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Abstract

While natural language understanding of long-
form documents remains an open challenge,
such documents often contain structural infor-
mation that can inform the design of models
encoding them. Movie scripts are an exam-
ple of such richly structured text – scripts are
segmented into scenes, which decompose into
dialogue and descriptive components. In this
work, we propose a neural architecture to en-
code this structure, which performs robustly
on two multi-label tag classification tasks with-
out using handcrafted features. We add a layer
of insight by augmenting the encoder with an
unsupervised ‘interpretability’ module, which
can be used to extract and visualize narra-
tive trajectories. Though this work specifically
tackles screenplays, we discuss how the under-
lying approach can be generalized to a range
of structured documents.

1 Introduction

As natural language understanding of sentences and
short documents continues to improve, interest in
tackling longer-form documents such as academic
papers (Ren et al., 2014; Bhagavatula et al., 2018),
novels (Iyyer et al., 2016) and screenplays (Gorin-
ski and Lapata, 2018) has been growing. Analyses
of such documents can take place at multiple levels,
e.g. identifying both document-level labels (such
as genre) and narrative trajectories (how do levels
of humor and romance vary over the course of a
romantic comedy?). However, one key challenge
for these tasks is the low signal-to-noise ratio in
lengthy texts (as indicated by the performance of
such models on curated datasets like NarrativeQA
(Kočiský et al., 2018)), which makes it difficult to
apply end-to-end (E2E) neural network solutions
that have recently achieved state-of-the-art on other
tasks (Barrault et al., 2019; Williams et al., 2018;
Wang et al., 2019).
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Instead, models either rely on a) a pipeline that
provides a battery of syntactic and semantic in-
formation from which to craft features (e.g., the
BookNLP pipeline (Bamman et al., 2014) for lit-
erary text, graph-based features (Gorinski and La-
pata, 2015) for movie scripts, or outputs from a
discourse parser (Ji and Smith, 2017) for text cat-
egorization) and/or b) the linguistic intuitions of
the model designer to select features relevant to the
task at hand (e.g., rather than ingest the entire text,
Bhagavatula et al. (2018) only consider certain sec-
tions like the title and abstract of an academic pub-
lication). While there is much to recommend these
approaches, E2E neural modeling offers several
key advantages: it obviates the need for auxiliary
feature-generating models, minimizes the risk of
error propagation, and offers improved generaliza-
tion across large-scale corpora. This work explores
how the inherent structure of a document class can
be leveraged to facilitate an E2E approach. We
focus on screenplays, investigating whether we can
effectively extract key information by first segment-
ing them into scenes, and further exploiting the
structural regularities within each scene.

With an average of >20k tokens per script in
our evaluation corpus, extracting salient aspects
is far from trivial. Through a series of carefully
controlled experiments, we show that a structure-
aware approach significantly improves document
classification by effectively collating sparsely dis-
tributed information. Further, this method pro-
duces both document- and scene-level embeddings,
which can be used downstream to visualize narra-
tive trajectories of interest (e.g., the prominence
of various themes across a script). The overarch-
ing strategy of this work is to incorporate struc-
tural priors as biases into the neural architecture
itself (e.g., Socher et al. (2013), Strubell et al.
(2018), inter alia), whereby, as Henderson (2020)
observe, “locality in the model structure can re-
flect locality in the linguistic structure" to boost
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Figure 1: A portion of the screenplay for Pulp Fiction, anno-
tated with the common scene components.

accuracy over feature-engineering approaches. The
methods we propose can readily generalize to any
long-form text with an exploitable internal struc-
ture, including novels (chapters), theatrical plays
(scenes), chat logs (turn-taking), online games (lev-
els/rounds/gameplay events), and academic texts
(sections and subsections).

We begin by detailing how a script can be for-
mally decomposed first into scenes and further into
granular elements with distinct discourse functions,
in §2. We then propose an encoder based on hierar-
chical attention (Yang et al., 2016) that effectively
leverages this structure in §3. In §5.3, the pre-
dictive performance of the hierarchical encoder is
validated on two multi-label tag prediction tasks,
one of which rigorously establishes the utility of
modeling structure at multiple granularities (i.e. at
the level of line, scene, and script). Notably, while
the resulting scene-encoded representation is use-
ful for prediction tasks, it is not amenable to easy
interpretation or examination. To shed light on the
encoded document representations, in §4, we pro-
pose an unsupervised interpretability module that
can be attached to an encoder of any complexity.
§5.5 outlines our application of this module to the
scene encoder, and the resulting visualizations of
the screenplay, which illustrate how plot elements
vary over the course of the narrative arc. §6 draws
connections to related work, before concluding.

2 Script Structure

Movie and television scripts (or screenplays) are
traditionally segmented into scenes, with a rough
rule of thumb being that each scene lasts about a
minute on-screen. A scene is not necessarily a dis-
tinct narrative unit (which is most often a sequence
of several consecutive scenes), but is constituted by

a piece of continuous action at a single location.

Title Line Scene Type Character Text
Pulp Fiction 204 4 Scene EXT. APART..
Pulp Fiction 205 4 Action Vincent and Jules.
Pulp Fiction 206 4 Action We TRACK...
Pulp Fiction 207 4 Dial. VINCENT What’s her name?
Pulp Fiction 208 4 Dial. JULES Mia.
Pulp Fiction 209 4 Dial. VINCENT How did...

Table 1: Post-processed version of Fig.1.

Fig. 1 contains a segment of a scene from the
screenplay for the Pulp Fiction, a 1994 American
film. These segments tend to follow a standard
format. Each scene starts with a scene heading or
‘slug line’ that briefly describes the scene setting.
A sequence of statements follow, and screenwrit-
ers typically use formatting to distinguish between
dialogue and action statements (Argentini, 1998).
A dialogue identifies the character who utters it
either on- or off-screen (the latter is often indicated
with ‘(V.O.)’ for voice-over). Parentheticals might
be used to include special instructions regarding
dialogue delivery. Action statements are all non-
dialogue constituents of the screenplay “often used
by the screenwriter to describe character actions,
camera movement, appearance, and other details"
(Pavel et al., 2015). In this work, we consider ac-
tion and dialogue statements, as well as character
identities for each dialogue segment, ignoring slug
lines and parentheticals.

3 Hierarchical Scene Encoders

The large size of a movie script makes it com-
putationally infeasible for recurrent encoders to
ingest these screenplays as single blocks of text.
Instead, we propose a hierarchical encoder that mir-
rors the structure of a screenplay (§2) – a sequence
of scenes, each of which is an interwoven sequence
of action and dialogue statements. The encoder is
three-tiered, as illustrated in Fig. 2, and processes
the text of a script as follows.

3.1 Model Architecture

First, an action-statement encoder transforms the
sequence of words in an action statement (rep-
resented by their pretrained word embeddings)
into an action statement embedding. Next, an
action-scene encoder transforms the chronolog-
ical sequence of action statement embeddings
within a scene into an action scene embedding.
Analogously, a dialogue-statement encoder and
a dialogue-scene encoder generate dialogue state-
ment embeddings and aggregate them into dialogue
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scene embeddings. To incorporate character infor-
mation, characters are represented as embeddings
(randomly initialized and updated during model
training), and an average of embeddings of all char-
acters with at least one dialogue in the scene is com-
puted.1 Finally, the action, dialogue and averaged
character embeddings for a scene are concatenated
into a single scene embedding. Scene-level predic-
tions can be obtained by feeding scene embeddings
into a subsequent neural module, e.g. a feedfor-
ward layer for supervised tagging. Alternatively, a
final script encoder can be used to transform the
sequence of scene embeddings into a script embed-
ding representing the entire screenplay.
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Figure 2: The architecture of our script encoder, largely fol-
lowing the structure in Fig. 1.

A key assumption underlying the model is that
action and dialogue statements – as instances of
written narrative and spoken language respectively –
are distinct categories of text that must be processed
separately. We evaluate this assumption in §5.3.

3.2 Encoders

The proposed model incorporates strong inductive
biases regarding the overall structure of input doc-
uments. In addition, since the aforementioned en-
coders §3.1 are underspecified, we evaluate three
instantiations of the encoder components:

1. Sequential (GRU): A bidirectional GRU
(Bahdanau et al., 2015) encodes input
sequences (of words, statements or scenes).
Given a sequence of input embeddings
e1, . . . , eT , we obtain GRU outputs
c1, . . . , cT , and use cT as the recurrent
encoder’s final output.

1We only take into account characters at the scene level, i.e.
we do not associate characters with each dialogue statement,
leaving this addition to future work.

2. Sequential with Attention (GRU + Attn):
Attention (Bahdanau et al., 2015) is used to
combine c1, . . . , cT . This allows more or
less informative inputs to be filtered accord-
ingly. We calculate attention weights using a
parametrized vector p of the same dimension-
ality as the GRU outputs (Sukhbaatar et al.,
2015; Yang et al., 2016):

αi =
pT ci

ΣT
j=1p

T cj
(1)

These weights are used to compute the final
encoder output:

c = ΣT
j=1αici (2)

3. Bag-of-Embeddings with Attention (BoE +
Attn): These encoders disregard sequential
information to compute an attention-weighted
average of the encoder’s inputs:

αi =
pTei

ΣT
j=1p

Tej
(3)

c = ΣT
j=1αiei (4)

In contrast, a bag-of-embeddings (BoE) en-
coder computes a simple average of its inputs.
While defining a far more constrained func-
tion space than recurrent encoders, BoE and
BoE + Attn representations have the advan-
tage of remaining in the input word embed-
ding space. We leverage this property in §4
where we develop an interpretability layer on
top of the encoder outputs.

3.3 Loss for Tag Classification
The final script embedding is passed into a feedfor-
ward classifier (FFNN). As both supervised learn-
ing tasks in our evaluation are multi-label classi-
fication problems, we use a variant of a simple
multi-label one-versus-rest loss, where correlations
among tags are ignored. The tag sets have high
cardinalities and the fractions of positive samples
are inconsistent across tags (see Appendix Tables
3 & 4); this motivates the use of a reweighted loss
function:

L(y, z) = 1
NLΣN

i=1Σ
L
j=1[yij log σ(zij)

+ λj(1− yij)(1− log σ(zij))] (5)

whereN is the number of samples, L is the number
of tag labels, y ∈ {0, 1} is the target label, z is the
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output of the FFNN, σ is the sigmoid function,
and λj is the ratio of positive to negative samples
(precomputed over the entire training set, since the
development set is too small to tune this parameter)
for the jth tag label. With this loss function, we
account for label imbalance without tuning separate
thresholds for each tag on the validation set.

4 Interpreting Scene Embeddings

As the complexity of learning methods used to en-
code sentences and documents has increased, so
has the need to understand the properties of the
encoded representations. Probing methods (Linzen
et al., 2016; Conneau et al., 2018) gauge the infor-
mation captured in an embedding by evaluating its
performance on downstream classification tasks, ei-
ther with manually collected annotations (Shi et al.,
2016) or self-supervised proxies (Adi et al., 2016).
In our case, it is laborious and expensive to col-
lect such annotations at the scene level (requiring
domain experts), and the proxy evaluation tasks
proposed in literature do not probe the narrative
properties we wish to surface.

Instead, we take inspiration from Iyyer et al.
(2016) to learn an unsupervised scene descriptor
model that can be trained without relying on such
annotations. Using a dictionary learning technique
(Olshausen and Field, 1997), the model learns to
represent each scene embedding as a weighted mix-
ture of various topics estimated over the entire cor-
pus. It thus acts as an ‘interpretability layer’ that
can be applied over the scene encoder. This model
is similar in spirit to dynamic topic models (Blei
and Lafferty, 2006), with the added advantage of
producing topics that are both more coherent and
more interpretable than those generated by LDA
(He et al., 2017; Mitcheltree et al., 2018).

4.1 Scene Descriptor Model

The model has three main components: a scene en-
coder whose outputs we wish to interpret, a set of
topics or descriptors that are the ‘basis elements’
used to describe an interpretable scene, and a pre-
dictor that predicts weights over descriptors for a
given scene embedding. The scene encoder uses
the text of a given scene st to produce a correspond-
ing scene embedding vt. This encoder can take any
form – from an extractor that derives a hand-crafted
feature set from the scene text, as in Gorinski and
Lapata (2018), to the scene encoder in §3.

To probe the contents of scene embedding vt, we

Scene embedding for loss calculation: utScene embeddings to interpret: vt

Descriptors: R

Predictor

X
Predicted descriptor weights: ot

Bag of Words with 
AttentionScene encoder

Predicted reconstruction of scene embedding
as a weighted mixture of descriptors: wt

Minimize
 reconstruction error

Figure 3: A pictorial representation of the descriptor model.

compute a descriptor-based representation wt ∈
Rd in terms of a descriptor matrix R ∈ Rk×d that
stores k topics or descriptors:

ot = softmax(f(vt)) (6)

wt = RTot

where ot ∈ Rk is the weight (probability) vector
over k descriptors and f(vt) is a predictor (illus-
trated by the leftmost pipeline in Fig. 3) which con-
verts vt into ot. Two variants are f = FFNN(vt)
and f = FFNN([vt;ot−1]) (concatenation); we
use the former in §5.5. Furthermore, we can in-
corporate additional recurrence into the model by
modifying Eq. 6 to add the previous state:

ot =(1− α) · softmax(FFNN([vt;ot−1]))

+ α · ot−1 (7)

Descriptors are initialized either randomly (Glo-
rot and Bengio, 2010) or with the centroids of
a k-means clustering of the input word embed-
dings. For the predictor, f is a two-layer FFNN
with ReLU activations and a softmax layer that
transforms vt (from the scene encoder) into a 100-
dimensional intermediate state and then into ot.

4.2 Reconstruction Task
We wish to minimize the reconstruction error be-
tween two scene representations: (1) the descriptor-
based embedding wt which depends on the scene
embedding vt, and (2) an attention-weighted bag-
of-words embedding for st. This encourages the
computed descriptor weights to be indicative of
the scene’s actual content (the portions of its text
that indicate attributes of interest such as genre,
plot, and mood). We use a BoE+Attn scene en-
coder (§3.2) pretrained on the tag classification
task (bottom right of Fig. 3), which yields a vector
ut ∈ Rd for scene st. The scene descriptor model
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is then trained using a hinge loss objective (Weston
et al., 2011) to minimize the reconstruction error
between wt and ut, with an additional orthogo-
nality constraint on R to encourage semantically
distinct descriptors:

L =Σn
j=1 max(0, 1−wT

t ut + wT
t uj)

+ λ‖RRT − I‖2 (8)

where u1 . . .un are n negative samples selected
from other scenes in the same screenplay.

We use a BoE+Attn scene encoder as a “target"
ut to force wt (and therefore the rows in R) in the
same space as the input word embeddings. Thus, a
given descriptor can be semantically interpreted by
querying its nearest neighbors in the word embed-
ding space. The predicted descriptor weights for
a scene st are obtained by running a forward pass
through the model.

5 Evaluation

We evaluate the proposed script encoder and its
variants through two supervised multilabel tag pre-
diction tasks, and a qualitative analysis via the un-
supervised extraction of descriptor trajectories.

5.1 Datasets

We base our evaluation on the ScriptBase-J corpus
released by Gorinski and Lapata (2018) to directly
compare our approach with the multilabel encoder
proposed in Gorinski and Lapata (2018) and to
provide an open-source evaluation standard.2 In
this corpus, each movie is associated with a set
of expert-curated tags that range across 6 tag at-
tributes: mood, plot, genre, attitude, place, and
flag; in addition, we also evaluate on an internal
dataset of labels assigned to the same movies by
in-house domain experts, across 3 tag attributes:
genre, plot, and mood. The two taxonomies are
distinct. (See Appendix Table 3).

Script Preprocessing
As in Pavel et al. (2015), we leverage the stan-
dard screenplay format (Argentini, 1998) to extract
structured representations of scripts (formatting
cues included capitalization and tab-spacing; see
Fig. 1 and Table 1 for an example). Filtering erro-
neously processed scripts removes 6% of the cor-
pus, resulting in a total of 857 scripts. We hold
out 20% (172) scripts for evaluation and use the

2https://github.com/EdinburghNLP/scriptbase

rest for training. The average number of tokens per
script is around 23k; additional statistics are shown
in Appendix Table 1.

To keep within GPU memory limits, we split
extremely long scenes to retain no more than 60
action and 60 dialogue lines per scene. The vo-
cabulary is composed of words with at least 5
occurrences across the script corpus. The num-
ber of scripts per tag value ranges from high (e.g.
for some Genre tags) to low (for most Plot and
Mood tags) in both datasets (see Appendix Table
4), which along with high tag cardinality for each
attribute motivates the use of the reweighted loss
in Eq. 5.

5.2 Experimental Setup

All inputs to the hierarchical scene encoder are
100-dimensional GloVe embeddings (Pennington
et al., 2014).3 Our sequential models are bi-GRUs
with a single 50-dimensional hidden layer in each
direction, resulting in 100-dimensional outputs.
The attention parameter p is 100-dimensional;
BoE models naturally output 100-dimensional rep-
resentations, and character embeddings are 10-
dimensional. The script encoder’s output is passed
through a linear layer with sigmoid activation and
binarized by thresholding at 0.5.

One simplification we use is to utilize the same
encoder type for all encoders described in §3.1.
However, particular encoder types might suit dif-
ferent tiers of the architecture: e.g. scene em-
beddings could be aggregated in a permutation-
invariant manner, since narratives are interwoven
and scenes may not be truly sequential.

We implement the script encoder on top of Al-
lenNLP (Gardner et al., 2017) and PyTorch (Paszke
et al., 2019), and all experiments are conducted
on an AWS p2.8xlarge machine. We use the
Adam optimizer with an initial learning rate of
0.005, clip gradients at a maximum norm of 5, and
use no dropout. The model is trained for up to
20 epochs to maximize average precision score,
with early stopping if the validation metric does
not improve for 5 consecutive epochs.

5.3 Tag Prediction Experiments

ScriptBase-J also comes with loglines, or short, 1-2
sentence human-crafted summaries of the movie’s
plot and mood (see Appendix Table 2). A model

3Using richer contextual word representations will improve
performance, but is orthogonal to the purpose of this work.
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trained on these summaries can be expected to pro-
vide a reasonable baseline for tag prediction, since
logline curators are likely to highlight information
relevant to this task. The Loglines model is a bi-
GRU with inputs of size 100 (GloVe embeddings)
and hidden units of size 50 in each direction, whose
output feeds into a linear classifier.4

Model Genre Plot Mood
Loglines 49.9 (0.8) 12.7 (0.9) 17.5 (0.2)
Comparing encoder variations:
BoE 49.0 (1.1) 8.3 (0.6) 12.9 (0.7)
BoE + Attn 51.9 (2.3) 11.3 (0.4) 16.3 (0.6)
GRU 57.9 (1.9) 13.0 (1.3) 19.1 (1.0)
GRU + Attn 60.5 (2.0) 15.2 (0.4) 22.9 (1.4)
Variants on GRU + Attn for action & dialog:
+ Chars 62.5 (0.7) 11.7 (0.3) 18.2 (0.3)
- Action 60.5 (2.9) 13.5 (1.4) 20.0 (1.2)
- Dialogue 60.5 (0.6) 13.4 (1.7) 19.1 (1.4)
2-tier 61.3 (2.3) 13.7 (1.7) 20.6 (1.2)
HAN 61.5 (0.6) 14.2 (1.7) 20.7 (1.4)

Table 2: Investigation of the effects of different architectural
(BoE +/- Attn, GRU +/- Attn) and structural choices on a tag
prediction task, using an internally tagged dataset: F-1 scores
with sample standard deviation in parentheses. Across the 3
tag attributes we find that modeling sentential and scene-level
structure helps, and attention helps extract representations
more salient to the task at hand.

Table 2 contains results for the tag prediction
task on our internally-tagged dataset. First, a set of
models trained using action and dialogue inputs are
used to evaluate the architectural choices in §3.1.
We find that modeling recurrence at sentential and
scene levels and selecting relevant words/scenes
with attention are prominent factors in the robust
improvement over the Loglines baseline (see
the first five rows in Table 2).

Next, we assess the effect that various structural
elements of a screenplay have on classification per-
formance. Notably, the difficulty of the prediction
task is directly related to the number of labels per
tag attribute: higher-cardinality tag attributes with
correlated tag values (like plot and mood) are far
more difficult to predict than lower-cardinality tags
with more discriminable values (like genre). We
find that adding character information to the best-
performing GRU + Attn model (+Char) improves
prediction of genre, while using both dialogue and
action statements improves performance on plot
and mood when compared to using only one or

4We tried both with and without attention and found the
variant without attention to give slightly better results.

the other. We also evaluate (1) a 2-tier variant
of the GRU+Attn model without action/dialogue-
statement encoders (i.e., all action statements are
concatenated into a single sequence of words and
passed into the action-scene encoder, and similarly
with dialogue) and (2) a variant similar to Yang
et al. (2016) (HAN) that does not distinguish be-
tween action and dialogue (i.e., all statements in a
scene are encoded using a single statement encoder
and statement embeddings are passed to a scene en-
coder, the output of which is passed into the script
encoder). Both models perform slightly better than
GRU+Attn on genre, but worse on plot and mood,
indicating that incorporating hierarchy and distin-
guishing between dialogue and action statements
helps on the more difficult prediction tasks.

Tag G&L HSE
Attitude 72.6 70.1
Flag 52.5 52.6
Genre 55.1 42.5
Mood 45.5 51.2
Place 57.7 29.1
Plot 34.6 34.5

Table 3: F-1 scores on ScriptBase-J provided tag set, compar-
ing Gorinski and Lapata (2018)’s approach to ours.

For the results in Table 3, we compared the
GRU+Attn configuration in Table 2 (HSE) with
an implementation of Gorinski and Lapata (2018)
(G&L) that was run on the previous train-test split.
G&L contains a number of handcrafted lexical,
graph-based, and interactive features that were
designed for optimal performance on screenplay
analysis. In contrast, HSE directly encodes stan-
dard screenplay structure into a neural network
architecture, and is an alternative, arguably more
lightweight way of building a domain-specific tex-
tual representation. Our results are comparable,
with the exception of ‘place’, which can often be
identified deterministically from scene headings.

5.4 Similarity-based F-1
Results in Tables 2 and 3 check for an exact match
between predicted and true tag values to report
standard multi-label F-1 scores (one-vs-rest clas-
sification evaluation, micro-averaged over tag at-
tributes). However, the characteristics of our tag
taxonomies suggest that this measure may not be
ideal, since human-crafted tag sets include dozens
of highly correlated, overlapping values, and the
dataset includes instances of missing tags. A stan-
dard scoring procedure may underestimate model
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Figure 4: F1 score of various tag attributes as a function of
the similarity threshold percentile.

performance when, e.g., a prediction of ‘Crime’ is
equally penalized for a target labels of ‘Heist’ and
‘Romance’ (see Appendix Table 5).

We use a similarity-based scoring procedure (see
Maynard et al. (2006) for related approaches) to
assess the impact of such effects. In particular, we
calculate cosine similarities between tag embed-
dings trained on a similar task (see Appendix for
details) and evaluate a prediction based the per-
centile of its similarity to the actual label. Such a
measure takes into account the latent relationships
among tags via similarity thresholding, wherein a
prediction is counted as correct if it is sufficiently
similar to the target. The percentile cutoff can be
varied to estimate model performance as a function
of the threshold percentile.

In Fig. 4 we re-evaluate the GRU + Attn
model outputs (row 5 in Table 2) with this eval-
uation metric to examine how our results might
vary if we adopted a similarity-based scoring proce-
dure. When the similarity percentile cutoff equals
100, the result is identical to the standard F-1 score.
Even decreasing the cutoff to the 90th percentile
shows striking improvements for high-cardinality
attributes (180% for mood and 250% for plot).
Notably, using a similarity-based scoring proce-
dure for complex tag taxonomies may yield results
that more accurately reflect human perception of
the model’s performance (Maynard et al., 2006).

5.5 Qualitative Scene-level Analysis

To extract narrative trajectories with the scene de-
scriptor model, we analyze the scene encoder from
the GRU+Attn model, which performs best on the
Plot and Mood tag attributes and does reasonably

well on Genre. Similarly to Iyyer et al. (2016),
we limit the input vocabulary for the BoE+Attn
encoders that yield target vectors ut to words occur-
ring in at least 50 movies (7.3% of the training set),
while also filtering the 500 most frequent words
in the corpus. We set the number of descriptors
k to 25 to allow for a wide range of topics while
keeping manual examination feasible.

Further modeling choices are evaluated using the
semantic coherence metric (Mimno et al., 2011),
which assesses the quality of word clusters induced
by topic modeling algorithms. These choices in-
clude: the presence of recurrence in the predictor
(i.e. toggling between Eqns. 6 and 7, with α = 0.5)
and the value of hyperparameter λ. While the k-
means initialized descriptors score slightly higher
on semantic coherence, they remain close to the ini-
tial centroids and do not reflect the corpus as well
as the randomly initialized version, which is the
initialization we eventually used. We also find that
incorporating recurrence and λ = 10 (tuned using
simple grid search) result in the highest coherence.

The outputs of the scene descriptor model are
shown in Table 4 and Figure 5. Table 4 presents
five example descriptors, each identified by the
representative words closest to them in the word
embedding space (topic names are manually anno-
tated). Figure 5 presents the narrative trajectories
of a subset of descriptors for three screenplays:
Pretty Woman, Pulp Fiction, and Pearl Harbor, us-
ing a streamgraph (Byron and Wattenberg, 2008).
The descriptor weight ot (Eq. 6) as a function of
scene number/order is rescaled and smoothed, with
the width of a color band indicating the weight
value. A critical event for each screenplay is indi-
cated by a letter on each trajectory. A qualitative
analysis of such events indicates general alignment
between scripts and their topic trajectories, and the
potential applicability of this method to identifying
significant moments in long-form documents.

Topic Words
Violence fires blazes explosions grenade blasts
Residential loft terrace courtyard foyer apartments
Military leadership army victorious commanding elected
Vehicles suv automobile wagon sedan cars
Geography sand slope winds sloping cliffs

Table 4: Examples of retrieved descriptors. Trajectories for
“Violence", “Military", and “Residential" are shown in Fig. 5.
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Figure 5: Descriptor Trajectories for Pearl Harbor, Pretty Woman, and Pulp Fiction. The y-axis is a smoothed and rescaled
descriptor weight, i.e. ot in Eq. 6. Events: (A) Attack on Pearl Harbor begins (B) Rising tension at the equestrian club and (C)
Confrontation at the pawn shop. Word clusters corresponding to each descriptor are in Table 4.

6 Related Work

Computational narrative analysis of large texts has
been explored in a range of contexts (Mani, 2012)
over the past few decades (Lehnert, 1981). Re-
cent work has analyzed narrative from plot (Cham-
bers and Jurafsky, 2008; Goyal et al., 2010) and
character (Elsner, 2012; Bamman et al., 2014) per-
spectives. While movie narratives have received
attention (Bamman et al., 2013; Chaturvedi et al.,
2018; Kar et al., 2018), the computational analysis
of entire screenplays is not as common.

Notably, Gorinski and Lapata (2015) introduced
a summarization method for scripts, extracting
graph-based features that summarize the key scene
sequences. Gorinski and Lapata (2018) built on
top of this work, crafting additional features for a
specially-designed multilabel encoder, while also
emphasizing the difficulty of the tag prediction task.
Our work suggests an orthogonal approach using
automatically learned scene representations instead
of feature-engineered inputs. We also consider the
possibility that at least some of the task difficulty
owes not to the length or richness of the text, but
rather to the complexity of the tag taxonomy. The
pattern of results we obtain from a similarity-based
scoring measure offers a brighter picture of model
performance, and suggests that the standard multil-
abel F1 measure may not be appropriate for such
complex tag sets (Maynard et al., 2006).

Nevertheless, dealing with long-form text re-
mains a significant challenge. One possible so-
lution is to infer richer representations of latent
structure using a structured attention mechanism
(Liu and Lapata, 2018), which might highlight key
dependencies between scenes in a script. Another
method could be to define auxiliary tasks as in
Jiang and Bansal (2018) to encourage better selec-

tion. Lastly, sparse versions of the softmax function
(Martins and Astudillo, 2016) could be used to ad-
dress the sparse distribution of salient information
across a screenplay.

7 Conclusion

In this work, we propose and evaluate various
neural network architectures for learning fixed-
dimensional representations of full-length film
scripts. We hypothesize that a network design mim-
icking the documents’ internal structure will boost
performance. Experiments on two tag prediction
tasks support this hypothesis, confirming the ben-
efits of using hierarchical attention-based models
and of incorporating distinctions between various
scene components directly into the model. In order
to explore the information contained within scene-
level embeddings, we present an unsupervised tech-
nique for bootstrapping scene “descriptors" and vi-
sualizing their trajectories over the course of the
screenplay. For future work, we plan to investi-
gate richer ways of representing character identi-
ties, which could allow character embeddings to
be compared across movies and linked to charac-
ter archetypes. A persona-based characterization
of the screenplay would provide a complementary
view to the current plot-based analysis.

Scripts and screenplays are an underutilized and
underanalyzed data source in modern NLP - indeed,
most work on narratology in NLP concentrates
on short stories and book/movie summaries. This
paper shows that capitalizing on their rich inter-
nal structure largely obviates the need for feature-
engineering, or other more complicated architec-
tures, a lesson that may prove instructive in other
areas of discourse processing. Our hope is that
these results encourage more people to work on
this fascinating domain.
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A Appendix

A.1 Additional Dataset Statistics
In this section, we present additional statistics on
the evaluation sets used in this work.

Min 10th % 90th % Max
4025 16,240 29,376 52,059

Table 5: Statistics on the number of tokens per script in the
Scriptbase-J corpus. We use the same script corpus with two
different tag sets – the Jinni tags provided with ScriptBase and
a tag set designed by internal annotators.

Tag Value
Genre Crime, Independent
Mood Clever, Witty, Stylized
Attitude Semi Serious, Realistic
Plot Tough Heroes, Violence Spree, On the Run
Place California, Los Angeles, Urban
Flag Drugs/Alcohol, Profanity, Violent Content
Logline “The lives of two mob hit men, a boxer,

a gangster’s wife, and a pair of diner
bandits intertwine in four tales of

violence and redemption."

Table 6: Examples of Scriptbase-J tag attributes, tag values,
and a logline, for the film “Pulp Fiction".

Tag Internal Scriptbase-J
Genre 9 31
Mood 65 18
Attitude - 8
Plot 82 101
Place - 24
Flag - 6

Table 7: The number of distinct tag values for each tag at-
tribute across the two datasets. Cardinalities for Scriptbase-J
tag attributes are identical to Gorinski and Lapata (2018) ex-
cept for the removal of one mood tag value when filtering for
erroneously preprocessed scripts.

Tag Avg.
#tags/script

Min
#scripts/tag

Max
#scripts/tag

Genre 1.74 17 347
Mood 3.29 15 200
Plot 2.50 15 73

Table 8: Statistics for the three tag attributes applied in our
internally-tagged dataset: average number of tags per script,
and the minimum/maximum number of movies associated
with any single value.

A.2 Tag Similarity Scoring
To estimate tag-tag similarity percentiles, we calcu-
late the distance between tag embeddings learned
via an auxiliary model trained on a related super-
vised learning task. In our case, the related task is

Tag Target Similar Unrelated
Genre Period Historical Fantasy
Mood Witty Humorous Bleak
Plot Hitman Deadly Love/Romance

Table 9: Examples of closely related and unrelated tag values
in the Scriptbase-J tag set.

to predict the audience segment of a movie, given
a tag set. The general approach is easily replica-
ble via any model that projects tags into a well-
defined similarity space (e.g., knowledge-graph
embeddings (?) or tag-based autoencoders).

Given a tag embedding space, the similarity per-
centile of a pair of tag values is estimated as follows.
For a given tag attribute, the pairwise cosine dis-
tance between tag embeddings is computed for all
tag-tag value pairs. For a given pair, its similarity
percentile is then calculated with reference to the
overall distribution for that attribute.

Similarity thresholding simplifies the tag predic-
tion task by significantly reducing the perplexity
of the tag set, while only marginally reducing its
cardinality. Cardinality can be estimated via per-
mutations. If n is the cardinality of the tag set,
the number of permutations p of different tag pairs
(k = 2) is:

p(n, k) =
n!

(n− k)!
(9)

which simplifies to n2 − n− p = 0.
Likewise, the entropy of a list of n distinct tag

values of varying probabilities is given by:

H(X) = H(tag1, ..., tagn) = −
n∑

i=1

tagi log2 tagi

(10)

The perplexity over tags is then simply 2H(X).

Tag Perplexity Cardinality
Genre 42% 16%
Mood 77% 16%
Plot 79% 16%

Table 10: The percent decrease in perplexity and cardinality,
respectively, as the similarity threshold decreases from 100th
percentile similarity (baseline) to 70th percentile.

As the similarity threshold decreases, the num-
ber of tags treated as equivalent correspondingly
increases. Mapping these “equivalents" to a shared
label in our list of tag values allows us to calcu-
late updated values for tag (1) perplexity and (2)
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cardinality. As illustrated by Table 10, rather than
leading to large reductions in the overall cardinal-
ity of the tag set, similarity thresholding mainly
serves to decrease perplexity by eliminating redun-
dant/highly similar alternatives. Thus, thresholding
at once significantly decreases the complexity of
the prediction task, while yielding a potentially
more representative picture of model performance.


