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Abstract

Using topic modeling and lexicon-based word
similarity, we find that stories generated by
GPT-3 exhibit many known gender stereo-
types. Generated stories depict different top-
ics and descriptions depending on GPT-3’s per-
ceived gender of the character in a prompt,
with feminine characters1 more likely to be as-
sociated with family and appearance, and de-
scribed as less powerful than masculine char-
acters, even when associated with high power
verbs in a prompt. Our study raises questions
on how one can avoid unintended social biases
when using large language models for story-
telling.

1 Introduction

Advances in large language models have allowed
new possibilities for their use in storytelling, such
as machine-in-the-loop creative writing (Clark
et al., 2018; Kreminski et al., 2020; Akoury et al.,
2020) and narrative generation for games (Raley
and Hua, 2020). However, fictional stories can re-
inforce real stereotypes, and artificially generated
stories are no exception. Language models mimic
patterns in their training data, parroting or even
amplifying social biases (Bender et al., 2021).

An ongoing line of research examines the nature
and effects of these biases in natural language gen-
eration (Sheng et al., 2020; Wallace et al., 2019;
Shwartz et al., 2020). Language models gener-
ate different occupations and levels of respect for
different genders, races, and sexual orientations
(Sheng et al., 2019; Kirk et al., 2021). Abid et al.
(2021) showed that GPT-3’s association of Mus-
lims and violence can be difficult to diminish, even
when prompts include anti-stereotype content.

Our work focuses on representational harms in
generated narratives, especially the reproduction

1We use “feminine character" to refer to characters with
feminine pronouns, honorifics, or names, and ditto for “mas-
culine character". See §3.1 for details.

Douloti understood some and didn’t understand some. But
he didn’t care to understand. It was enough for him to know
the facts of the situation and why his mother had left ...
Douloti understood some and didn’t understand some. But
more, she could tell that Nenn had sympathy for one who
had given up life. Sister Nenn went on with her mending ...

Figure 1: GPT-3 can assign different gender pronouns
to a character across different generations, as shown
in this example using a prompt, in bold, pulled from
Mahasweta Devi’s Imaginary Maps.

of gender stereotypes found in film, television, and
books. We use GPT-3, a large language model
that has been released as a commercial product and
thus has potential for wide use in narrative gener-
ation tasks (Brown et al., 2020; Brockman et al.,
2020; Scott, 2020; Elkins and Chun, 2020; Bran-
wen, 2020). Our experiments compare GPT-3’s
stories with literature as a form of domain con-
trol, using generated stories and book excerpts that
begin with the same sentence.

We examine the topic distributions of books
and GPT-3 stories, as well as the amount of at-
tention given to characters’ appearances, intellect,
and power. We find that GPT-3’s stories tend to
include more masculine characters than feminine
ones (mirroring a similar tendency in books), and
identical prompts can lead to topics and descrip-
tions that follow social stereotypes, depending on
the prompt character’s gender. Stereotype-related
topics in prompts tend to persist further in a story
if the character’s gender aligns with the stereotype.
Finally, using prompts containing different verbs,
we are able to steer GPT-3 towards more intel-
lectual, but not more powerful, characters. Code
and materials to support this work can be found at
https://github.com/lucy3/gpt3_gender.

2 Data

Our prompts are single sentences containing main
characters sampled from 402 English contempo-
rary fiction books, which includes texts from the

https://github.com/lucy3/gpt3_gender
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Black Book Interactive Project, global Anglophone
fiction, Pulitzer Prize winners, and bestsellers re-
ported by Publisher’s Weekly and the New York
Times. We use BookNLP to find main characters
and sentences containing them (Bamman et al.,
2014). We define a main character as someone who
is within their book’s top 2% most frequent charac-
ters and mentioned at least 50 times. Every prompt
is longer than 3 tokens, does not contain feminine
or masculine pronouns, is from the main narrative
and not dialogue, and contains only one single-
token character name. This results in 2154 charac-
ters, with 10 randomly selected prompts each.

We use the GPT-3 API to obtain 5 text com-
pletions per prompt, with the davinci model, a
temperature of 0.9, and a limit of 1800 tokens. A
high temperature is often recommended to yield
more “creative" responses (Alexeev, 2020; Bran-
wen, 2020). We also pull excerpts that begin with
each prompt from the original books, where each
excerpt length is the average length of stories gen-
erated by that prompt. This human-authored text
provides a control that contains the same main char-
acter names and initial content as GPT-3 data. The
collection of generated stories contains over 161
million tokens, and the set of book excerpts con-
tains over 32 million tokens.

3 Text processing methods

We use BookNLP’s tokenizer and dependency
parser on our data (Underwood et al., 2018; Bam-
man et al., 2014), followed by coreference reso-
lution on named entities using the model anno-
tated and trained on literature by Bamman et al.
(2020). Pronoun chains containing the same char-
acter name within the same story are combined.

3.1 Gender inference

Depending on the context, gender may refer to a
person’s self-determined identity, how they express
their identity, how they are perceived, and others’
social expectations of them (Cao and Daumé III,
2020; Ackerman, 2019). Gender inference raises
many ethical considerations and carries a risk of
harmful misgendering, so it is best to have individ-
uals self-report their gender (Larson, 2017). How-
ever, fictional characters typically do not state their
genders in machine-generated text, and GPT-3 may
gender a character differently from the original
book. Our study focuses on how GPT-3 may per-
ceive a character’s gender based on textual features.

Thus, we infer conceptual gender, or gender used
by a perceiver, which may differ from the gender
experienced internally by an individual being per-
ceived (Ackerman, 2019).

First, we use a character’s pronouns (he/him/his,
she/her/hers, their/theirs) as a rough heuristic for
gender. For book character gender, we aggregate
pronouns for characters across all excerpts, while
for generated text, we assign gender on a per-story
basis. Since coreference resolution can be noisy,
we label a character as feminine if at least 75%
of their pronouns are she/her, and a character as
masculine if at least 75% of their pronouns are
he/his. The use of pronouns as the primary gen-
dering step labels the majority of main characters
(Figure 2). This approach has several limitations.
Gender and pronoun use can be fluid, but we do
not determine which cases of mixed-gender pro-
nouns are gender fluidity rather than coreference
error. Coreference models are also susceptible to
gender biases (Rudinger et al., 2018), and they are
not inclusive of nonbinary genders and pronouns
(Cao and Daumé III, 2020).

Out of 734,560 characters, 48.3% have no pro-
nouns. For these characters, we perform a second
step of estimating expected conceptual gender by
name, first using a list of gendered honorifics if
they appear.2 Then, if a name has no pronouns or
honorifics, we use U.S. birth names from 1990 to
2019 (Social Security Administration, 2020), la-
beling a name as a gender if at least 90% of birth
names have that gender. This step also has limita-
tions. The gender categories of names are not ex-
act, and the association between a name and gender
can change over time (Blevins and Mullen, 2015).
Some cultures do not commonly gender names,
and U.S. name lists do not always generalize to
names from other countries. Still, humans and
NLP models associate many names with gender
and consequently, with gender stereotypes (Bjork-
man, 2017; Caliskan et al., 2017; Nosek et al., 2002;
Moss-Racusin et al., 2012). We assume that GPT-3
also draws on social connotations when generating
and processing names. We hope that future work
can further improve the respectful measurement of
gender in fiction.

All book excerpts and generated stories are more
likely to have masculine characters, and in ones
with feminine main characters in the prompt, there
is a slightly smaller gap between feminine and mas-

2The full of list of honorifics is in our Github repo.
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Figure 2: Frequency of masculine (M), feminine (F),
and other (O) main prompt characters in our datasets.
Bars are colored by gendering method.

culine characters (Figure 3). This pattern persists
even when only looking at pronoun-gendered char-
acters, who are referred to multiple times and are
likely to play larger roles. Our results echo previous
work that show that English literature pays more
attention to men in text (Underwood et al., 2018;
Kraicer and Piper, 2018; Johns and Dye, 2019).

3.2 Matched stories

Prompts containing main characters of different
genders may also contain different content, which
can introduce confounding factors when isolating
the effect of perceived gender on generated sto-
ries. We also run all our experiments on a subset
of 7334 paired GPT-3 stories. Every prompt does
not contain gendered pronouns and is used to gen-
erate multiple stories. GPT-3 may assign different
gender pronouns to the main character in the same
prompt across different stories (Table 1). We find
cases where this occurs, randomly pairing stories
with the same prompt, where one has the main
character associated with feminine pronouns and
another has them associated with masculine pro-
nouns. In this setup, we exclude stories where the
main character in the prompt is gendered by name.

4 Topic differences

Given this dataset of book excerpts and stories gen-
erated by GPT-3, we carry out several analyses
to understand the representation of gender within
them. We focus on overall content differences be-
tween stories containing prompt characters of dif-
ferent genders in this current section, and lexicon-
based stereotypes in §5.

4.1 Method

Topic modeling is a common unsupervised method
for uncovering coherent collections of words across

Figure 3: On average, there are more masculine charac-
ters in each GPT-3 story or book excerpt. Each column
is the gender of the prompt character, and the bars are
colored by gendering method. Error bars are 95% con-
fidence intervals.

narratives (Boyd-Graber et al., 2017; Goldstone
and Underwood, 2014). We train latent Dirich-
let allocation (LDA) on unigrams and bigrams
from book excerpts and generated stories using
MALLET, with 50 topics and default parame-
ters. We remove character names from the text
during training. For each topic t, we calculate
∆T (t) = P (t|F )−P (t|M), where P (t|M) is the
average probability of a topic occurring in stories
with masculine main characters, and P (t|F ) is the
analogous value for feminine main characters.

4.2 Results
Table 1 shows that generated stories place mascu-
line and feminine characters in different topics, and
in the subset of matched GPT-3 stories, these dif-
ferences still persist (Pearson r = 0.91, p < 0.001).
Feminine characters are more likely to be discussed
in topics related to family, emotions, and body
parts, while masculine ones are more aligned to
politics, war, sports, and crime. The differences in
generated stories follow those seen in books (Pear-
son r = 0.84, p < 0.001). Prompts with the same
content can still lead to different narratives that
are tied to character gender, suggesting that GPT-3
has internally linked stereotypical contexts to gen-
der. In previous work, GPT-3’s predecessor GPT-2
also places women in caregiving roles (Kirk et al.,
2021), and character tropes for women emphasize
maternalism and appearance (Gala et al., 2020).

We also use our trained LDA model to infer topic
probabilities for each prompt, and examine prompts
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topic high probability words all
GPT-3

matched
GPT-3

life really, time, want, going, sure, lot,
feel, little, life, things

0.018 0.010

family baby, little, sister, child, girl, want,
children, father, mom, mama

0.014 0.007

appearance woman, girl, black, hair, white,
women, looked, look, face, eyes

0.007 0.006

politics people, country, government, presi-
dent, war, american, world, chinese,
political, united states

-0.008 -0.003

war men, war, soldiers, soldier, general,
enemy, camp, fight, battle, fighting

-0.008 -0.006

machines plane, time, air, ship, machine, pilot,
space, computer, screen, control

-0.008 -0.004

Table 1: Feminine and masculine main characters are
associated with different topics, even in the matched
prompt setup. These topics have the biggest ∆T in all
GPT-3 stories, and these differences are statistically sig-
nificant (t-test with Bonferroni correction, p < 0.05).

Figure 4: Prompt character gender is related the prob-
ability of a generated story continuing the family and
politics topics. Each dot is a GPT-3 story, and the larger
dots are means with 95% confidence intervals.

with a high (> 0.15) probability of a topic with gen-
der bias, such as politics or family. We chose this
threshold using manual inspection, and prompts
that meet this threshold tended to have at least one
topic-related word in them. When prompts con-
tain the family topic, the resulting story tends to
continue or amplify that topic more so if the main
character is feminine (Figure 4). The reverse occurs
when prompts have a high probability of politics:
the resulting story is more likely to continue the
topic if the main character is masculine. So, even
if characters are in a prompt with anti-stereotypical
content, it is still challenging to generate stories
with topic probabilities at similar levels as a char-
acter with the stereotype-aligned gender.

5 Lexicon-based stereotypes

Now, we measure how much descriptions of charac-
ters correspond to a few established gender stereo-
types. Men are often portrayed as strong, intelli-

gent, and natural leaders (Smith et al., 2012; Sap
et al., 2017; Fast et al., 2016b; Gala et al., 2020).
Popular culture has increased its attention towards
women in science, politics, academia, and law
(Long et al., 2010; Inness, 2008; Flicker, 2003).
Even so, depictions of women still foreground their
physical appearances (Hoyle et al., 2019), and por-
tray them as weak and less powerful (Fast et al.,
2016b; Sap et al., 2017). Thus, our present study
measures three dimensions of character descrip-
tions: appearance, intellect, and power.

5.1 Method

Words linked to people via linguistic dependencies
can be used to analyze descriptions of people in
text (Fast et al., 2016b; Hoyle et al., 2019; Lucy
et al., 2020; Bamman et al., 2013; Sap et al., 2017).
These words can be aligned with lexicons curated
by human annotators, such as Fast et al. (2016b)’s
categories of adjectives and verbs, which were used
to measure gender stereotypes in online fiction.

We train 100-dimensional word2vec embeddings
(Mikolov et al., 2013) on lowercased, punctuation-
less generated stories and books, using default pa-
rameters in the gensim Python package. We ex-
tract adjectives and verbs using the dependency
relations nsubj and amod attached to main char-
acter names and their pronouns in non-prompt text.
For masculine and feminine characters, we only
use their gender-conforming pronouns.

To gather words describing appearance, we com-
bine Fast et al. (2016b)’s lexicons for beautiful and
sexual (201 words). For words related to intellect,
we use Fast et al. (2016a)’s Empath categories con-
taining the word intellectual (98 words). For mea-
suring power, we take Fast et al. (2016b)’s lexicons
for strong and dominant (113 words), and contrast
them with a union of their lexicons for weak, de-
pendent, submissive, and afraid (141 words).

Counting lexicon word frequency can overem-
phasize popular words (e.g. want) and exclude
related words. Therefore, we calculate seman-
tic similarity instead. For appearance and intel-
lect, we compute the average cosine similarity of
a verb or adjective to every word in each lexicon.
For power, we take a different approach, because
antonyms tend be close in semantic space (Mrkšić
et al., 2016). Previous work has used differences
between antonyms to create semantic axes and com-
pare words to these axes (Kozlowski et al., 2019;
Turney and Littman, 2003; An et al., 2018). Let a
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Figure 5: Appearance, intellect, and power scores
across genders in books and GPT-3-generated stories.
Error bars are 95% confidence intervals. All differ-
ences between feminine and masculine characters are
significant (Welch’s t-test, p < 0.001), except for intel-
lect in matched GPT-3 stories.

be a word in the lexicon related to strength and b
be a word embedding from the lexicon related to
weakness. We use An et al. (2018)’s SEMAXIS to
calculate word x’s score:

S(x) = cos

x,
1

| A |
∑
a∈A

a− 1

| B |
∑
b∈B

b

 ,

where a positive value means x is stronger, and a
negative value means x is weaker. We z-score all
three of our metrics, and average the scores for all
words associated with characters of each gender.

5.2 Results
Book characters have higher power and intellect
than generated characters, but relative gender dif-
ferences are similar between the two datasets (Fig-
ure 5). As hypothesized, feminine characters are
most likely to be described by their appearance,
and masculine characters are most powerful. The
gender differences between masculine and femi-
nine characters for appearance and power persist
in matched GPT-3 stories, suggesting that GPT-3
has internally linked gender to these attributes. The
patterns for intellect show that feminine characters
are usually highest, though the insignificant differ-
ence in matched GPT-3 stories (p > 0.05) suggests
that this attribute may be more affected by other
content than gender.

We also test the ability of prompts to steer GPT-3
towards stronger and more intellectual characters.
We examine character descriptions in stories gener-

Figure 6: A comparison of stories generated by all
prompts with stories generated by prompts where char-
acters are linked to cognitive or high power verbs. Error
bars are 95% confidence intervals.

ated by prompts in which characters are the subject
of high power verbs from Sap et al. (2017)’s con-
notation frame lexicon, which was created for the
study of characters in film. We also examine GPT-3
stories with prompts where characters use cogni-
tive verbs from Bloom’s Taxonomy, which is used
to measure student learning, such as summarize,
interpret, or critique (Anderson et al., 2001). We
match verbs based on their lemmatized forms.

We find that prompts containing cognitive verbs
result in descriptions with higher intellect scores
(Figure 6). Prompts containing high power verbs,
however, do not lead to similar change, and non-
masculine characters with high power verbs still
have lower power on average than all masculine
characters. Traditional power differentials in gen-
der may be challenging to override and require
more targeted prompts.

6 Conclusion

The use of GPT-3 for storytelling requires a bal-
ance between creativity and controllability to avoid
unintended generations. We show that multiple
gender stereotypes occur in generated narratives,
and can emerge even when prompts do not contain
explicit gender cues or stereotype-related content.
Our study uses prompt design as a possible mech-
anism for mitigating bias, but we do not intend to
shift the responsibility of preventing social harm
from the creators of these systems to their users.
Future studies can use causal inference and more
carefully designed prompts to untangle the factors
that influence GPT-3 and other text generation mod-
els’ narrative outputs.
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Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
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