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Abstract

In medical dialogue summarization, sum-
maries must be coherent and must capture all
the medically relevant information in the di-
alogue. However, learning effective models
for summarization require large amounts of la-
beled data which is especially hard to obtain.
We present an algorithm to create synthetic
training data with an explicit focus on captur-
ing medically relevant information. We utilize
GPT-3 as the backbone of our algorithm and
scale 210 human labeled examples to yield re-
sults comparable to using 6400 human labeled
examples (∼30x) leveraging low-shot learning
and an ensemble method. In detailed experi-
ments, we show that this approach produces
high quality training data that can further be
combined with human labeled data to get sum-
maries that are strongly preferable to those
produced by models trained on human data
alone both in terms of medical accuracy and
coherency.

1 Introduction

With increasing usage of telehealth platforms
(Mann et al., 2020), large scale ecosystems of
providers and patients have become apparent. This
has exacerbated the need for comprehensive visit
summaries of the medical dialogues by the attend-
ing practitioner in order to facilitate accurate hand-
offs to other care providers or as a means of record-
ing the interaction. However, having providers
write summaries after each encounter is not only
time consuming but also costly, limiting the scala-
bility of telehealth platforms (Shanafelt et al., 2016)

In these settings, an automated summarizer that
can assist the practitioners can be extremely valu-
able. However, an important challenge of end-to-
end medical dialogue summarization is the lack of
large scale annotated datasets. Annotation of medi-
cal dialogues is expensive and slow because they
need to be curated by trained experts. This is fur-
ther compounded by the fact that labeled data may

not be publicly shared because of patient privacy
concerns and HIPAA regulations.

Recent approaches to summarization (Qi et al.,
2020; Zhang et al., 2019) use transfer learning
where a pre-trained model (e.g. through self su-
pervision of learning a language model) is fine
tuned with a labeled dataset. However, fine-tuning
still requires hundreds to thousands of labeled ex-
amples to obtain reasonable performance. Meth-
ods such as (Joshi et al., 2020) aim to partially
overcome these issues through modeling strategies
that directly learn important inductive biases from
smaller amounts of data. In addition, (Joshi et al.,
2020) also handled data sparsity by leveraging a
key insight of sequential nature of information flow
in a medical dialogue: global summary of the dia-
logue can be composed from local dialogue turns
(snippets). This enables collecting training data for
snippets as opposed to the full conversation - an
insight, we use in our paper as well.

Recently, OpenAI developed GPT-3, a neural
language model that is capable of natural language
generation and completion of tasks like classifi-
cation, question-answering, and summarization
(Brown et al., 2020). The focus of that work is
to enable task-agnostic and zero-shot or low-shot
performance as opposed to a pre-trained model that
needs to be fine-tuned separately on every down-
stream task. In this paper, we investigate the fol-
lowing question: How can a low-shot learner such
as GPT-3 be leveraged to scale training data for
medical dialogue summarization models? In an-
swering this question within the context of GPT-3
as a black box proprietary API1, we took into ac-
count multiple considerations:

• Medical Correctness (Joshi et al., 2020): Med-
ical summarization warrants high recall and
therefore the summarizer should be good at (1)
capturing all the medical information (med-

1https://beta.openai.com/

https://beta.openai.com/
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ications, symptoms, etc.) discussed in the
dialogue and (2) discern all the affirmatives
and negatives on medical conditions correctly
(e.g. no allergies, having a cough for 2 days).

• Privacy Concerns: At inference time, an API
call to external services such GPT-3 may not
always be possible due to HIPAA and privacy
concerns.

• Practitioner in the loop: The technique needs
to be easily amenable to a feedback loop that
allows for leveraging manually curated human
labels. This feedback loop is extremely impor-
tant because the diversity and the long tail of
data distribution in medical dialogue means
that there can be parts of the summary that
need to be edited by practitioners for medi-
cal correctness and completeness. Note that
these edits can be used as additional data for
improving the underlying model.

Taking into account these considerations, this paper
makes the following contributions (Figure 1 for a
quick overview):

• We introduce a medically-aware GPT-3 data
labeler, GPT-3-ENS , that combines medical
knowledge and an ensemble of GPT-3 for the
purpose of medical dialogue summarization.

• We introduce the idea of using GPT-3-ENS as
a dataset generator to facilitate learning an
in-house summarization model. Our experi-
ments show that we can obtain the same per-
formance as that of human labeled dataset
with 30x smaller amount of human labeled
data. With only 210 expert curated summaries
and GPT-3 as a labeled data simulator, we can
mimic the performance of a summarization
model trained on 6400 expert curated sum-
maries.

• By combining generated datasets from GPT-
3-ENS with a human labeled dataset, we
show that we can obtain better performance
than models trained on either one of the data
sources.

The rest of the paper is structured as follows: § 2
discusses related work, § 3 explores whether GPT-
3 can be used directly for medical summarization,
§ 4 introduces our approach, § 5 and § 6 describe

our datasets and metrics respectively while § 7 il-
lustrates our experiments. We end the paper with
§ 8 discussing our conclusions and future work.

Figure 1: Overview of our proposed approach: we train
models on a mix of GPT-3-ENS synthesized and hu-
man labeled data to get performance better than models
trained on either of the sources

2 Related work

Summarization Emergence of sequence to
sequence models and attention mechanisms
(Sutskever et al., 2014) has led to rapid progress on
extractive (Nallapati et al., 2017) , abstractive (Nal-
lapati et al., 2016; Zhang et al., 2019) and hybrid
models (See et al., 2017; Gu et al., 2016) for sum-
marization. Much of the recent work has shown
these models to generate near-human coherent sum-
maries while retaining reasonable factual correct-
ness.
Dialogue summarization: While most neural
summarization has focused on news corpora, recent
work has tried to tackle unique challenges associ-
ated with summarizing dialogues. (Goo and Chen,
2018) proposes using dialogue history encoders
based on the type of dialogue section to inform
the generation. (Liu et al., 2019a) propose using
key points as a means of categorizing sections of
dialogue.
Medical dialogue summarization Existing work
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(Alsentzer and Kim, 2018; Zhang et al., 2018; Liu
et al., 2019b; Krishna et al., 2020a,b; Joshi et al.,
2020) in this space focuses on effective summa-
rization by incorporating medical knowledge from
a modeling perspective. Our work also focuses
on incorporating medical knowledge from a data
labeling perspective. We show how we leverage
pretrained language models and low-shot learning
(Brown et al., 2020) to collect labeled data for med-
ical dialogue summarization. We also show how
this data can improve performance over models
that are trained solely on existing human labeled
data.

3 Background: Can GPT-3 serve as a
medical summarizer?

Ignoring the privacy concerns and practitioner-in-
the-loop considerations, we first explore whether
GPT-3 (Brown et al., 2020) is a good medical sum-
marizer by itself.

GPT-3 takes as input a priming context to per-
form the task on a previously unseen example.
Priming context refers to the text description of
a task and a few demonstrations of the task being
accomplished (in our case, that would be dialogue
snippet summarization).

Table 1 column 2 provides examples of sum-
maries generated by the GPT-3 model. We can
clearly see that it misses a number of important
pieces of information in the snippets – first, missing
medical concepts making the summary unusable
(Rows 1-2). Second, the model may not always
get the affirmations correct (Row 3). Third, the
summary may repeat redundant information from
the doctor’s queries (Row 4).

Based on these observations, we might prema-
turely conclude that GPT-3 can not be used for
medical summarization task. However, our key
observation in exploring GPT-3 is that it is sensi-
tive to the priming context (also reported in (Liu
et al., 2021)), as the model does not learn but just
adheres to the examples given. As we show in 4,
we exploit this variability in GPT-3 output via en-
sembling and infusion of medical knowledge so
that it can be used as a part of an effective low-shot
learning approach to medical summarization.

4 Infusing Medical Knowledge in GPT-3
for use as a Data Generator

We are interested in a model that uses only a small
amount of human labeled data to learn an effec-

Snippet GPT-3 GPT-3-ENS
DR: Thank you so much
for sharing. Are you on
any regular medications
for that?
PT: My only regular med-
ication is birth control -
Apri. Low dosage.

On birth con-
trol.

Only regular
medication is
birth control
-Apri. Low
dosage.

DR: You had mentioned
the headache starting af-
ter stopping the medica-
tions. Have you had sim-
ilar headache while stop-
ping medications before?
PT: Yes
PT: Well that’s a compli-
cated question
PT: I’m not really sure
DR: Okay, no worries.
Wanted to know a bit
more since you had men-
tioned about them. That’s
all.

Yes. Stopping
medications be-
fore.

Yes, has
headache
while stopping
medications
before. Is not
sure.

DR: Do you have pain
when you notice penile
discharge?
PT: no i’m not

Did not no-
tice penile
discharge. No
pain.

Doesn’t
have pain
when notic-
ing penile
discharge.

DR: I have a few ques-
tions to ask. How long
have you been having this
vaginal discomfort?
PT: only a few days,
since like friday or satur-
day maybe

I have a few
questions to
ask. How long
has she been
having vaginal
discomfort?

Has been hav-
ing vaginal
discomfort
for only a few
days, since
friday or
saturday.

Table 1: Input dialogue snippets along with summaries
generated by GPT-3 in column 2 and our approach,
GPT-3-ENS , in column 3.

tive medical dialogue summarizer. At the same
time, we want such a model to be used in a practi-
cal practitioner-in-the-loop setting where medical
correctness and patient privacy are of paramount
importance.

In order to achieve these goals, we propose a
two-pronged approach

1. Introduce GPT-3-ENS where we infuse med-
ical knowledge into GPT-3 and use it within
an inner loop to make it effective at medical
summarization.

2. Leverage GPT-3-ENS as a data generator to
obtain a large training set 2 to train an in-house
medical dialogue summarization model. Such
an in-house model can be used at inference

2Unlike data at inference time, training data is fixed and
can be ensured to be privacy protected
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time without the practical constraints related
to protecting patient privacy that would re-
quire full de-identification to be applied in
any conversation, if we were to access the
GPT-3 service. It also lends itself well to the
practioner-in-the-loop setting.

4.1 GPT-3-ENS : Medically-aware ensemble
of GPT-3

As discussed in 3, GPT-3 is quite sensitive to the
priming context. While one approach may be to
provide GPT-3 with the most informative context
for a task, this itself is a daunting task and can
potentially be tackled if we had a large number of
labeled examples (which is the exact problem we
want to tackle with GPT-3).

Drawing on the learning from vast literature in
ensembling techniques c.f. (Bishop et al., 1995),
our first key insight is that if we can generate multi-
ple summaries from GPT-3 using a variety of prim-
ing contexts, then we should be able to ensemble
these outputs to identify the summary that is ideal
for the dialogue. This insight leads to a question
on how to ensemble multiple text summaries. The
answer to this question relies on the core require-
ment for medical summarization: we care about
the coverage of medical concepts mentioned and
therefore the best ensembling function is the one
that returns the summary with the most medical
information in the dialog input.

In Algorithm 1 we provide our approach to the
medically aware GPT-3 ensemble GPT-3-ENS .
We assume access to a small set of labeled exam-
ples L. For each input dialog snippet, D, we get K
summaries, by invoking GPT-3 each time with N
examples sampled randomly without replacement
from L. We also assume access to a medical en-
tity extractor that can discern the medical concepts
from both the dialogue snippet and the summary.
The algorithm returns the best summary that has the
highest recall in terms of capturing the medical con-
cepts in the dialogue. For this purpose, we use an
in-house medical concept extractor MEDICALEN-
TITYRECOGNIZER that can identify medical con-
cepts from a given piece of text. This extractor has
access to the universe of medical concepts based
on Unified Medical Knowledge Systems 3, which
includes patient symptoms, disorders, laboratory
tests and medications. Note that any medical en-
tity recognizer (cf. (Fu et al., 2019) and references

3https://www.nlm.nih.gov/research/
umls/index.html

therein) that has coverage for all these types of
medical concepts found in medical conversations
can be used.

Algorithm 1 Medically aware GPT-3 ensemble
summarizer (GPT-3-ENS )
Require: dialogue snippet T , ensembling trialsK,

universe L of labeled examples, medical entity
extractor MedicalEntityRecognizer, GPT3

1: C∗ ←MedicalEntityRecognizer(T )
2: for i← 1, · · · ,K do
3: S ← sample N examples from L
4: summaryi ← GPT3(S, T )
5: Ci ←MedicalEntityRecognizer(

summaryi)
6: end for
7: best← argmaxi

|Ci∩C∗|
|C∗|

8: return summarybest

Reconsider Table 1 for qualitative comparison
between GPT-3 and GPT-3-ENS . We can see that
summaries obtained using GPT-3-ENS capture the
medical concepts comprehensively (shown in bold)
and also have better grammatical structure. We also
quantitatively validate the summaries on a small
data set distinct from what is used for priming(see
§ 6.2 for guidelines). In Figure 2, based on doctor
evaluation, we can see that GPT-3-ENS is signifi-
cantly better at summarization than GPT-3 .

Figure 2: Doctor evaluation of which among GPT-
3 and GPT-3-ENS summaries they considered “best”
showing that GPT-3-ENS is a better approach for la-
beling

4.2 GPT-3-ENS as a data labeler

We use GPT-3-ENS described in 4.1 as our labeled
data generator. In particular, we use our approach

https://www.nlm.nih.gov/research/umls/index.html
https://www.nlm.nih.gov/research/umls/index.html
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to collect a large amount of labeled examples that
serve as inputs to training an off-the-shelf sum-
marization model. This resolves the concern of
using GPT-3 in a real world application where the
patient’s conversation (in its raw form) needs to
be exchanged with an external third party such as
OpenAI/GPT-3 which may not have design/privacy
regulations around HIPAA. In our approach, how-
ever, with the help of experts, it is easy to ensure
that the dialogues that will used for priming as well
as in the training set are chosen following privacy
protocols.

5 Datasets

We collected a random subset of medical conver-
sation dialogues from our chat-based telemedicine
platform. Often medical conversation follows a
linear ordering of medical history gathering (under-
standing patient symptoms) that enables creating
the summary of the dialog by stitching together
summaries of the snippets in chronological order
(Joshi et al., 2020). Therefore, we split each dia-
logue into a series of local dialogue snippets using
a simple heuristic: the turns between two subse-
quent questions by a physician corresponds to a
snippet. The length of these snippets ranged any-
where from two turns (a physician question and
patient response) to ten turns.

We had medical doctors4 summarize these
snippets. The doctors were asked to summarize
the sections as they would for a typical clinical
note by including all of the relevant history taking
information. If a local snippet did not contain any
history taking information it was excluded from
annotations. For example in the beginning or end
of conversations there may be turns that are purely
greetings and not part of the patient history taking
process. Further some snippets maybe purely
educational in nature and are excluded as well.
We eventually obtained a total of 6900 labeled
snippet-summary pairs.

Human labeled dataset train/test split: From the
6900 labeled snippet-summary pairs (denoted as
H6900), we generated a randomly sampled test set
T = 500 that we use in all our evaluations.

The dataset H6900 − T is used to generate the
priming dataset for GPT-3 related models as well
as the datasets we use to train our summarization

4These are the same doctors who practice on the same
telemedicine platform.

models.

GPT-3-ENS dataset: Let GCFk
p be the dataset of

size p generated using GPT-3-ENS with k ensem-
bling trials. To generate dataset GCFK=k, we re-
quire {Hn}ki=1 datasets (note the independence on
p), and thus n × k labeled examples for priming.
These n× k examples are randomly sampled from
the universe of human labeled examplesH6900−T .
In our experiments, we sample without replacement
so that no examples are reused across the k tries.
To allow comparison between our experiments with
different K values, we use the same seed for ran-
dom sampling.

6 Evaluation Metrics

Multiple studies have shown that automated met-
rics in NLP do not always correlate well to human
judgments as they may not fully capture coherent
sentence structure and semantics (Stephen Roller,
2020; Kryściński et al., 2019). Since medical dia-
logue summarization would be used to assist health
care, it is important for doctors to evaluate the qual-
ity of the output.

6.1 Automated metrics

While we measure model performance on standard
metrics of ROUGE (Lin, 2004) 5, we also measure
a model’s effectiveness in capturing the medical
concepts that are of importance, and their negations
(Joshi et al., 2020)
Medical Concept Coverage: The concept cover-
age set of metrics captures the coverage of medical
terms in the model’s output summary with respect
to the ground truth. In particular, let C be the set of
medical concepts in the reference summary and Ĉ
be the set of concepts in the summary output by the

model. Then, Concept recall =
∑N

n=1 |Ĉ(n)∩C(n)|∑N
n=1 |C(n)|

and Concept precision =
∑N

n=1 |Ĉ(n)∩C(n)|∑N
n=1 |Ĉ(n)|

.

We use these to compute a Concept F16 We use
an in-house medical entity extractor to extract med-
ical concepts in the summary. Medical concepts in
the decoded summary that weren’t present in the
original conversation would be false positives and
vice versa for false negatives.

5We use the following package with default configuration:
https://github.com/google-research/
google-research/tree/master/rouge

6Note if there are no concepts detected in the snippet and
summary by the entity extractor, then a conservative F1 score
of 0 is given for that example.

https://github.com/google-research/google-research/tree/master/rouge
https://github.com/google-research/google-research/tree/master/rouge
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Negation Correctness: To measure the effective-
ness of the model to identify the negated status of
medical concepts, we use Negex (Harkema et al.,
2009) to determine negated concepts. Of the con-
cepts present in the decoded summary, we evaluate
precision and recall on whether the decoded nega-
tions were accurate for the decoded concepts and
compute a negation F16.

6.2 Doctor Evaluation

We also had doctors, who serve patients on our tele-
health platform, evaluate the summaries produced
by the models. Given the local dialogue snippets
and the generated summary, we asked them to eval-
uate the extent to which the summary captured fac-
tually correct and medically relevant information
from the snippet. Depending on what percentage
of the concepts were correctly mentioned in the
decoded summary of the provided snippet, the doc-
tors graded the summaries with All (100%), Most
(at least 75%), Some (at least 1 fact but less than
75%), None (0%) labels.

We also formulated a comparison task where
given summaries generated by different models
and the associated dialogue, they were asked which
summary was the "best" from a usability perspec-
tive. Usability was defined as whether the summary
could stand in as a replacement for reading the di-
alogue snippet i.e. whether it captures the correct
concepts from the snippet and whether the nega-
tions are accurate. The doctors had the ability to
use “all” and “none” in this task depending on if all
models being compared captured a good summary
or if none of them did.

To avoid bias, the doctors do not know the model
that produced the summary in both the experiments.
In the comparison task, the summaries were pro-
vided in randomized order so that there is no bias
in the order of presentation of the summaries.

7 Experiments and Results

Additional models considered: To evaluate the
efficacy of GPT-3-ENS as a source of labeled
data generator, we considered models with distinct
objective functions for abstractive and hybrid
(abstractive/extractive) summarization. We used
PEGASUS (Zhang et al., 2019) for abstractive
summarization and Dr. Summarize which we
denote as DRSUM (Joshi et al., 2020) for
extractive summarization. For DRSUM , we also
use their best performing variant (referred as

2M-PGEN in (Joshi et al., 2020)) which penalizes
generator loss and favors extractive copying.

Implementation Details: We used GPT-3 via the
API released by OpenAI7. Maximum response
length was set to 128 tokens, temperature to 0.6 and
presence and frequency penalties both set to 0. For
GPT-3-ENS , we use K = 10 ensembling trials for
all our experiments, unless otherwise specified. We
observed that N = 21 was the maximum number
of examples we could prime GPT-3 with given the
maximum context window length of 2048 tokens
for the API. We therefore fix the size of our priming
dataset to be 21 in all experiments which invoke
GPT-3. Hence we set L to be a random subset of
210 examples from H6900 − T .

We followed parameter settings for DR-
SUM from (Joshi et al., 2020) for pretraining on the
CNN-Dailymail dataset. We then fine-tuned on our
summarization task dataset with a batch size of 16,
source_max_tokens = 400, response_max_tokens
= 200 and max_grad_norm clipped at 2.0, for two
epochs with a learning rate of 0.15 using Adagrad
optimizer.

We used the PEGASUS implementation that is
pretrained on CNN-Dailymail8 provided by (Wolf
et al., 2020). We fine-tuned it on our summarization
task dataset with an effective batch size of 256,
source_max_tokens = 512, response_max_tokens
= 128 for two epochs using Adafactor9 optimizer
at the default settings in Hugging Face. For both
PEGASUS and DRSUM , we used a beam size of
four for decoding.

7.1 Training summarization models using
data labeled by GPT-3-ENS

We compare PEGASUS and DRSUM trained on
human labeled data H6400 and GPT-3-ENS syn-
thesized data GCFK=10

6400 . Note that synthesizing
GCFK=10

6400 needed all of 21 · 10 = 210 human la-
beled examples, where 21, as a reminder, is the
maximum number of inputs that can be used for
priming.

Table 2 compares quantitative performance of
PEGASUS and DRSUM trained on these two
datasets. The main observation is that with only

7https://beta.openai.com/
8https://huggingface.co/google/

pegasus-cnn_dailymail
9https://huggingface.co/transformers/

main_classes/optimizer_schedules.html#
adafactor-pytorch

https://beta.openai.com/
https://huggingface.co/google/pegasus-cnn_dailymail
https://huggingface.co/google/pegasus-cnn_dailymail
https://huggingface.co/transformers/main_classes/optimizer_schedules.html#adafactor-pytorch
https://huggingface.co/transformers/main_classes/optimizer_schedules.html#adafactor-pytorch
https://huggingface.co/transformers/main_classes/optimizer_schedules.html#adafactor-pytorch
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Models
Train Data

Source
Metrics

Negation
F1

Concept
F1

ROUGE-L
F1

PEGASUS

H6400 21.09 35.96 55.59
GCF k=10

6400 28.89 40.02 53.43
GCF k=10

12800 26.70 40.21 56.66
GCF k=10

25600 28.61 40.58 58.44

DRSUM

H6400 26.75 39.95 52.70
GCFk=10

6400 24.29 37.55 48.47
GCFk=10

12800 26.66 38.49 49.18
GCFk=10

25600 26.08 39.47 50.85

Table 2: Automated evaluation of summarization mod-
els trained with different data labeling methodologies.
Note that the amount of human labeled data is still
pretty low (210), compared to 6400 when we do not
use our approach.

210 human labeled examples, our approach GPT-3-
ENS is able to generate a large amount of training
data for both pre-trained summarization models,
PEGASUS and DRSUM , in such a manner that
they yield comparable (or better perfomance) than
if they had been trained with only 6400(∼30x) hu-
man labeled examples.

For PEGASUS , the summarization performance
improves drastically compared to model fine-tuned
using only the human labeled data. We hypothesize
that data generated from GPT-3-ENS can serve as
quality training data for abstractive models such
as PEGASUS but not so much for hybrid models
such as DRSUM due to GPT-3 being a generative
language model. The summaries written by our
human doctors have writing structure similar to
that of a hybrid summarization model such as DR-
SUM that is more extractive in nature. This can
explain why DRSUM did not show performance
gain when using generated data from GPT-3-ENS .
The key, however, is that it still did perform on par.

In the same Table 2, we also present the results
with increased amounts of data (12800 and 25600)
from GPT-3-ENS . There is little or no further im-
provement in the automated metrics of concept and
negation F1. However, ROUGE-L F1 improves
reflecting the improvements in coherency of the
summaries. We leave this area as future work to
explore.

7.2 Effect of combining human labeled data
with data labeled by GPT-3-ENS

Since GPT-3 relies on limited local priming con-
text (N = 21) it may not be agile in providing
robust summaries for a multitude of variations in

snippets, focusing on the exploitation part of the
exploration-exploitation trade-off. We hypothesize
that best summaries then will be synthesized by a
model trained on a dataset with human and GPT-
3-ENS labeled examples. To evaluate this, we in-
troduced a mixing parameter α, the ratio of GPT-3-
ENS labeled examples to human labeled examples.
For instance, with 6400 human labeled examples,
α = 0.5 implies the dataset contains 6400 human
labeled examples along with 0.5 ∗ 6400 = 3200
GPT-3-ENS generated examples. We experiment
with α = 0.5, 1, 2, 3.

From Table 4, we observe that for both PEGA-
SUS and DRSUM , mixture of human labeled and
GPT-3-ENS data consistently improves almost all
automated metrics for all α values10 The lift in
metrics is lower for DRSUM , again illustrating the
idea we highlighted in § 7.1 of GPT-3-ENS data
being more amenable to abstractive models such
as PEGASUS than for hybrid or extractive-biased
models such as DRSUM . Table 3 provides qualita-
tive comparison between summaries generated by
each of these models.

For simplicity, we chose the smallest GPT-3-
ENS mix i.e. α = 0.5 for human evaluation where
we ask doctors to evaluate summaries from model
trained on human, GPT-3-ENS and human+GPT-3-
ENS data. Figure 3 and Figure 4 show that doctors
prefer summaries from the model trained on the
mixture data over those produced by models trained
on human or GPT-3-ENS data alone, in terms of
amount of medical information captured as well as
the overall quality of the summary. Furthermore,
Figure 3(b) also shows that for PEGASUS , doc-
tors prefer the summaries from a model trained on
GCFK=10

6400 (which needed only 210 human labeled
examples) over those produced by a model trained
on 6400 human labeled examples.

8 Conclusion

We introduced a medically-aware GPT-3 data la-
beler, GPT-3-ENS , for the task of medical con-
versation summarization. At the heart of the ap-
proach is a medically aware ensembling criterion
that ensembles multiple summaries for an input
from a powerful low-shot learner such as GPT-3.
We showed that this approach can generate quality

10Note here that the claim is not that increasing α improves
metrics but that mixing GPT-3-ENS and human labeled data
improves metrics over models trained only using human data.
We leave it as a future work on how to trade-off between
human and GPT-3-ENS labeled data.
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Snippet Model trained on H6400
Model trained on
GCFK=10

6400
Model trained on
H6400+GCFK=10

3200

DR: Have you ever been
tested for any underlying
health conditions such as
diabetes, hypothyroidism
or polycystic ovarian
syndrome?
PT: No
PT: I have been told I have
prediabetes

Has not been tested for
any underlying health con-
ditions.

Hasn’t tested for any under-
lying health conditions such
as diabetes, hypothyroidism
or polycystic ovarian syn-
drome

Has not been tested for
any underlying health con-
ditions. Has been told has
prediabetes.

DR: DR: Do you have pus
appearing discharge from
the site?
PT: Yes. If the bubbles pop
it leaks out a watery sub-
stance

Has pus appearing from the
site. Pus appearing from the site Pus discharge from the site.

If bubbles pop it leaks out a
substance.

Table 3: Input conversation snippets along with summaries generated by models trained on different data

Models
Train Data

Source
Metrics

Negation
F1

Concept
F1

ROUGE-L
F1

PEGASUS H6400 21.09 35.96 55.59
α = 0.5 H6400 +GCFK=10

3200 30.14 43.49 62.45
α = 1 H6400 +GCFK=10

6400 30.70 43.73 60.63

α = 2 H6400 +GCFK=10
12800 29.43 41.02 59.85

α = 3 H6400 +GCFK=10
25600 31.93 44.68 61.05

DRSUM H6400 26.75 39.95 52.70
α = 0.5 H6400 +GCFK=10

3200 27.51 40.46 53.39
α = 1 H6400 +GCFK=10

6400 27.18 40.36 51.00

α = 2 H6400 +GCFK=10
12800 27.19 40.68 53.07

α = 3 H6400 +GCFK=10
25600 26.33 39.89 52.29

Table 4: Combining human labeled datasets with
datasets generated using our proposed approach

Figure 3: Doctor evaluation of amount of medical in-
formation covered by summaries provided by PEGA-
SUS models and which ones they considered “best”

Figure 4: Doctor evaluation of amount of medical
information covered by summaries provided by DR-
SUM models and which ones they considered “best”

training data for medical dialogue summarization
models while ensuring medical correctness. We
show that using a very small number of human la-
beled examples, 210, we are able to produce more
medically correct and better quality summaries
than using roughly thirty times as many human
labeled examples for two different summarization
models. In this work we used a simple ensembling
technique that dialogue summaries should retain all
the medical information discussed in the dialogue.
Future work could be to improve our ensembling
function to take into account other medical priors
such as affirmations and importance/relevance of
the information in the dialog.
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Snippet Summary Prompt
PT: Today spit out a bit of mucus
and noticed a bit of blood.
DR: Okay, how long have you
been on these medications?
PT: About 2 years

Has been on these medications for
about 2 years

Today spit out a bit of mucus
and noticed a bit of blood.[STOP]
Okay, how long have you been
on these medications?[SEP]About
2 years[SUMMARIZED]Has been
on these medications for about 2
years.[STOP]

DR: Is the bleeding from the anal
opening and not the vagina? Has
something similar happened be-
fore?
PT: yes from the anal opening

The bleeding is from the anal open-
ing.

Is the bleeding from the anal open-
ing and not the vagina? Has
something similar happened be-
fore?[SEP]yes from the anal open-
ing[SUMMARIZED]The bleeding
is from the anal opening.[STOP]

Table 5: Prompt for GPT-3 given two examples

A GPT-3 Prompt

We utilize a fairly simple prompt to have GPT-3
generate summaries. Each example (snippet_text,
summary_text) is concatenated to the empty
string with the following transformation: "{snip-
pet_text}[SUMMARY]{summary_text}[STOP]"
to form the prompt. We seperate the conversational
turns in snippet_text with the "[SEP]" token.
Table 5 shows a prompt that would be generated
and used to prime GPT-3 given two examples. As
mentioned in § 7 in our experiments we use 21
examples to generate a prompt


