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Abstract

Lemmatization is often used with mor-
phologically rich languages to address is-
sues caused by morphological complex-
ity, performed by grammar-based lemma-
tizers. We propose an alternative for this,
in form of a tool that performs lemmati-
zation in the space of word embeddings.
Word embeddings as distributed represen-
tations natively encode some information
about the relationship between the base
and inflected forms, and we show that it
is possible to learn a transformation that
approximately maps the embeddings of in-
flected forms to the embeddings of the cor-
responding lemmas. This facilitates an al-
ternative processing pipeline that replaces
traditional lemmatization with the lemma-
tizing transformation in downstream pro-
cessing for any application. We demon-
strate the method in the Finnish language,
outperforming traditional lemmatizers in
an example task of document similarity
comparison, but the approach is language
independent and can be trained for new
languages with mild requirements.

1 Introduction

Morphologically rich languages (MRLs) encode
more information (such as case, gender, and tense)
into single word units, compared to analytical lan-
guages like English. For example, Finnish has 15
different word cases for nouns and adjectives. The
different cases generate new words from the syn-
tactical point of view, and in combination with
plural forms Finnish ends up having 30 different
word forms for each noun and adjective.

A rich morphology results in extremely large
vocabulary and hence low frequency for most
word forms in corpora of reasonable size, causing

problems, e.g., when learning distributed repre-
sentations – word embeddings – today widely used
in most language processing tasks. While embed-
dings can be trained for MRLs using the tradi-
tional methods, such as fastText (Bojanowski
et al., 2016), Word2Vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014), their quality still
leaves a lot to desire. For example, the results on
standard word embedding tests are often worse for
MRLs (Cotterell et al., 2018).

The natural solution for addressing morpholog-
ical complexity is lemmatizing, often used as pre-
processing before analysis. Even though lemma-
tization loses information by completely ignor-
ing the case, it typically improves performance in
various language processing tasks. Transformers
and other flexible language models (Devlin et al.,
2019; Brown et al., 2020), as well as advanced tok-
enization methods (Schuster and Nakajima, 2012;
Kudo and Richardson, 2018), may have reduced
the need for lemmatization in general, but it still
remains vital for MRLs for many tasks (Ebert
et al., 2016; Cotterell et al., 2018; Kutuzov and
Kuzmenko, 2019).

Traditional lemmatization does not, however,
resolve all issues caused by rich morphology, es-
pecially as part of a pipeline that uses word em-
beddings. The embeddings themselves are dif-
ficult to estimate for MRLs and the embedding
methods are typically not transparent about their
uncertainty. For instance, the lemma itself may be
rare in a typical training corpus and hence we may
even switch to using a less reliable embedding,
without knowing it. Ebert et al. (2016) proposed
a possible resolution of training the embeddings
on a lemmatized corpus, but this prevents the use
of high-quality pretrained embeddings available
for many languages and may otherwise hurt em-
bedding quality. The standard processing pipeline
also requires access to a good lemmatizer, which
may not be available for rare languages, and some-
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Figure 1: (Left): Traditional task models are
trained on the embeddings of either all word forms
or the lemmas, obtained by preprocessing with a
lemmatizer. (Right): We use embeddings of all
word forms but normalize them in the embedding
space, integrating naturally into the task model.

times they do not work ideally for specialized vo-
cabularies (e.g. medical language). The creation
of such a lemmatizer often requires expert knowl-
edge of the target language.

We propose a novel approach for addressing
rich morphology, illustrated in Figure 1. Instead
of using a traditional lemmatizer to find the lem-
mas and using the embeddings for those to rep-
resent the content, we do the opposite: We start
with the embeddings for all original word forms
and then perform lemmatization in the embedding
space. This is carried out by a neural network that
approximately maps the embeddings of inflected
forms into the embeddings of the lemmas. We
believe that this may provide embeddings that are
better for downstream processing tasks compared
to the ones available for the lemmas, for instance
when the lemma itself is rare since the model
is implicitly able to leverage information across
multiple words and cases. Another advantage of
lemmatization in the embedding space is easy in-
tegration as part of the standard modeling work-
flow that often builds on neural networks anyway,
instead of requiring a separate lemmatizer.

Traditional lemmatization is basically a
character-level operation, where grammar rules
are used to backtrack the basic form that could
have generated the inflected form. We, how-
ever, consider word inflections as ”bias” in the
embedding space, so that the embedding for
the inflected word combines (in some unknown
way) the semantic meaning of the word and the
case information. Consequently, our formulation

resembles conceptually the problem of bias
removal widely studied in the word embedding
literature (Bolukbasi et al., 2016; Brunet et al.,
2019). The task in bias removal is to transform
the embeddings of individual words such that
unwanted systematic biases related to gender etc.
disappear. Our approach can be interpreted in
this context as a method of removing undesired
morphological information while retaining the
semantic meaning of the word.

We demonstrate the approach on the Finnish
language, restricting the analysis for nouns and
adjectives that often contain the most important
content words for tasks like document similar-
ity comparison or information retrieval. We use
pretrained fastText embeddings (Bojanowski
et al., 2016) that use subword-level information to
provide embeddings for all possible word forms
and train a model for mapping them for embed-
dings of the lemmas using on the dataset extracted
from Wiktionary by Durrett and DeNero (2013).
The approach is, however, directly applicable to
other word classes and languages. Besides the pre-
trained embeddings, it requires only access to (a)
existing list of pairs of lemmas and inflected words
as in our case, (b) dictionary and morphological
generator, or (c) existing traditional lemmatizer
for the language. For instance, fastText pro-
vides such embeddings for 157 languages, and
morphological analyzers or generators exist for
most of these.

Besides the core concept of lemmatizing in the
embedding space, our main contributions are in
the specification of practical details for learning
the lemmatizers. We specify four alternative neu-
ral network architectures, define a suitable ob-
jective function and quality metric, and propose
a novel idempotency regularization technique to
prevent the models from doing anything else be-
sides the lemmatization. We evaluate the approach
in document comparison, outperforming the stan-
dard pipeline using traditional lemmatizers, and
demonstrate it additionally in the task of word list
generation.

An open-source implementation of the
method in Python is made available at
https://github.com/jalagus/
embedding-level-lemmatization.



2 Related Work

Even though we are the first to directly consider
the task of transforming embeddings to lemma-
tize words, the general question of addressing
rich morphology in distributed representations has
been studied from various perspectives.

Cotterell et al. (2018) studied the effect of mor-
phological complexity for task performance over
multiple languages. They showed that morpholog-
ical complexity correlates with poor performance
but that lemmatization helps to cope with the com-
plexity. Kutuzov and Kuzmenko (2019) showed a
similar effect to hold even with more complex lan-
guage models, at least for the Russian language.
Ebert et al. (2016), in turn, showed that for MRLs
we can improve word similarity comparisons by
learning Word2Vec embeddings from a lemma-
tized corpus, rather than training them on all data
and lemmatizing while learning the task model.

Kondratyuk et al. (2018) studied supervised
lemmatization and morphological tagging using
bidirectional RNNs with character and word-level
embeddings in MRLs. They showed that a com-
bination of lemma information and morphologi-
cal tags improve lemmatization and tagging, but
may hurt for English. Along similar lines, Rosa
and Žabokrtskỳ (2019) suggested using word-
embedding clustering to improve lemmatization.

As we consider lemmatization from the per-
spective of bias removal, our work relates to meth-
ods for removal of gender bias (Bolukbasi et al.,
2016; Zhao et al., 2017). In this line of work, the
embedding space is assumed to encode gender in-
formation in specific dimensions, so that bias can
be minimized by removing them. The main dif-
ference to our work is that their goal is primarily
in removing the bias, whereas we look for embed-
dings that retain the semantic meaning of the word
well and that are good for downstream task perfor-
mance.

3 Evaluation of Lemmatization in
Embedding Spaces

A traditional lemmatizer either returns the true
lemma or not, but when operating in the embed-
ding space of continuous vector representations
the question of correctness needs more attention.
We start by discussing the evaluation before pro-
ceeding to explain the approach itself that builds
on these insights.

First of all, we note that we can use task per-
formance in any downstream task to evaluate the
quality – our ultimate goal is in solving the task
well, not in learning the embeddings. We will
demonstrate this later in the task of document sim-
ilarity comparison. However, it is highly use-
ful to also have a generic task-independent met-
ric directly measuring the lemmatization accuracy,
which can also be used for motivating the objec-
tive for training. We want a good word embed-
ding space lemmatizer M(ew) to simultaneously
satisfy two different criteria:

1. Ability to transform any embedding ew to the
embedding of its lemma w′, and

2. Ability to retain embeddings of lemmas or
lemmatized embeddings as is.

The first criterion is intuitive, matching our
goal, but we need to decide how to measure the
similarity. For high-dimensional spaces, it is not
reasonable to expect a perfect recovery of the em-
bedding ew′ itself, but instead, we should count all
embeddings that are close enough as correct. To
determine ’close enough’, we use a simple defi-
nition based on neighborhoods: Lemmatization is
correct if the closest neighbor for the transformed
embedding of a word w is the embedding of its
lemma w′. We denote by ACCLEM the accu-
racy of nearest-neighbor (rank-1) retrieval accu-
racy for w′ in the neighborhood of M(ew), using
Euclidean distance for similarity.

The second criterion is imposed as we want to
consider the lemmatization step as a black box for
which we can feed in arbitrary words, including
those that are already lemmas. The lemmatizer
should not alter them in any way. We measure
this by an indirect metric of ACCIDEM , which
corresponds to the rank-1 retrieval accuracy for w′

in the neighborhood of M(M(ew)), the output for
an embedding ew passed twice through the model.
For a more detailed discussion and justification,
see Section 4.3.

Together the metrics ACCLEM and
ACCIDEM characterize the general ability
of any embedding-space lemmatizer in a model-
independent way; both are based on retrieval
accuracy and can be evaluated without additional
assumptions besides the distance measure. We
will later use them also to motivate our objective
function, a differentiable approximation for their
weighted combination.



4 Approach

Denoting an arbitrary inflected form word embed-
ding by ew and the related lemma word embed-
ding by ew′ , we wish to learn some mapping M(·)
such that M(ew|θ) ≈ ew′ . We do this by assum-
ing a parametric model family, a neural network,
and learning its parameters θ based on a collection
of (ew, ew′) pairs of pretrained embeddings in a
supervised fashion. For simplicity of notation, we
omit the parameters and simply write M(ew) in-
stead of M(ew|θ) for the rest of the paper.

We hypothesize that inflected forms lie on a spe-
cific subspace of the embedding space (see Fig-
ure 2) and that we can retrieve the lemmatized
forms by a simple, but a possibly nonlinear, trans-
formation in the embedding space. This can be
interpreted as the removal of ”bias” caused by the
inflection. We want this mapping to be lightweight
so that it can be integrated as part of a task model
with a small computational overhead. Complex
transformations are discouraged also because they
would increase the risk of altering the semantic
content captured by the embedding.

We discuss two alternative ways of lemmatiz-
ing in the embedding space. The first approach
learns a separate model Mc(ew) for each word
case c so that e.g. partitives and genitives are
processed with different models. This allows us-
ing simple models even if all of the rich morphol-
ogy was not constrained in low-dimensional sub-
spaces, and also allows reversing the model for
morphological generation (see Section 7).

For the processing of arbitrary words with an
unknown case, we can make a function com-
posite of multiple models, so that the output of
one model is always fed as input for the next
one. For instance, to lemmatize both partitives
and genitives we can compute (Mp ◦Mg)(ew) =
Mpartitive(Mgenitive(ew)), in either order. As-
suming the models do nothing else besides remove
the effect of the particular case, then this compos-
ite function performs the same operation as either
model alone, depending on the case of the input
word. We naturally cannot guarantee the trans-
formations work exactly like this, but will later
present a regularization technique that specifically
encourages the models to focus only on the case
removal and show empirically that such function
composition of multiple models works well.

The other alternative is learning a single global
model M(ew) that can lemmatize all word forms.

Embedding space

Genitive subspace

Lemma subspace

Partitive subspace

Figure 2: Embedding space as a union of inflected
subspaces. Each word class creates a subspace and
arrows represents the mappings we wish to learn in
order to do lemmatization in the embedding space.

We demonstrate also this approach, but our main
focus is on the separate models for each case.

4.1 Neural Architectures
We use feedforward neural networks as models
Mc(ew), restricting the architecture choice for
small networks to retain computational efficiency.
Both input and output dimensionality needs to
match the dimensionality of the embedding, in our
case d = 300. We investigate empirically four al-
ternative architectures:

1. Linear
W1ew + b1, where W1 ∈ Rd×d

2. Simple
W2R(W1ew+b1)+b2, whereW1 ∈ R500×d,
W2 ∈ Rd×500

3. Compression
W2R(W1ew+b1)+b2, whereW1 ∈ R100×d,
W2 ∈ Rd×100

4. Complex
W3(R(W2R(W1ew + b1) + b2) + b3, where
W1 ∈ R500×d, W2 ∈ R500×500, W3 ∈
Rd×500

In all variants,R(·) denotes the rectified linear unit
and bi is a bias term of proper size.

The linear model is motivated by the property of
some embeddings encoding various properties as
linear relationships (e.g. king−man+woman ≈
queen) and fast computation. However, there
are no guarantees a linear transformation is suf-
ficient for lemmatization and hence we consider
also the three simple nonlinear architectures with
at most two hidden layers. Other architectures
could certainly be used and a more careful choice



of a specific architecture could further improve the
lemmatization accuracy, but we will later show
that already these lightweight models work well
in practice.

4.2 Objective and Training

To learn models such that Mc(ew) ≈ ew′ we
need to optimize for a loss function that penal-
izes for difference between Mc(ew) and ew′ for
known pairs of w and w′. As explained in Sec-
tion 3, we will eventually measure the quality by
nearest-neighbor retrieval in the embedding space.
Directly optimizing for that is difficult, and hence
we optimize for a natural proxy instead, minimiz-
ing the squared Euclidean distance

D(Mc(ew), ew′) = ‖Mc(ew)− ew′‖2.

Note that often the norm of the embeddings
is considered irrelevant and consequently e.g.
Word2Vec (Mikolov et al., 2013) used cosine sim-
ilarity to measure distances. We want to retain
the norms that for some embeddings encode in-
formation about e.g. word frequency (Schakel and
Wilson, 2015) and hence chose the Euclidean dis-
tance.

For training the model we need a collection of
N pairs of embeddings for words w and their lem-
mas w′. Assuming an embedding library that pro-
vides embeddings for large vocabulary (or even
arbitrary word forms, building on subword-level
embeddings (Bojanowski et al., 2016)) we simply
need some way of constructing these pairs. The
two practical alternatives for this are

• Dictionary of lemmas w′ and a morphologi-
cal generator to form wc for cases c

• Collection of words w and a traditional lem-
matizer for obtaining their lemmas w′

For case-specific models we only use pairs corre-
sponding to the case, whereas for the global model
we can pool all pairs, potentially having multiple
cases for the same lemma in the training data.

4.3 Idempotency Regularization

Any model trained as above learns to map w to w′,
but we cannot tell what it does for words that are
already lemmas or that belong to some other case
if training a case-specific model. One could in
principle add pairs of (w′, w′) into the training set
to address the former, but to prevent transforming

words of other classes we would need similar pairs
for all possible cases. This would be extremely in-
efficient.

To avoid transforming the embeddings of other
word forms, we propose an alternative of novel
regularization strategy encouraging idempotency,
meaning that the same transformation applied
multiple times will not change the output be-
yond the initial result. We do this by measuring
the Euclidean distance D(Mc(ew),Mc(Mc(ew))
between the output of the model Mc(ew) (the
supposed lemmatized embedding) and the result
of passing the input through the model twice,
Mc(Mc(ew)). By encouraging this distance to
be small we encourage the model to only remove
the information about the particular case, with-
out otherwise changing the embedding. Concep-
tually this is related to regularization techniques
like Barone et al. (2017) designed to prevent catas-
trophic forgetting (Kirkpatrick et al., 2017); both
prevent losing the already learned structure while
allowing the model to adapt to a new task.

In practice we minimize the objective

L(ew, ew′) = α×D(Mc(ew), ew′)+

(1− α)×D(Mc(ew),Mc(Mc(ew))),
(1)

where α ∈ [0, 1] controls the amount of regular-
ization. With α = 1 we only optimize the loss and
by decreasing the parameter we start regularizing
the solution using idempotency. Note that the ex-
treme of α = 0 is not meaningful, since the loss
term disappears.

5 Model Validation

We validate the approach and the modeling
choices (architecture and regularization), using
morphologically rich Finnish as an example lan-
guage. We first evaluate the performance in a task-
agnostic manner, before demonstrating case exam-
ples in the following two sections.

Data We validate the approach on Finnish lan-
guage, using pretrained embeddings provided by
the fastText library (Bojanowski et al., 2016).
The embeddings were trained on Common Crawl
and Wikipedia corpora and have dimensionality of
d = 300.

The lemmatization models are trained on the
data provided by Durrett and DeNero (2013)
which contains words extracted from the open dic-
tionary Wiktionary. It directly provides pairs of



inflected and base forms for words, so we do not
need to construct them. For Finnish, the dataset
contains 1,136,492 word pairs of adjectives and
nouns both in singular and plural, resulting in
roughly 42,000 word pairs per word case. Each
row in the dataset is a pair of form (w,w′) which
are then transformed to pairs of word embeddings
(ew, ew′) using the fastText library.

Training We use AdamW optimizer (Kingma
and Ba, 2014; Loshchilov and Hutter, 2018) with
a learning rate of 0.0002 and a batch size of 32 for
training the models in all experiments, but all rea-
sonable stochastic optimization algorithms would
work. We separately validated in preliminary tests
that running the optimization until convergence of
the training objective does not result in overfit-
ting, and hence for the rest of the experiments we
used 50 epochs for training to make sure the mod-
els are fully converged. In practice, 20-30 epochs
were always enough. All experiments shown here
are efficient, so that training individual models on
consumer-grade 8-core CPU was done in the order
of minutes.

Model architectures To compare different ar-
chitectures, we trained individual models Mc(ew)
on all 15 word cases of Finnish with α = 1.0 (i.e.
no regularization), not separating plural and sin-
gular word cases so that always 10,000 word pairs
were used for training and 1,000 for testing. The
word pairs for training and test sets were chosen
randomly. For the final score, we averaged 10 dif-
ferent runs over randomized splits of the data so
that the splits were the same for all models for each
run.

Table 1 compares the four different architec-
tures in terms of metrics explained in Section 3,
presenting the average accuracy over all word
cases (the results are consistent over different
cases, not shown here). The main result is that
except for the compression architecture the accu-
racies ACCLEM are very similar. This suggests
there may not be a specific low-dimensional sub-
space that is sufficient for lemmatization, but that
it can be modeled with fairly simple architectures
nevertheless. In terms of ACCIDEM , all mod-
els here coincidentally converge to the same value
that is close to perfect despite not regularizing for
idempotency.

We also trained a global model M(ew) for lem-
matizing all cases using the simple model architec-

Model ACCLEM ACCIDEM Time/epoch (s)

linear 0.908 0.978 1.363
compression 0.870 0.978 1.807
simple 0.915 0.978 3.044
complex 0.911 0.978 3.669

global 0.974 0.998 11.145

Table 1: Lemmatization accuracy (ACCLEM ) and
idempotency criterion (ACCIDEM ) for alterna-
tive network architectures for case-specific mod-
els, averaged over all 15 word cases. The global
model can process all cases, but the numerical ac-
curacy is not directly comparable due to a different
number of test instances.

ture, using a combined data set of 50,000 exam-
ples covering the different cases and 5,000 word
pairs for evaluation. Note, however, that the eval-
uation set was not the same as for the case-specific
models that all used only pairs for the specific
case. Hence the numbers in Table 1 are not di-
rectly comparable, but we can still confirm that
also the global model learns to lemmatize well.

Function composition and idempotency regu-
larization When training separate models for
each word case c, we need a function composi-
tion of multiple models in order to process arbi-
trary input word forms. To perform this, we need
idempotency regularization to prevent individual
models from transforming words of wrong cases.

Table 2 demonstrates the effect of the regular-
ization parameter α for an example sentence, us-
ing two models trained for lemmatizing genitives
and partitives and their combination as function
composition. For very small α already the indi-
vidual models fail due to almost ignoring the main
task, whereas for very large α (no regularization)
the composition breaks. With α = 0.4 we can ac-
curately lemmatize both forms.

6 Application: Document Comparison

To demonstrate the method in a typical applica-
tion, we consider the task of document compar-
ison where the lemmas of content words often
provide sufficient information on similarity. We
use a dataset provided by the Finnish national
broadcasting company Yle1 containing news arti-
cles written in easy-to-read Finnish. We created
an artificial dataset by splitting news articles into

1http://urn.fi/urn:nbn:fi:lb-2019121205



ααα Word case Example sentence

- original Leijona oli saanut paitsi hyvän ja nöyrän mielen myös monta uutta ystävää

0.1 genitive Leijona oli saanut näinen hyvä pipopää nöyrä tahdonvoima näinen iso uusi ystävää
0.1 partitive Leijona oli saanut paitsi hyvä pehmyt nöyrä mielen myös muutama uusi ystävä
0.1 gen + part Leijona oli syynännyt näinen hyvä pipopää nöyrä tunteellisuus näinen pieni uusi tyttökaveri

0.4 genitive Leijona oli saanut paitsi hyvä ja nöyrä mielen myös monta uutta ystävää
0.4 partitive Leijona oli saanut paitsi hyvän ja nöyrän mielen myös monta uusi ystävä
0.4 gen + part Leijona oli saanut paitsi hyvä ja nöyrä mielen myös monta uusi ystävä

0.7 genitive Leijona oli saanut paitsi hyvä ja nöyrä mielen myös monta uutta ystävää
0.7 partitive Leijona oli saanut paitsi hyvän ja nöyrän mielen myös useampi uusi ystävä
0.7 gen + part Leijona oli saanut paitsi hyvä ja nöyrä mielen myös monta uusi ystävä

1.0 genitive Leijona oli saanut paitsi hyvä ja nöyrä mielen myös monta uutta ystävää
1.0 partitive Leijona oli saanut paitsi hyvän ja nöyrän mielen myös monta uusi ystävä
1.0 gen + part Leijona oli saanut paitsi hyvä yskäkin nöyrä tahdonvoima myös muutama uusi ystävä

0.3 global Leijona oli saanut paitsi hyvä ja nöyrä mielen myös monta uusi ystävä

- ground truth Leijona oli saanut paitsi hyvä ja nöyrä mieli myös monta uusi ystävä

Table 2: Idempotency regularization for function composition of separate models for lemmatizing gen-
itives and partitives. Both too large and small α introduce mistakes for this example sentence, but with
α = 0.4 and the alternative of global model the result is near perfect. The words in genitive form in the
original sentence are {hyvän, nöyrän,mielen}, and the words in partitive form are {uutta, ystävää}

two halves and try to predict which two parts be-
long together by ranking the articles via average
vector document representations. We take only a
subset of the data, using the first 10,000 news arti-
cles from the first three months of the year 2018.

We compare the proposed approach against a
conventional pipeline that first lemmatizes the
words using the uralicNLP library (Hämäläinen,
2019) (and then uses embeddings for the lemmas
for the task) and a pipeline that directly uses the
embeddings for all word forms. For the proposed
approach we perform lemmatization in the embed-
ding space for four different cases and their com-
binations, using the simple architecture.

For all methods, we form a representation for
the document by computing the mean of the word
embeddings for all words in the document and use
cosine similarity between these mean embeddings
to compare documents. One could alternatively
consider richer document representations (Wieting
et al., 2015; Arora et al., 2017; Gupta et al., 2020)
or more accurate similarity metrics (Torki, 2018;
Lagus et al., 2019) that might improve the overall
accuracy, but we chose the most commonly used
approach that is easy to understand to focus on
demonstrating the effect of the lemmatization.

We measure performance by retrieval accuracy,
by computing the rank of the second half of a
given document amongst the set of all 10,000 sec-
ond halves. Figure 3 shows the overall perfor-
mance of the different model variants as a func-

tion of the regularization parameter, measured by
rank-1 accuracy. We observe three clear results:
(a) all ways of lemmatization clearly improve the
task performance compared to no lemmatization
at all, (b) lemmatization in the embedding space
using case-specific models is considerably better
than the alternatives of traditional lemmatizer and
the global model lemmatizing in the embedding
space, and (c) idempotency regularization is cru-
cial, but the method is extremely robust with re-
spect to the specific choice of α – all values be-
tween 0.2 and 0.9 result in almost identical per-
formance.

Table 3 illustrates the task performance in more
detail for models trained using good choices for
the regularization parameter α, measured using re-
trieval accuracy with different ranks. The results
are consistent over the ranks, with case-specific
lemmatizers in the embedding space consistently
outperforming the other methods.

7 Application: Word List Generation

Even though our main goal is to learn lemmatiz-
ers, we note that that the approach is more general.
Instead of training a lemmatizer Mc(ew) ≈ ew′ ,
we can use the exact same architectures and data
for training Gc(ew′) ≈ ew to learn generators that
provide the embedding for the inflected form for
some particular case c.

We demonstrate this via the simple application
of word list expansion, which could be used simi-



Model Word case ααα R@1 R@2 R@3 R@4 R@5 R@6 R@7 R@8 R@9 R@10

simple gen 0.8 0.368 0.455 0.502 0.534 0.560 0.582 0.599 0.613 0.625 0.636
simple gen + part 0.8 0.390 0.483 0.533 0.569 0.594 0.613 0.632 0.647 0.658 0.669
simple gen + ine + part 0.5 0.395 0.491 0.540 0.573 0.597 0.620 0.636 0.649 0.663 0.674
simple gen + ine + ela + part 0.5 0.390 0.482 0.533 0.567 0.594 0.614 0.631 0.645 0.657 0.668
global - 0.9 0.329 0.411 0.458 0.488 0.513 0.532 0.548 0.561 0.573 0.585
lemmatizer - - 0.311 0.391 0.434 0.464 0.485 0.503 0.518 0.532 0.543 0.552
none - - 0.286 0.362 0.404 0.431 0.454 0.474 0.490 0.501 0.514 0.526

Table 3: The best combinations of each model version averaged over 10 different subsets of the news
data. R@K means that we rank the documents by similarity and measure the accuracy of the relevant
document being within the top K documents.

larly to query expansion for retrieval tasks. Given
a list of words w′ provided in base form and their
embeddings ew′ , we form a list of embeddings for
different inflected forms. We trained case-specific
models Gc(ew′) similar to before with different
values for α, observing a similar trend: the method
is robust for the choice, as long as extreme values
are avoided.

Table 4 illustrates the method for the
word list {jääkiekko, Suomi, V enäjä}
({ice hockey, F inland,Russia} in English)
one could use as keywords for searching infor-
mation about ice hockey matches between the
two countries. We show here the words with the
embeddings closest to the ones provided by the
generator models to verify it works as intended,
but in real use, we would naturally use the
transformed embeddings directly for the retrieval
task – they are likely to be better representations
especially for rare cases for which the actual
pre-computed embedding ew is likely to be noisy.

8 Conclusions

For MRLs lemmatization helps in many tasks. We
showed that the conventional pipeline using tra-
ditional lemmatizers as preprocessing can be re-
placed by lemmatization in the embedding space.
Already simple neural networks can transform the
embeddings of inflected words so that the clos-
est word in the embedding space is of the correct
lemma. This verifies lemmatization in the embed-
ding space is possible, but in real applications, we
naturally would not convert the result back to the
lemma. Instead, any downstream task simply pro-
cesses the lemmatized embeddings directly.

We showed that the method outperforms con-
ventional lemmatization preprocessing in the doc-
ument similarity comparison task, which implies
we are not merely learning to replicate the exact
lemmatization but instead learn embeddings that

Regularization parameter
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Figure 3: The effect of the regularization param-
eter (the α parameter) on full-length document
comparison task using rank-1 accuracy as the scor-
ing method. There is a notable improvement over
the baselines (lemmatizer and none) when using
our models with idempotency regularization pa-
rameter chosen within the range (0.2, 0.9), and the
improvement is highly insensitive to the specific
value of the parameter.

better capture the word content. We hypothesize
this is related to how rare words are represented
in the embedding space; for rare words, the em-
beddings for all word forms are unreliable, includ-
ing the one for the lemma itself. Subword-level
embeddings, like fastText used in our exper-
iments, may still be able to learn sensible em-
beddings for the collection of all inflected forms
together, and by lemmatizing in the embedding
space we borrow some information from all of the
forms. In other words, we argue that the approx-
imate lemmatization performed by the neural net-
work may have the regularizing ability to reduce
noise in embeddings of rare words so that the ’ap-
proximation’ is actually better than the target em-
bedding used during training.



Word case Expanded form Ground truth

genitive jääkiekon jääkiekon
genitive Suomen Suomen
genitive Venäjän Venäjän
inessive jääkiekkossa jääkiekossa
inessive Suomessa Suomessa
inessive Venäjässä Venäjässä
elative jääkiekosta jääkiekosta
elative Suomesta Suomesta
elative Venäjästä Venäjästä
partitive jääkiekkoa jääkiekkoa
partitive Suomea Suomea
partitive Venäjää Venäjää
illative jääkiekkoon jääkiekkoon
illative Suomeen Suomeen
illative Venäjälle Venäjälle

Table 4: Example word list expansion generated
for the word list {jääkiekko, Suomi, V enäjä}
({ice hockey, F inland,Russia}) using morpho-
logical generator models for genitive, inessive, el-
ative, partitive, and illative cases with regulariza-
tion parameter α = 0.4. Note the mistake for
the inessive case of ”jääkiekko”, which should be
”jääkiekossa” and not ”jääkiekkossa” – the word
has the correct ”-ssa” suffix but the root is incor-
rect. It is also worth noting that ”jääkiekkossa”
is not a valid word form in Finnish at all, but the
fastText library provides embeddings for arbi-
trary strings using sub-word information. The em-
beddings for the two forms are likely very close,
and hence the mistake would have no effect in re-
trieval tasks.

In this work we presented the overall concept
for lemmatization in the embedding space and ex-
perimented on various technical choices, building
the basis for future development. Our main find-
ings were that a global model can perform lemma-
tization well when measured only by accuracy, but
for the task of document comparison, we reached
considerably better results by function composi-
tion of case-specific models. To make this possi-
ble we proposed a novel idempotency regulariza-
tion, and showed that the approach is highly ro-
bust for the choice of the regularization parame-
ter, making it essentially parameter-free. Finally,
we note that even though we demonstrated the ap-
proach for an example MRL language Finnish and
only for lemmatization of nouns and adjectives,
the method is general and directly applicable for
other languages and word classes.
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