic with deep neural network models.

3 Task Definition

Given an abstract of a scientific paper, the input to
the model is the context c1, c2, c3, .......cm and the
query is q1, q2, q3. . . . . . qn. The output should be
ci, ci+1, ............ck. where m >= k. There can be
multiple questions in a given context, as shown in
Figure 1. The task is to extract the relevant answers
from the text under concern (see the highlighted por-
tions in multiple colors in the above figure).

4 Problem Setup

This section discusses the notations, assumptions,
how to incorporate the logic into the neural network,
constrained and constrained auxiliary layer, and steps
of building an augmented neural network model for
the problem at hand.

4.1 Notations and Assumptions
The architecture of the neural network is a kind of
directed graph. Let us consider a directed graph G
(V, E), where V (nodes) represents the network’s
neurons, and E (edges) shows the direction of the
information process between the two nodes. Let us
assume that the directed graph G has two nodes, a
and b. If the edge is from a to b, then a is an upstream
neuron, and b is a downstream neuron. The semantics
of some nodes (extra neurons) will assign with the
model design (on the attention layer). We will assume
extra neurons are given (such as word relatedness
from the ConceptNet). The main objective is to use
the declarative rule (logic) to augment the neural

Figure 2: Examples of the computation graph. Here,
a1, a2, a3 represent the neurons of the layer A and b1,
b2 represent the neurons of the layer B and show the
information flow from layer A to layer B.

network with some extra neurons. In the rest of the
paper, uppercase letters (Ai, Bi) denote the predicate
graphs associated with the computation graph, and
lower case letters (ai, bi) represent the nodes in the
computation graph.

4.2 Incorporating Soft Logic in Neural
Network

Extra edges are incorporated to add logic to the neural
network (for augmenting word relation nodes in the
neural network) into the computation graph. Before
augmenting the computation graph with conditional
form, we need to check the cycle in the constraints.
Let us define the cyclicity in a conditional statement
as:

The statement A1 ∧B1 → A2 ∧B2 is cyclic with
respect to the graph. in contrast, the statement A1 ∧
A2 → B1 ∧B2 is acyclic as shown in Figure 2.

We will focus on the conditional statements of the
form Z → Y . Here, Z is the antecedent that can be
conjunction or disjunction of literals, and Y is the
consequent consisting of a single literal. The neuron
associated with Y is defined as:

y = g(Wx) (1)

Where g is an activation function, W represents the
weight of the network, and x is the input. In order to



Figure 3: (a) End-to-end BiDAF model and (b) The computation graph of the attention layer of the Augmented
BiDAF model is shown enlarged. Computation graph attention layer using R2. The red neuron represents the
relation of the words. Constrained attention and score are represented a’ and s’, respectively.

insert logic into the neural network, some conditions
must be satisfied in the conditional statement:

1. Conditional statement must be in Z→ Y form.
2. In conditional statement Z→ Y, Z must be in

conjunctive/disjunctive form, and Y is single
literal.

3. Conditional statement Z→ Y must be in acyclic
form.

4.2.1 Constrained Layer
Let us assume that z be the neuron’s vector, and Z

is predicate logic, and z is connecting with the predi-
cate logic in Z. With the help of distance function, we
can adjust the score of the downstream neurons based
on the state of upstream neurons. The constrained
neural layer is defined as:

y = g(Wx+ ρd(z)) (2)

Our objective is to increase the value of y whenever
Z is true. Here, d is a distance function, and ρ is an
actual value hyperparameter where ρ ≥ 0.

1. Distance Function : The ideal distance func-
tion we want is the indicator for statement Z.

dideal(z) =

{
1, if Z holds,
0, otherwise.

(3)

2. Scaling : Distance function controls the pre-
activation score of downstream neurons. The
scaling factor controls the neuron’s score. When
ρ is positive, the distance function will dominate
the downstream neurons. When the value of ρ
is negative or significantly less (close to zero),
the output depends on both Wx and distance
function.

4.2.2 Constrained Auxiliary Layers
For the bidirectional constraint Y↔ Z, we define

a constrained auxiliary layer as:

y = d(z) (4)

Where d is a distance function, and z and y are the
upstream and downstream neurons, respectively. The
advantage of this layer is that we can use the same
distance function as shown in Table 1.



Logic Operations Distance function d(z1, z2)
z1 AND z2 max(0, z1+z2-1)
z1 OR z2 min(1, z1+z2)
NOT z2 (1-z1)

Table 1: Distance Function

4.3 Building Augmented Neural Network
Here, the steps to build a neural augmentation net-
work from the given conditional statements and com-
putational graphs are described as below:

1. First, ensure that all the antecedents are in con-
junctive normal form (CNF) and Disjunctive
normal form (DNF).

2. Convert the CNF/DNF antecedents into the dis-
tance functions using the constrained Table 1.

3. Using the distance function, build the con-
strained layer and constrained auxiliary layer by
replacing the original layer with the constraint
layer.

4. Use the logic augmented neural network for end-
to-end training.

5 Methodology

The logic augmented BiDAF model is shown in Fig-
ure 3. Figure 3a shows the BiDAF model, and Figure
3b shows the augmentation of the logic ruleR2 (equa-
tion 6) to the attention layer of the BiDAF model.
The word relatedness layer contains the relation be-
tween the query words and the context words. These
relations are extracts using the ConceptNet.

The model starts with a context sequence of words
P = p1, ..., pn and query sequence of words Q =
q1, ..., qm. It returns a continuous sub-sequence of
words (span) S = pi, ..., pi+j as output that represents
the best possible answer for the query. We perform
the experiments for logic augmented neural network
over ScholarlyRead dataset and compare the results
with the BiDAF model (Seo et al., 2016).

5.1 Augmented BiDAF Model
Augmented BiDAF is a multi-stage hierarchical
model. The model has six layers, viz. (i). Char-
acter Embedding layer, (ii). Word Embedding layer,
(iii). Contextual Embedding layer, (iv). Attention

Flow layer, (v). Modeling layer, and (vi). Output
layer. The input layer is divided into: (a). Character
Embedding layer and (b). Word Embedding layer.
We briefly describe each layer below:

5.1.1 Input Embedding Layer
This layer is responsible for mapping every word

into high dimensional vector. Let p1, ...pt and
q1, ...qj represent the words in the input context
paragraph and query, respectively. Character con-
volutional neural network (CNN) generates character
embeddings to handle the out-of-vocabulary (OOV)
words. For the word level embedding, we use the pre-
trained word vector Glove (Pennington et al., 2014).
Character level embedding and word-level embed-
ding are are concatenating and pass to the highway
network (Srivastava et al., 2015).

5.1.2 Contextual Embedding Layer
In the contextual layer, we use the bi-directional

long short-term memory (Bi-LSTM). The output of
the highway network is passed to the bi-directional
LSTM networks. In this layer, we utilize contextual
cues from the surrounding words to filter the word
embedding.

5.1.3 Bi-directional Attention Flow (Attention
guide with external source)

In the BiDAF model, Seo et al. (2016) calculate
the attention in two directions: query to context
and context to query. In the Augmented BiDAF
model, we guide the attention value with the help of
a knowledge-driven approach for which we use Con-
ceptNet. The augmented model on attention layer
using logic (Section 5.2) is shown in Figure 3.

5.1.4 Modeling Layer
The query-conscious representations of context

words are input to the modeling layer. The output
of this layer uses to capture the information (words)
which interacts among the context words and query
words.

5.1.5 Output Layer
The output layer gives the probability of start and

end indices. These two indices with the highest prob-
abilities correspond to the answer’s position where it
starts and ends in the context.



S.No Error Type Example

1
Imprecise

answer
boundaries

Context: The goal of every network routing protocol is to direct the traffic from source
to destination maximizing the network performance. The Ant Colony Optimization ACO
based routing protocol is efficient when used to dynamically route traffic.

Question: What kind of outing protocol is efficient ?

Prediction 1 : Colony Optimization ACO
Prediction 2 : Ant Colony Optimization
Answer: Ant Colony Optimization

2

Syntactic
complications

and
ambiguities

Context: This results in lowered network efficiency and poor Quality of Service QoS.
A number of routing protocols have been developed to deal with network traffic. The
goal of every network routing protocol is to direct the traffic from source to destination
maximizing the network performance. The Ant Colony Optimization ACO based
routing protocol is efficient when used to dynamically route traffic.

Question: How does The Ant Colony Optimization based routing protocol efficient?

Prediction 1 : network efficiency
Prediction 2 : route traffic
Answer: route traffic

3 Paraphrase problems

Context: This results in lowered network efficiency and poor Quality of Service QoS.
A number of routing protocols have been developed to deal with network traffic.
The goal of every network routing protocol is to direct the traffic from source to
destination maximizing the network performance.

Question: What is the goal of every network routing protocol in this paper ?

Prediction 1 : network efficiency
Prediction 2 : network performance
Answer: network performance

4 External Knowledge

Context: Congestion packet loss and increased response-time due to network traffic
are common problems in most networks. This results in lowered network efficiency
and poor Quality of Service QoS. A number of routing protocols have been developed
to deal with network traffic. The goal of every network routing protocol is to direct
the traffic from source to destination maximizing the network performance. The Ant
Colony Optimization ACO based routing protocol is efficient when used to
dynamically route traffic.

Question: What does priority scheme improve ?

Prediction 1 : Congestion packet loss
Prediction 2 : ACO algorithm
Answer: ACO algorithm

5
Incorrect

preprocessing

Context: In this paper we propose the possibility for 3G operators to share those
community-deployed wireless infrastructures for their 3G backhauling needs.
This would permit them to have a low-cost backhaul solution for their rural
3G small cells in those areas where the expected demand of 3G services does
not ensure enough revenues to justify the deployment of dedicated infrastructures.

Question: What kind of need that make 3 G operators to share those community -
deployed wireless infrastructures ?

Prediction 1 : G backhauling
Prediction 2 : 3G backhauling
Answer: 3G backhauling

Table 2: The examples for each category of error using BiDAF in ScholarlyRead dataset which are resolved
with BiDAF+R1 . The baseline model BiDAF results are shown by prediction 1 (Saikh et al., 2020) and the
augmented model using rule R1 results are shown by prediction 2. Showing the ground truth labels by answer.



5.2 Augmentation Rule
We adopt the augmentation rules from Li and Sriku-
mar (2019). They are using external knowledge
source such as ConceptNet to guide the attention
neurons. First, we define the following notations:

1. Mij : If the paragraph word pi related to query
word qj using the ConceptNet edges.

2. Aij : pi match with qj based on the uncon-
strained model decision.

3. A′
ij : pi match with qj based on the constrained

model decision.

Using these notations, we define two rules:
Let C be a set of words in paragraph and query word:

1. According to the rule R1 that if two words are
related so they should be aligned :

R1 : ∀i,j ∈ C,Mij → A′
ij (5)

2. Rule R2 align the two related words when the
constrained and unconstrained models agree
over a similar decision.

R2 : ∀i,j ∈ C,Mij ∧Aij → A′
ij (6)

6 Dataset Description

For training our model, we use the ScholarlyRead
dataset from Saikh et al. (2020). The dataset is span-
of-word-based prediction (Span Prediction) for Ma-
chine Reading Comprehension (MRC), where the
model has to extract span-of-words as the answer to
a query based on the context. Essentially the dataset
contains questions with their corresponding answer
span from the context. It comprises approximately
300 articles from two Elsevier Computer Science
journals, viz. Artificial Intelligence (ARTINT) and
Computer Networks (COMNET), in which approx-
imately 10K data samples (context, query, answer)
are manually annotated. The number of instances in
training, validation and the test sets are 8500, 1500,
500, respectively. In this dataset, the authors use the
abstract of the research articles as the context because
the abstract contains the scientific article’s summary.
Our analysis shows that possible answers cover 6.5 %
proper nouns, 46.5 % common nouns, 17.7 % plural
nouns, 21 % adjectives, 3.5 % verbs and 4.8 % others.
Kindly refer to the dataset paper for more details on
the dataset construction and organization.

7 Experiments, Results and Analysis

We train two versions of the augmented BiDAF
model with rules R1 and R2. We keep the configura-
tion of the models, hyperparameters identical in both
cases.

7.1 Experimental Setup and Evaluation
Metrics

We train the models using 8500 samples and validate
on 1500 samples. The length of the longest para-
graph in the training set is 624 tokens, and the length
of the most extended query is 37 tokens. For repre-
sentation, we use the Glove pre-trained embeddings
(Pennington et al., 2014) having dimensions of 300.
Along with word embeddings, we also use charac-
ter embeddings to obtain better representation for
out-of-vocabulary (OOV) words. For the character
embeddings, we use a convolutional neural network
(CNN). We use one dimension filters for CNN charac-
ter embedding, each with a width of 7. We use a two-
layer highway network (Srivastava et al., 2015) for
the concatenation of word and character embeddings.
Finally, we test the model on 500 instances. We use
two evaluation matrices, F1 and Exact Match (EM),
to evaluate the model’s performance. F1 measures
the overlap portion between prediction and ground
truth answer while EM finds if the prediction matches
exactly the ground truth. If the prediction and the
ground truth are the same, the Exact Match score is 1;
otherwise, 0. We tokenize each paragraph and query
via the Spacy 2 tokenizer. The hidden dimension of
the model is 100. The total number of training pa-
rameters is 2.6 million. We train the model for 35
epochs with the learning rate and dropout as 0.001
and 0.2, respectively, and use the Adam (Kingman
and Ba, 2015) optimizer.

7.2 Baseline

We compare our model with the BiDAF model as a
baseline (Seo et al., 2016). The BiDAF basic architec-
ture has six central layers: 1) Character Embedding
layer, 2) Word Embedding layer, 3) Contextual Em-
bedding layer, 4) Attention Flow layer, 5) Modeling
layer, and 6) Output layer. This model has a fairly
standard template, which we also follow in our aug-
mented model architecture.

2https://spacy.io/api/tokenizer



Model F1 Score Exact Match
BiDAF 37.3 20.6
BiDAF+R1 74.9 61.0
BiDAF+R2 74.6 60.8

Table 3: Evaluation results on the ScholarlyRead
dataset. Each score represents the average span F1
score and Exact Match on our test set.

7.3 Results
We train the models using ScholarlyRead training
data and monitor the training performance of the
model on the validation set. We compare the results
of the augmented models (i.e. BiDAF + R1 and
BiDAF + R2) with the baseline model (i.e. BiDAF)
on the ScholarlyRead test set. We report the final
EM and F1 scores on the test set in Table 3. We
can clearly see that incorporating logic in the neural
network model improves the baseline performance by
a significant extent. BiDAF with constraints R1 and
R2 achieve F1 scores as 74.6 and 74.9, respectively,
which improves the F1 score almost by double over
the BiDAF (baseline) model. The model shows the
exact match (EM) scores of 60.8 and 61.0 for the
constraints R1 and R2, respectively. This improves
EM by +40.4 points over the BiDAF model. Rule R1

is simple straight forward and another rule R2 which
is more conservative compared to R1. Augmented
model performs better with rule R1 compared to the
rule R2. So the BiDAF with constraint R1 achieves
the best performance.

7.4 Comparing Systems
In this section, we compare the BiDAF and aug-
mented BiDAF models. We describe each layer of
the augmentation model in Section 1.5. The logic is
augmented at the attention layer of the BiDAF model.
The attention layer is guided using a knowledge-
driven method. In the BiDAF model is computing
the attention in two directions, i.e. context-to-query
and query-to-context. We incorporate logic in the
context to query attention weight and vice-versa.

7.5 Analysis
Table 2 presents the output of the BiDAF (Saikh et
al., 2020) and logic augmented model on the Schol-
arlyRead dataset. It is observed that the logic aug-
mented model resolves the type of errors that the

Train % Data BiDAF+R1 BiDAF+R2
10% Squad 61.5 60.7
10% ScholarlyRead 52.6 47.5
100% Squad 77.4 77.0
100% ScholarlyRead 74.9 74.6

Table 4: Comparison of Squad and ScholarlyRead
dataset on constraint R1 and R2. Each score repre-
sents the average span F1 on our test set

BiDAF model encounters.

1. External Knowledge: Such errors occur when
the model needs extra knowledge to understand
the question and extract the answer from the
paragraph. As shown in Table 2, example no.
4. In this example, the priority schema is not
explained and not even mentioned. So to answer
this question, we will need extra knowledge. In
the augmented model, we solve such errors with
the help of ConceptNet. Using the Concept-
Net knowledge graph, we extract the relations
between each word of the query and paragraph.
Attention scores are calculated based on the sim-
ilarity of the query and paragraph words. The
best probability scores for the starting and end-
ing indices of the answer in the paragraph are
generated.

2. Answer paraphrase problem: Sometimes, the
generated answer strings correspond to the para-
phrase strings of the original ground truth. Ta-
ble 2 shows example no. 3 of such problems.
The correct answer is network performance, but
the predicted answer by the BiDAF model is
network efficiency. There are similarities in
the meaning of the words performance and ef-
ficiency. This error is high due to the lack of
knowledge of words related to the model. In
the augmented model, we solve the paraphras-
ing problem with the help of the ConceptNet
knowledge graph.

3. Syntactic complications and ambiguities: Sen-
tence ambiguity is a challenge for the model
while generating the answers. The attention-
based model is unable to resolve semantic com-
plexity correctly. In Table 2 example no. 2, the
semantic complexity between the context word
network efficiency and the query word protocol



is efficient. We have solved this type of error
with the help of external knowledge (such as
ConceptNet). The model needs extra knowledge
for correct word alignment. We extracted the
synset of each related word of context and query
from external knowledge to learn the model bet-
ter.

4. Incorrect Pre-processing: These types of errors
occur when the dataset has noise or the tokens
having special symbols (such as !, #, &, *) mis-
match between the paragraph and answers to-
kens. In the given example of ‘incorrect prepro-
cessing’ in Table 2 example no. 5, in BiDAF,
the word 3G is tokenized into two tokens (3 and
G). Due to this, there is a mismatch between the
index of the answer on the given dataset and the
index of the answer in the context file. Keeping
this error in mind, we paid more attention to
special symbols of context and answer files.

5. Imprecise answer boundaries: Only attention-
based model cannot resolve this error. For this,
we will need extra knowledge. Our Augmented
Bidaf model can predict the boundary of the
answer using external knowledge such as Con-
ceptnet.

We also present the results of the augmented model
for the Squad and ScholarlyRead datasets. The com-
parison of the results on both the dataset is shown in
Table 4.

8 Conclusion and Future Work

In this paper, we present a logic-infused deep neural
network for question answering on scholarly articles.
We incorporate the logic at the attention layer of
the popular BiDAF model. We also show how to
convert first-order logic into the differentiable com-
ponent without using extra learnable parameters. Our
augmented models (BiDAF+R1 and BiDAF+R2) suc-
cessfully outperform the baseline BiDAF model by a
significant margin (+37.6 points improvement over
the baseline model in terms of F1 score). We observe
that the rule R1 performs better with the BiDAF than
the rule R2. In the future, we will explore the effec-
tiveness of infusing first-order logic into a dynamic
language model like BERT for the same task. Re-
search in this problem would prove helpful for the

researchers who would want to survey multiple arti-
cles in a short time and thus accelerate the literature
survey phase in the research life cycle.

References

Ali Mohamed Nabil Allam and Mohamed Hassan Hag-
gag. 2012. The question answering systems: A survey.
International Journal of Research and Reviews in In-
formation Sciences (IJRRIS), 2(3).

Martin Anthony. 2003. Boolean functions and artificial
neural networks. Boolean Functions, 2.

Tarek R Besold, Artur d’Avila Garcez, Sebastian Bader,
Howard Bowman, Pedro Domingos, Pascal Hitzler, Kai-
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