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Message from the Organizers

Welcome to NLP4Prog, the First Workshop on Natural Language Processing for Programming, co-
located with ACL-IJCNLP 2021 online.

The proliferation of programming-related platforms such as GitHub and Stack Overflow has led to
large amounts of rich, open-source data consisting of programs associated with natural language, such
as natural language questions and answers with code snippets, open-source repositories with natural
language comments, and communications between software developers. At the same time, deep learning
based techniques have shown promising performance for modeling both natural language and computer
programs. Driven by these revolutions on data and models, recent years have witnessed a major
resurgence of using NLP techniques to assist programming (NLP4Prog).

As promising as the current developments are, there are still many challenges remaining. This workshop
aims to bring related communities (e.g., NLP, Software Engineering, Programming Language, Human-
Machine Interaction, Robotics) together to review the recent advances related to NLP4Prog and discuss
the remaining challenges and what to expect in the short- and long-term future. While there are similar
workshops such as NLP-SEA and NLPaSE held recently, most of them are in conjunction with software
engineering venues; to the best of our knowledge, this is the first workshop focusing on NLP for
programming and to be held in NLP venues.

A total of 31 papers were submitted and 25 were presented at the workshop. 10 of these papers appear
in the proceedings, while the rest were submitted under a non-archival option. In addition, 4 papers from
Findings of ACL were also offered presentation slots.

We are thankful to all reviewers for their help in the selection of the program, for their readiness in
engaging in thoughtful discussions about individual papers, and for providing valuable feedback to
the authors. We would also like to thank the ACL workshop organizers for all the valuable help and
support with organizational aspects of the conference. Finally, we would like to thank all our authors and
presenters for making this such an exciting event!

NLP4Prog Organizers: Royi Lachmy, Ziyu Yao, Greg Durrett, Milos Gligoric, Junyi Jessy Li, Ray
Mooney, Graham Neubig, Yu Su, Huan Sun, Reut Tsarfaty
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Abstract

Automated source code summarization is a
popular software engineering research topic
wherein machine translation models are em-
ployed to “translate” code snippets into rel-
evant natural language descriptions. Most
evaluations of such models are conducted us-
ing automatic reference-based metrics. How-
ever, given the relatively large semantic gap
between programming languages and natural
language, we argue that this line of research
would benefit from a qualitative investigation
into the various error modes of current state-
of-the-art models. Therefore, in this work,
we perform both a quantitative and qualitative
comparison of three recently proposed source
code summarization models. In our quan-
titative evaluation, we compare the models
based on the smoothed BLEU-4, METEOR,
and ROUGE-L machine translation metrics,
and in our qualitative evaluation, we perform
a manual open-coding of the most common
errors committed by the models when com-
pared to ground truth captions. Our investiga-
tion reveals new insights into the relationship
between metric-based performance and model
prediction errors grounded in an empirically
derived error taxonomy that can be used to
drive future research efforts.1

1 Introduction and Motivation

Proper documentation is an important component
of modern software development, and previous
studies have illustrated its advantages for tasks
ranging from program comprehension (Garousi
et al., 2015) to software maintenance (Chen and
Huang, 2009). However, manually documenting
software is a tedious task (McBurney and McMil-
lan, 2014) and modern agile development practices

1Our annotations and guidelines are publicly avail-
able on Github https://github.com/SageSELab/
CodeSumStudy and Zenodo: https://doi.org/10.
5281/zenodo.4904024.

tend to champion working code over extensive doc-
umentation (Beck et al., 2001). As such, a range
of important documentation activities are often ne-
glected (Zhi et al., 2015) leading to deficiencies in
carrying out development activities and contribut-
ing to technical debt. Because of this, researchers
have worked to develop automated code summa-
rization techniques wherein machine translation
models are employed to generate precise, seman-
tically accurate natural language descriptions of
source code (Haiduc et al., 2010). Due to the
promise and potential benefits of effective auto-
mated source code summarization techniques, this
area of work has seen constant and growing atten-
tion at the intersection of the software engineering
and natural language processing research commu-
nities (Zhu and Pan, 2019).

Various techniques for automated source code
summarization have been explored extensively over
the past decade. Some of the earliest approaches
made use of a combination of structural code infor-
mation and text retrieval techniques for determin-
ing the most relevant terms (Haiduc et al., 2010),
with follow up work investigating the use of topic
modeling (Eddy et al., 2013). Techniques then
evolved from using information retrieval to canon-
ical machine learning techniques, with Ying and
Robillard (2013) using supervised Naive Bayes
and Support Vector Machine classifiers to iden-
tify code fragment lines that could be used as
suitable summaries. One of the first appearances
of language modeling came from McBurney and
McMillan (2016) who proposed an approach com-
bining a software word usage model, natural lan-
guage generation systems, and the PageRank al-
gorithm (Langville and Meyer, 2006) to generate
summaries. Driven by the advent of deep learning,
current state-of-the-art techniques generally make
use of large-scale neural models and have signifi-
cantly improved the performance of code summa-
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rization tasks. For instance, Iyer et al. (2016) used
Long Short Term Memory (Hochreiter and Schmid-
huber, 1997) with attention (Bahdanau et al., 2015)
to generate summaries from a code snippet. Fol-
lowing this work, researchers have applied sev-
eral deep learning-based approaches to the task of
source code summarization (Zhang et al., 2020a;
Wan et al., 2018; LeClair et al., 2020).

In most works on automated code summariza-
tion, the performance of the generated natural lan-
guage descriptions is evaluated using reference-
based metrics adapted from machine translation,
e.g., BLEU (Papineni et al., 2002) and ME-
TEOR (Lavie and Agarwal, 2007), or text sum-
marization, e.g., ROUGE (Lin, 2004). As such,
most researchers make conclusions based on the
results obtained using these metrics. However, the
code summarization task is a difficult one – due
in large part to the sizeable semantic gap between
the modalities of source code and natural language.
As such, while these metrics provide a general il-
lustration of model efficacy, it can be difficult to
determine the specific shortcomings of neural code
summarization techniques without a more exten-
sive qualitative investigation into their errors.

Few past studies have examined the failure
modes of neural code summarization models as
we outline in §6. Therefore, to further explore
this topic, in this paper we perform both a qualita-
tive and quantitative empirical comparison of three
neural code summarization models. Our quanti-
tative evaluation offers a comparison of three re-
cently proposed models (CodeBERT (Feng et al.,
2020), NeuralCodeSum (Ahmad et al., 2020), and
code2seq (Alon et al., 2019)) on the Funcom
dataset (LeClair and McMillan, 2019) using the
smoothed BLEU-4 (Lin and Och, 2004), ME-
TEOR (Lavie and Agarwal, 2007), and ROUGE-
L (Lin, 2004) metrics whereas our qualitative eval-
uation consists of a rigorous manual categorization
of model errors (compared to ground truth captions)
based on a procedure adapted from the practice of
open coding (Miles et al., 2013). In summary, this
paper makes the following contributions:

• We offer a quantitative comparative analysis of
the CodeBERT, NeuralCodeSum, and code2seq
models applied to the task of Java method sum-
marization in the Funcom dataset. The results of
this analysis illustrate that the CodeBERT model
performs best to a statistically significant degree,
achieving a BLEU-4 score of 24.15, a METEOR

score of 30.34, and a ROUGE-L score of 35.65.
• We conduct a qualitative investigation into the

various prediction errors made by our three stud-
ied models and derive a taxonomy of error modes
across the various models. We also offer a dis-
cussion about differences in errors made across
models and suggestions for model improvements.

• We offer resources on GitHub2 and Zenodo3 for
replicating our experiments, including code and
trained models, in addition to all of the data
and examples used in our qualitative analysis
of model errors.

2 Background: Deep Learning for Code
Summarization

This section outlines necessary background re-
garding our chosen evaluation dataset as well as
the three neural code summarization models upon
which we focus our empirical investigation.

2.1 Dataset: Funcom

In this study we make use of the Funcom
dataset (LeClair and McMillan, 2019).4 We se-
lected this dataset primarily for three reasons: (i)
this dataset was specifically curated for the task of
code summarization, excluding methods more than
100 words and comments with >13 and <3 words
or which were auto-generated, (ii) it is currently
one of the largest datasets specifically tailored for
code summarization, containing over 2.1M Java
methods with paired JavaDoc comments, (iii) it
targets Java, one of the most popular program-
ming languages.5 In order to make for a feasi-
ble training procedure for our various model con-
figurations, and to keep the dataset size in line
with past work to which our studied models were
applied (e.g., the size of the CodeXGlue dataset
from Lu et al. (2021), containing approximately
180000 Java methods and JavaDoc pairs, to which
CodeBERT was applied) we chose to use the first
500,000 method-comment pairs from the filtered
Funcom dataset for our experiments. Note that
we did not use the tokenized version of the dataset
as provided by LeClair and McMillan (2019) as
each of our models has unique pre-processing con-
straints, described in detail in Appendix B.

2https://github.com/SageSELab/
CodeSumStudy

3https://doi.org/10.5281/zenodo.
4904024

4http://leclair.tech/data/funcom/
5https://octoverse.github.com
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private void swap (int a, int b) 
{

int temp = a;
a = b;
b = temp;

}

swap two integersEncoder 
(CodeBERT)

Decoder 
(Transformers)

Figure 1: Code to text translation using CodeBERT.

2.2 Models

CodeBERT CodeBERT (Feng et al., 2020) is a
bimodal pre-trained model used in natural language
(NL) and programming language (PL) tasks. This
model supports six programming language tasks
in various downstream NL-PL applications, e.g.,
code search, code summarization, etc. The archi-
tecture of the model is based on BERT (Devlin
et al., 2019), specifically following the RoBERTa-
base (Liu et al., 2019) in using 125 million model
parameters. The objectives of training CodeBERT
are masked language modeling (MLM) and re-
placed token detection (RTD). Recently, Microsoft
Research Asia introduced the CodeXGLUE bench-
mark that consists of 14 datasets for ten diversified
code intelligence tasks (Lu et al., 2021). They
fine-tuned CodeBERT in code-to-natural-language
generation tasks. CodeBERT was used as the en-
coder, with a six-layer self-attentive (Vaswani et al.,
2017) decoder. An architecture for code-to-text
translation using the CodeBERT encoder is shown
in Figure 1. The dataset Lu et al. (2021) used is
derived from CodeSearchNet (Husain et al., 2019).

NeuralCodeSum The second technique we
study is NeuralCodeSum (Ahmad et al., 2020).
Here, the authors explored a transformer-based ap-
proach to perform the task of code summarization,
using a self-attention mechanism to capture the
long-term dependencies that are common in source
code. In order to enable the model to both copy
from already seen source code and to generate new
words from its vocabulary, they employed a copy
mechanism (See et al., 2017). One important dis-
tinction of source code that this model takes into
account is that the absolute token position does not
necessarily assist in the process of learning effec-
tive source code representations (i.e., int a=b+c
and int a=c+b; both convey the same mean-
ing). To mitigate this problem, they used the rela-
tive positioning of tokens to encode pairwise token
relations. Additionally, the authors of this model
also explored the integration of an abstract syntax
tree (AST)-based source code representation. How-

ever, they found that the AST information did not
result in a marked improvement in model accuracy.

code2seq The third model we consider in our
study is code2seq (Alon et al., 2019), which is a
widely utilized technique that was originally de-
signed for the task of method name prediction. The
authors of this work focused on capturing the true
syntactic construction of source code by encoding
AST paths. They showed that code snippets which
exhibited differences in lines but that were designed
for similar functionality often have similar patterns
in their AST trees. To take advantage of this obser-
vation, code2seq uses an encoder-decoder architec-
ture that attends to the constructed AST encoding
to generate the resultant sequence. The authors
experimented with Java method name generation
as well as code captioning tasks. They compared
their code captioning approach to CodeNN (Iyer
et al., 2016) using BLEU score, against which it
illustrated improved performance.

3 Design of the Empirical Evaluation

To evaluate the performance of our three models
applied to the task of code summarization, we per-
form both a quantitative and qualitative evaluation
centered upon the following research questions:

RQ1: How effective is each model in terms of pre-
dicting natural language summaries from Java
methods?

RQ2: What types of errors do our studied models
make when compared to ground truth captions?

RQ3: What differences (if any) are there between
the errors made by different models?

3.1 Evaluation Methodology for RQ1

In this subsection, we discuss how we split the
dataset, the evaluation metrics we use, and how we
configure our studied models for training.

3.1.1 Dataset Preparation and Metrics
To adapt the Funcom dataset for our study, we
first sampled the first 500k function-comment pairs
from the filtered Funcom dataset into training
(80%), validation (10%) and testing (10%) for our
experiment, ensuring that the method-comment
pairs between our training and testing datasets
came from separate software projects (i.e., split by
project), as suggested by the Funcom authors, in or-
der to avoid artificial inflation of performance due
to data snooping (LeClair and McMillan, 2019).
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Training Dev Testing

CodeXGlue 164923 5183 10955

Funcom 400000 50000 49997

Table 1: Data Statistics. We use the Funcom dataset.

As a comparison to past work, we illustrate the
training, validation and test dataset sizes between
the CodeXGLUE and Funcom datasets in Table 1.
As mentioned earlier we preprocess the sampled
dataset based on the requirements for each of our
chosen models, and provide details in Appendix B.

Prior work has explored the use of several
reference-based metrics, e.g., BLEU, METEOR,
and ROUGE-L for evaluating the performance of
code summarization. In our study we make use
of smoothed BLEU-4 as it was previously used to
evaluate the CodeBERT model (Feng et al., 2020).
BLEU is the geometric average of n-gram preci-
sions between the predicted and reference captions
multiplied by a brevity penalty that penalizes the
generation of short descriptions. We use the BLEU
metric applying a smoothing technique (Lin and
Och, 2004), which adds one count in the case of
n-gram hits to address hypotheses shorter than n.
In addition, we include METEOR (Lavie and Agar-
wal, 2007) and ROUGE-L (Lin, 2004) in our study.
METEOR computes the harmonic mean between
precision and recall based on unigram matches be-
tween the prediction from a model and reference,
also going beyond exact matches to include stem-
ming, synonyms, and lemmatization. ROUGE-L
computes the longest common subsequence-based
F-measure between the hypotheses and references.

3.1.2 Model Configurations and Training

We train, validate and test the three models de-
scribed in §2 for the task of summarizing Java
methods in natural language. A subset of model
hyperparameters for all three studied deep learning
models is shown in Table 2. We preprocess the
dataset for each of the models according to their
individual requirements and select the hyperparam-
eters for each of the models based on the optimal
settings from prior work. Additionally, we apply
some global preprocessing that is common to all
models, taken from recent work on language mod-
eling for code (Mastropaolo et al., 2021). Initially,
we remove all the comments that exist inside meth-
ods, as the commented code could lead to poor
predictions. Next, all the JavaDoc comments are

Hyper- CodeBERT Neural- code2seq
parameters CodeSum

Batch Size 16 64 512
Beam Size 16 4 0
Optimizer Adam Adam Momentum
Learning Rate 0.00005 0.0001 0.01+decay
#epochs 15 38 39

Table 2: Model Hyperparameters.

filtered keeping only the description of the method.
Finally, we clean HTML and remove special char-
acters from the JavaDoc captions. We provide a
detailed account of our preprocessing and train-
ing techniques in Appendix B and in our publicly
available resources.

CodeBERT Model Configurations and Train-
ing: We use the open-source implementation6

made available by Microsoft to fine-tune Code-
BERT using the Funcom dataset. We utilized the
optimal model configurations for this model used
to train on the CodeXGlue (Lu et al., 2021) dataset
with hyperparamters tuned on the Funcom dataset.

NeuralCodeSum Model Configurations and
Training: We use the open-source implementa-
tion of NeuralCodeSum7 to train the model in our
study. We performed one additional preprocessing
step than typical with this model, splitting camel-
case words. The dropout rate is set to 0.2 and we
train for a maximum of 1000 epochs. Additionally,
we stop training if validation does not improve after
20 iterations.

code2seq Model Configurations and Training:
We make use of the publicly available implementa-
tion of code2seq.8 To use the Funcom dataset, we
had to prepare the AST node representation using a
modified dataset build script.9 The original dataset
build script was designed to predict the method
name whereas we modify it to predict summaries.
One problem we faced representing Funcom meth-
ods as ASTs is that there were some code examples
which could not be parsed into an AST represen-
tation mainly because of the imposed minimum
code length threshold and the method not having

6https://github.com/microsoft/
CodeXGLUE/tree/main/Code-Text/
code-to-text

7https://github.com/wasiahmad/
NeuralCodeSum

8https://github.com/tech-srl/code2seq
9https://github.com/LRNavin/

AutoComments
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any AST-Paths. As a result, we were able to train
code2seq on only a subset of the Funcom dataset
(40009/50000 ⇡ 80.02%). To train the model we
made use of large batch sizes (e.g., 256 and 512)
as we noted smaller batch sizes resulted in instabil-
ity. As code2seq was originally designed to predict
method names, we also made some changes in the
model parameters to facilitate longer prediction
sequences, which we give in Appendix A.

3.2 Evaluation Methodology for RQ2 & RQ3

We performed a manual, qualitative analysis on the
output of the three models10 to answer RQ2 and
RQ3 in order to better understand and compare
the various types of errors each model makes. The
methodology we follow to categorize the model
prediction errors follows a procedure inspired by
open coding (Miles et al., 2013), which has been
used in prior studies to categorize large numbers of
software project artifacts (Linares-Vásquez et al.,
2017, inter alia). Initially, we randomly selected a
small number of samples from our validation split
of the Funcom dataset, and applied each of our
three models to generate captions. The four annota-
tors11 then met and discussed the samples to derive
an initial set of labels that described deviations
from the ground truth. We found that 15 meth-
ods (each with three predictions, one from each of
our studied models) were enough to reach an ini-
tial agreement on the labels. Note that we use the
ground truth captions as a “gold set” in order to ori-
ent our analysis to a shared understanding among
annotators and to limit potential subjectivity.

Next, we conducted two rounds of independent
labeling, wherein three annotators independently
coded a samples of method-comment pairs and
predicted comments, such that two annotators in-
dependently coded each sample. Here we define a
“sample” as a method$ gold-comment pair, and
the three resulting predictions from CodeBERT,
NeuralCodeSum, and code2seq respectively for the
method. During this process, annotators were free
to add additional labels outside of the initial set if
they deemed it necessary. The first round of label-
ing consisted of 148 samples in total, amounting
to 148 ⇥ 3 = 444 predictions from our studied
models. After the independent labeling process,
the authors met to resolve the conflicts among the
labels. This initial round of coding resulted in a

10Some examples of the predictions are shown in Ap-
pendix C

11All annotators are also authors of this study.

disagreement on ⇡ 82% of the samples wherein
author discussion was needed in order to derive a
common agreed upon label. There were two main
reasons for this relatively high rate of disagreement:
(i) the authors created some category labels with
similar semantic meanings, but different labels, and
(ii) some of the authors had different interpretations
of shared meanings. However, through an exten-
sive discussion, the conflicts were resolved and a
shared understanding reached. The second round
of independent labeling consisted of 50 samples,
and resulted in a disagreement rate of only ⇡ 27%,
illustrating the stronger consensus among authors.
We derive the taxonomy presented in §4 from la-
bels present after both rounds of our open coding
procedure.

4 Evaluation Results

In this section, we will discuss the quantitative and
qualitative results from our empirical study in order
to answer our research questions.

4.1 RQ1 Results: Evaluation Based on
Reference-Based Metrics

To perform the evaluation on the Funcom dataset,
we use the optimal hyper-parameters shown in Ta-
ble 2 for the three deep learning models. Neural-
CodeSum could not predict natural language de-
scriptions for some examples (⇡ 80). The most
likely reason for this situation is the errors in pro-
cessing code or docstring tokens. Table 3 shows
the quantitative results obtained based on smoothed
BLEU-4, METEOR, and ROUGE-L scores. The
results show that CodeBERT performs best among
the three models. We believe that the reason we
observe CodeBERT achieving this level of perfor-
mance is that this model is pre-trained on both
bimodal data and unimodal data (wherein bimodal
data refers to the coupled code and natural lan-
guage pairs and unimodal data refers to either nat-
ural language descriptions without code snippets
or code snippets without natural language descrip-
tions (Feng et al., 2020)).

Statistical significance In addition to calculat-
ing the evaluation scores (i.e. smoothed BLEU-4,
METEOR, ROUGE), we conducted statistical sig-
nificance tests for all three metrics to assess the
validity of the obtained results. We took 19009
examples from the test dataset and used pairwise
bootstrap re-sampling (Koehn, 2004) between all
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Models Smoothed BLEU-4 METEOR ROUGE-L

CodeBERT 24.15 30.34 35.65
NeuralCodeSum 21.50 27.78 33.71

code2seq 18.61 27.31 33.52

Table 3: Evaluation Results with three metrics. CodeBERT is consistently better than the other two models.

3 model predictions. In comparison to Neural-
CodeSum, we found CodeBERT performs better
with a mean score increase (BLEU-4 2.8, ME-
TEOR 2.9, ROUGE 2.2) at a 95% confidence in-
terval, thus indicating a performance delta that is
statistically significant.

4.2 RQ2 Results: Types of errors
In the first round of our study that included 148⇥
3 = 444 samples, we were able to classify the
errors for 398 generated natural language descrip-
tions from the models from the validation dataset.
The remaining 46 descriptions that were not clas-
sified as predictions were not made by the models
due to errors in parsing and one error in process-
ing code tokens. This singular error was due to
the fact an entire code snippet was commented out,
and our models do not process commented code.
Thus, we did not include the predictions for the
three different models for that code snippet in our
study. In the other 43 cases, the code2seq model
could not generate predictions because the model
was not able to parse the AST.

Our error taxonomy derived after both rounds
of the open coding process is shown in Fig-
ure 2. The taxonomy consists of seven high-
level categories with each consisting of mul-
tiple lower-level sub-categories. To elabo-
rate, Semantically Unrelated to Code is a sub-
category of Incorrect Semantic Information.
Note that one category Consistent with Ground

Truth is dedicated to those captions that generally
matched the ground truth, which we include for
completeness. The numbers that are shown be-
side the name of the sub-categories illustrate the
number of errors for CodeBERT, NeuralCodeSum,
and code2seq respectively. The numbers shown
beside the categories’ names represent the cumula-
tive sum of the sub-categories. We provide a small
number of examples of these categorizations in Ap-
pendix C, and provide all labeled examples in our
public resources on GitHub and Zenodo. We make
the following notable observations resulting from
our derived taxonomy:

• Encouragingly, among the samples studied, the
largest category of samples did not display signif-
icant errors, falling into the Consistent with

Ground Truth category (162/535 ⇡ 30.28%).
This category is the most frequent among all, but
we do see CodeBERT (unsurprisingly) exhibit
the largest number of reasonable summaries.

• The most prevalent error category exhib-
ited among our studied models was that of
Missing Information (148/535 ⇡ 27.66%)
followed by the Incorrect Construction cate-
gory (110/535 ⇡ 20.56%). This seems to indi-
cate that one of the biggest struggles for current
neural code summarization techniques is related
to the inclusion of various types of necessary
information in the summary itself, followed by
issues in properly constructing comment syntax.

• The models also either incorrectly recognized or
failed to recognize salient identifiers that were
needed to understand method functionality in
a non-negligible number of cases (71/535 ⇡
13.2%). This suggests that mechanisms for iden-
tifying focal identifiers i.e., those that might
prominently contribute to describing the func-
tionality, could be beneficial, similar to past work
on identifying focal methods (Qusef et al., 2010).

• Some of the models exhibited generated sum-
maries that over-generalized to the detriment
of the summary meaning (49/535 ⇡ 9.15%) ,
whereas very few summaries contained extrane-
ous information.

• Further study is needed to gain a better under-
standing of the various facets of the critical infor-
mation and non-critical information that captions
were missing. For instance, we plan to explore
whether the necessary information is contained
within the code itself, or perhaps in semantically
related methods. We leave this for future work.

4.3 RQ3 Results: Comparison of three
different models

One advantage of the formulation of our empirical
study is that we are able to compare the various
shortcomings of our studied models as they relate
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Extraneous/Unnessecary 
Information Included (2, 3, 4)

Missing Context  (1, 2, 2)

Incorrect Construction (26, 31, 53)

Consistent with Ground Truth (88, 57, 17)

Over-Generalization (7, 21, 21)

Incorrect Semantic Information (6, 27, 19)

Missing Information (65,56,27)

Missing Prog. Language Information (0, 0, 2)
• Missing Attributes that refer to PL specific 

information.
Missing Database Information (1, 2, 0)

• Missing database attributes that provide 
needed context to method functionality.

Consistent with Specific Info (30, 15, 5)
• Comment matches ground truth well.

Consistent but Missing Specific Info (56, 35, 12)
• Comment matches ground truth mostly, but 

misses some important specific information.
Improves upon Semantic Meaning (2, 6, 0)

• The predicted comment matches the ground 
and improves capturing method meaning.

Consistent but with Unnecessary Info (0, 1, 0)
• Accurate but has some unnecessary info.

Different Meaning (2, 3, 3)
• Comment over-generalizes on the meaning of 

the code functionality.
Algorithmically Incorrect (1, 6, 3)

• Overgeneralizes to the point of incorrectness
Missing Attribute Specification (4, 12, 15)

• Uses generic names such as var.

Partial Incorrect Information (6, 11, 3)
• Semantically meaningful, with a few errors.

Semantically Unrelated to Code (0, 11, 13)
• Does not capture code context whatsoever.

Algorithmically Incorrect (0, 5, 3)
• Conveys a different algorithmic meaning as 

compared to the code.

Incorrect Identifier/Attribute (5, 19, 15)
• Correctly identifies a variable or attribute, but 

uses it incorrectly.
Incomplete Sentence (1, 1, 10)

• Predicted comment is grammatically 
incomplete.

Repetition (0, 7, 27)
• Comment contains unnecessary repetition of a 

word or fragment between 2-3 times.
Extreme Repetition (0, 2, 1)

• Comment contains unnecessary repetition of a 
word or fragment more than 2-3 times.

Focusing Only on Method Name (20, 1, 0)
• When comment focuses mostly on the method 

name, which provides an incomplete but 
partial description of the functionality.

Grammatical Errors (0, 1, 0)
• Grammatical Error is present in predicted 

caption.

Missing Critical Information (21, 14, 7)
• Comment is missing critical semantic 

information.
Missing Task Elaboration (5, 2, 1)

• Did not describe what code was doing properly.
Missing Non-Critical Information (28, 19, 5)

• Useful comment but non-critical info missing.
Missing Web-Related Information (0, 1, 0)

• Comment failed to mention web-related 
identifier.

Failed to Mention Identifiers (0, 11, 6)
• Does not mention specific variable/attribute 

names, often using a generic identifier.
Missing Identifier (5, 3, 7)

• No identifier mentioned at all.
Missing Data Structure Information (2, 0, 1)

• Does not capture relevant data structure info
Missing Syntax Information (2, 6, 0)

• Important syntactic information (e.g. code 
ordering) is missing.

Missing Exception (1, 0, 0)
• Does not mention relevant exception info

Missing Conditional Information (1, 0, 0)
• Misses code branching information

Unnecessary Data Structure Info (1, 0, 0)
• Adds unnecessary data structure info to 

comment.
Unnecessary File Information (0, 1, 1)

• Adds unnecessary file information to 
comment.

Unnecessary Incorrect Information (1, 2, 3)
• Adds information to comment that is both 

incorrect and unnecessary.

The numbers shown for each category 
illustrate the number of instances 

found for (CodeBERT, NeuralCodeSum, 
and code2seq) respectively

Figure 2: Taxonomy of the Errors Between the Generated Summaries and the Ground Truth

to our qualitative error analysis. To this end, we
make the following notable observations:

• The most frequent error categories for Code-
BERT and NeuralCodeSum are Consistent

but Missing Specific Information (Code-
BERT: 56/197 ⇡ 28.42% and NeuralCodeSum:
35/197 ⇡ 17.77%). However, for code2seq,
the most frequent category is Repetition

(27/141 ⇡ 19.15%).

• A non-negligible number of predictions from
CodeBERT fall into the focusing Only on the

Method Name category (20/197 ⇡ 10.15%).
This may suggest a reliance of the model on
descriptive method names in order to produce
reasonable summaries.

• NeuralCodeSum and code2seq produce a small
number of predictions that are Semantically

Unrelated to Code. However, we did not find
any such cases for CodeBERT.

• Similar to our quantitative evaluation, we find
that CodeBERT performs best, but suffers from
a large number of errors related to Missing

Information. In future work, we will inves-
tigate the adaptation of source coverage tech-

niques (Cohn et al., 2016; Mi et al., 2016) to
our task to mitigate this issue.

5 Discussion & Learned Lessons

Takeaway 1: The CodeBERT model illustrates
improved performance on the Funcom dataset
as compared to CodeXGLUE, likely due to
the filtering steps undertaken in its construc-
tion. Previously, the CodeBERT model was fine-
tuned on the CodeXGlue dataset and the smoothed
BLEU-4 score obtained on the Java dataset was
17.65 (Lu et al., 2021). However, we fine-tuned
the model on the Funcom dataset and obtained a
smoothed BLEU-4 score of 24.15. We believe there
are two primary contributing factors to this obser-
vation: 1) A higher volume of data, and 2) filtering
strategies. CodeXGLUE only provides 164923
training examples, whereas we used 400000 Java
Methods and Javadoc pairs during he fine-tuning
process. Moreover, The CodeXGLUE dataset is
obtained from CodeSearchNet and the documents
that contain special tokens (e.g., <img> or https:)
are filtered. In our preprocessing, we did not com-
pletely remove such data in the preprocessing; we
only remove the HTML and special characters from
the JavaDoc captions. We hypothesize that such
characters may contain important information and
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as such lead to more effective predicted summaries.
Takeaway 2: Models that rely on statically pars-
ing source code can lead to high numbers of
missing/incomplete predictions. The preprocess-
ing for the code2seq model includes generating
strings from the AST node representation of each
method. Unfortunately, it is difficult (or impos-
sible) to construct a suitable AST representation
for methods that fall under a certain token length
threshold. As a result, about 19.98% of the original
dataset could not be fed into the code2seq testing
module, and for which we could not generate any
prediction for these examples.
Takeaway 3: Some of the generated summaries
provide a semantic meaning similar to the
ground truth, despite exhibiting fewer n-gram
matches. Our studied models can generate sum-
maries that contain relevant semantic informa-
tion which can be useful for code comprehension
despite not perfectly matching the ground truth.
For instance, let’s consider the following example
ground truth for a Java method, “this method sets
the text for the heading on the component”. The
generated summary from the CodeBERT model is

“sets the heading caption”. Comparing these two
descriptions will not necessarily result in a high
BLEU-4 score. This suggests that a modification
to the evaluation procedure for these models may
provide a more realistic characterization of model
performance in practice. For instance, measuring
BERTScore in addition to other metrics for eval-
uation (Zhang et al., 2020b)12 may help to better
capture semantic similarities compared to purely
symbolic similarities.
Takeaway 4: Future techniques for Neural
Code Summarization should carefully consider
techniques for mitigating potential errors re-
lated to Missing Information, and Incorrect
Construction as these are the most preva-
lent error types observed in our taxonomy.
Our error taxonomy provides concrete indica-
tors on where different types of models stand
to gain performance in order to make them
useful for downstream deployment. In partic-
ular, we suggest that future research focuses
on rectifying Missing Critical Information

and Missing Non-Critical Information rather
than Grammatical Errors or Unnecessary File

Information.
Takeway 5: Future studies should explore the

12https://github.com/Tiiiger/bert_score

combination of AST traversal based and self-
attention mechanism-based approaches to per-
form robust comment generation. AST-based
approach is useful to provide syntax level infor-
mation and it follows the structural tree traver-
sal method to capture the global information. At
the same time, we can see this approach is prone
to errors like Repetition and Semantically

Unrelated to Code. On the other hand, a self-
attention mechanism is useful to capture the local
information. So a multi-modal approach where
standard encoders can be utilized to combine both
AST-based and attention-based approaches can be
a viable direction to explore further.
Takeway 6: Robust evaluation metric(s) should
be developed that specifically focus on source
code - natural language translation. Source code
is fundamentally different from the natural lan-
guage from a number of perspectives. For instance,
it exhibits less significant word order dependency,
the significance of appropriate syntax naming and
mentioning, etc. So a robust code to natural lan-
guage translation evaluation metric should consider
assessment from both local and global levels. Stan-
dard machine translation metrics like BLEU, ME-
TEOR, ROUGE do not fully cover these factors.
As such, we encourage future work to study and de-
velop new forms of automated metrics for assessing
this special case of machine translation.

6 Related Work

6.1 Code to Comment Translation

Source code summarization is a topic of great inter-
est in software engineering research. The aim is to
automate a portion of the software documentation
process by automatically generating summaries of
a given granularity for a source code snippet (e.g.,
methods) to save developer effort. Techniques have
evolved from using more traditional Information
Retrieval (IR) and machine learning methods to
utilizing artificial neural networks.

One of the earliest deep-learning-based source
code summarization techniques is that by Iyer et al.
(2016). The authors used an attention-based neural
network to generate NL summaries from source
code. The approach was applied to the C# pro-
gramming language and SQL. Given the strong
syntax associated with programming languages, re-
searchers have also experimented with utilizing
AST information for source code summarization.
Hu et al. (2018) used an AST traversal method to
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generate summaries. Additionally, LeClair et al.
(2019) utilized structural code information by en-
coding ASTs. Our goal in this study is to pro-
vide an overview on the performance of a vari-
ety of techniques, both sequence based (i.e., Code-
BERT, NeuralCodeSum), and structure-based (i.e.,
code2seq), in order to examine differences in quan-
titative and qualitative performance across differ-
ent types of models. Recently, a more complex
retrieval-augmented mechanism was introduced
that combines both retrieval and generation-based
methods for code to comment translation (Liu et al.,
2021). Finally, Bansal et al. (2021) recently pro-
posed a method that uses a vectorized represen-
tation of source code files. We plan to explore
additional techniques such as these in future work.

6.2 Empirical Studies of Code Summaries
and Code Summarization

Although many deep learning models are capable
of generating summaries from source code, very
few researchers have focused on evaluating the er-
rors made by the models from a human perspective.
During an early study on this topic, Ying and Ro-
billard (2013) tried to understand whether code
summaries achieved the same level of agreement
from multiple human perspectives. McBurney and
McMillan (2016) performed a comparison based
on the similarities of the summaries generated by
a newly proposed model which aimed at including
context in code summaries. However, most recent
work on code summarization models, e.g., (LeClair
et al., 2020; Bansal et al., 2021) depend on machine
translation metrics to measure the performance of
the code summarization task. However, a recent
study showed a necessity of revised metrics for
code summarization (Stapleton et al., 2020).

Perhaps the most closely related study to ours is
that conducted by Gros et al. (2020). In this study,
the authors question the validity of the formulation
of code summarization as a machine translation
task. In doing so, they apply code and natural lan-
guage summarization models to several recently
proposed code summarization datasets and one
natural language dataset. They found differences
between the natural language summarization and
code summarization datasets that suggests marked
semantic differences between the two task settings.
Additionally, the authors carried out experiments
which illustrate that reference-based metrics such
as BLEU score may not be well suited for mea-

suring the efficacy of code summarization tasks.
Finally, the authors illustrate that IR techniques
perform reasonably well at code summarization.
While this study derives certain conclusions that
are similar to those in our work (e.g., the need for
better automated metrics) our study is differenti-
ated by our manually derived fault taxonomy.

To the best of our knowledge, no other study has
taken on a large-scale qualitative empirical study
with the objective of categorizing and understand-
ing errors between automatically generated and
ground truth code summaries. Thus, we believe
this is one of the first papers to take a step toward
a grounded understanding of the errors made by
neural code summarization techniques – offering
empirically validated insights into how future code
summarization techniques might be improved.

7 Conclusion & Future Work

In this work we perform both quantitative and
qualitative evaluations of three popular neural
code summarization techniques. Based on our
quantitative analysis, we find that the CodeBERT
model performs statistically significantly better
than two other popular models (NeuralCodeSu, and
code2seq) achieving a smoothed-BLEU-4 score of
24.15, a METEOR score of 30.34, and a ROUGE-L
score of 35.65. Our qualitative analysis highlights
some the most common errors made by our studied
models and motivates follow-up work on improv-
ing specific model attributes.

In the future, we aim to expand our analysis to
additional retrieval-augmented summarization tech-
niques and to expand the scope and depth of our
neural code summarization model error taxonomy.
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A Hyper-parameters

In Table 4, we show the hyper-parameters that are
used in our adapted models. Code2seq model could
not be trained using batch size 64 or 128 because of
the instability occurred from the longer comment
length. Originally, this model was designed to pre-
dict the method name. So we trained the model
using batch size 512 in our final experiment and it
required 39 epochs to train the model.

Hyper-
parameters

CodeBERT Neural-
CodeSum

Code2Seq

Maximum
Source Length

256 150 200

Batch Size 16 64 512
Beam Size 16 4 0
Optimizer Adam Adam Momentum
Learning Rate 0.00005 0.0001 0.01+exp.

decay
#epochs 15 38 39
Dropout rate 0.1 0.2 0.25
#Attention
heads

12 8 –

Early stopping True True True
#layers 6 6 –

Table 4: Model Hyperparameters
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B Data Prepossessing

We had to perform several preprocessing steps
to make the dataset ready for training. Among
all the three models, we removed comments in-
side methods, removed tags, clean HTML, low-
ercasing characters, removing special characters.
For the NeuralCodeSum model, we applied an
additional sub-tokenization step. For code2seq,
we needed to prepare the AST representation
of the code snippets. To do this, we used a
modified JavaExtractor13 which locates the
Java methods and put them in a file where each
line is for one method. Subtokenization is per-
formed in between to tokenize the CamelCase
attributes (i.e. ["ArrayList"->["Array",
"List"]]). The original dataset build script was
designed to put the method name in the prediction
window. The modified one puts the comment in-
stead of a method name. In Table 5, a Java code,
comment and the equivalent one line dataset in-
stance (AST representation) is presented. While
performing this step, some methods could not be
parsed as this AST representation mainly because
of the minimum method length threshold required
for the parsing. In total, we could transform 80.02%
of our training dataset on which we trained the
code2seq model. All the steps used in preprocess-
ing are shown in Table 6.

C Case Study

In Table 7, model predictions are given with the
ground truth and assigned error categories.

13https://github.com/LRNavin/
AutoComments
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Original Method public Type getType() { return m type; }
Comment returns the type of this technical information
AST represtation returns|the|type|of|this|technical|information

type,Cls0|Mth|Nm1,get|type type,Cls0|Mth|Bk|Ret|Nm0,m|type
get|type,Nm1|Mth|Bk|Ret|Nm0,m|type

Table 5: AST representation of java method for code2seq training

Preprocessing CodeBERT Neural-
CodeSum

Code2Seq

removed comments
inside methods

X X X

removed tags for
comments and
methods

X X X

HTML cleaning X X X
Sub-tokenization X X
Lowercase X X X
removing special
characters

X X X

Table 6: Preprocessing

15



Ja
va

M
et

ho
d

H
um

an
w

ri
tt

en
co

m
m

en
t

Pr
ed

ic
tio

n
(C

at
ag

or
y)

C
od

eB
er

t
N

eu
ra

lC
od

eS
um

C
od

e2
Se

q

p
u
b
l
i
c
f
l
o
a
t

g
e
t
D
a
s
h
P
h
a
s
e
(
)

{
r
e
t
u
r
n

d
a
s
h
P
h
a
s
e
;
}

ge
ts

th
e

da
sh

ph
as

e
of

th
e

ba
si

cs
tr

ok
e

ge
ts

th
e

da
sh

ph
as

e
(C

on
si

st
en

tb
ut

M
is

si
ng

Sp
ec

ifi
c

In
fo

)
re

tu
rn

s
th

e
ph

as
e

of
de

al
po

in
t(

Pa
r-

tia
lI

nc
or

re
ct

In
fo

rm
at

io
n)

ge
t

th
e

cu
rr

en
t

ve
lo

ci
ty

of
th

e
cu

r-
re

nt
va

lu
e

(S
em

an
tic

al
ly

U
nr

el
at

ed
to

C
od

e)
p
u
b
l
i
c
v
o
i
d

s
e
t
R
e
a
d
T
i
m
e
o
u
t
(
i
n
t

t
i
m
e
o
u
t
)

{
i
f

(
0
>
t
i
m
e
o
u
t
)

{
t
h
i
s
.
r
e
a
d
T
i
m
e
o
u
t
=

t
i
m
e
o
u
t
;

}

se
ts

th
e

tim
eo

ut
va

lu
e

in
m

il-
lis

ec
on

ds
fo

r
re

ad
in

g
fr

om
th

e
in

pu
ts

tr
ea

m

se
ts

th
e

re
ad

tim
eo

ut
(F

oc
us

in
g

O
nl

y
on

M
eh

od
N

am
e)

se
ts

th
e

nu
m

be
r

of
m

ill
is

ec
on

ds
to

w
ai

tf
or

a
re

sp
on

se
be

fo
re

tim
in

g
ou

t
(C

on
si

st
en

tw
ith

Sp
ec

ifi
c

In
fo

)

se
ts

th
e

tim
eo

ut
to

re
ad

fr
om

th
e

se
rv

er
(C

on
si

st
en

tb
ut

M
is

si
ng

Sp
e-

ci
fic

In
fo

)

p
u
b
l
i
c
S
t
r
i
n
g

n
u
m
R
u
l
e
s
T
i
p
T
e
x
t
(
)

{
r
e
t
u
r
n
"
N
u
m
b
e
r
o
f
r
u
l
e
s

t
o
f
i
n
d
.
"
;

}

re
tu

rn
s

th
e

tip
te

xt
fo

r
th

is
pr

op
er

ty
ge

ts
th

e
nu

m
ru

le
st

ip
te

xt
at

tr
ib

ut
e

of
th

e
ap

pl
et

lo
ca

le
ob

je
ct

(U
nn

ec
es

sa
ry

In
co

rr
ec

tI
nf

or
m

at
io

n)

re
tu

rn
s

th
e

nu
m

be
r

of
la

be
ls

in
th

e
ru

le
se

t(
Se

m
an

tic
al

ly
U

nr
el

at
ed

to
C

od
e)

re
tu

rn
s

th
e

te
xt

of
th

e
te

xt
of

th
e

cu
r-

re
nt

te
xt

(R
ep

et
iti

on
)

p
u
b
l
i
c
I
t
e
m
s

w
i
t
h
T
o
t
a
l
R
e
s
u
l
t
s
(
B
i
g
I
n
t
e
g
e
r

v
a
l
u
e
)

{
s
e
t
T
o
t
a
l
R
e
s
u
l
t
s
(
v
a
l
u
e
)
;

r
e
t
u
r
n
t
h
i
s
;
}

se
ts

th
e

va
lu

e
of

th
e

to
ta

lr
e-

su
lts

pr
op

er
ty

se
ts

th
e

to
ta

lr
es

ul
ts

(C
on

si
st

en
tw

ith
Sp

ec
ifi

c
In

fo
)

se
ts

th
e

to
ta

l
nu

m
be

r
of

ite
m

s
in

th
e

gr
ou

p
(I

nc
or

re
ct

Id
en

ti-
fie

r/
A

ttr
ib

ut
e)

re
tu

rn
s

th
e

to
ta

lr
es

ul
ts

fo
rt

he
gi

ve
n

va
r(

M
is

si
ng

C
ri

tic
al

In
fo

rm
at

io
n)

p
u
b
l
i
c
S
t
r
i
n
g
g
e
t
S
c
h
e
m
a
(
)

{
r
e
t
u
r
n
f
S
c
h
e
m
a
;

}
re

tu
rn

s
a

pa
th

to
th

e
xm

l
sc

he
m

a
of

a
ex

te
ns

io
n

po
in

t
re

tu
rn

s
th

e
sc

he
m

a
(C

on
si

st
en

tb
ut

M
is

si
ng

Sp
ec

ifi
c

In
fo

)
re

tu
rn

s
th

e
na

m
e

of
th

e
xm

ls
ch

em
a

(M
is

si
ng

N
on

-C
ri

tic
al

In
fo

rm
at

io
n)

re
tu

rn
s

th
e

sc
he

m
a

sc
he

m
a

(R
ep

et
i-

tio
n)

p
u
b
l
i
c
b
o
o
l
e
a
n

i
s
C
r
e
a
t
e
I
d
s
(
)

{
r
e
t
u
r
n

c
r
e
a
t
e
I
d
s
;

}

re
tu

rn
s

tr
ue

if
th

e
m

od
el

au
-

to
m

at
ic

al
ly

cr
ea

te
s

id
s

an
d

re
so

lv
es

id
co

lli
si

on
s

re
tu

rn
s

th
e

cr
ea

te
id

s
(P

ar
tia

lI
nc

or
-

re
ct

In
fo

rm
at

io
n)

re
tu

rn
s

th
e

}(
M

is
si

ng
Sy

nt
ax

In
fo

r-
m

at
io

n)
re

tu
rn

s
w

he
th

er
th

e
is

th
e

de
fa

ul
ti

d
(M

is
si

ng
A

ttr
ib

ut
e

Sp
ec

ifi
ca

tio
n)

p
u
b
l
i
c

P
r
o
m
o
t
i
o
n
E
l
i
g
i
b
i
l
i
t
y
R
e
q
u
i
r

e
m
e
n
t
w
i
t
h
Q
u
a
n
t
i
t
y
(
I
n
t
e
g
e
r

v
a
l
u
e
)

{s
e
t
Q
u
a
n
t
i
t
y
(
v
a
l
u
e
)
;

r
e
t
u
r
n
t
h
i
s
;

}

se
ts

th
e

va
lu

e
of

th
e

qu
an

tit
y

pr
op

er
ty

re
tu

rn
s

a
qu

an
tit

y
(D

iff
er

en
tM

ea
n-

in
g)

se
ts

th
e

va
lu

e
of

th
is

pr
op

er
ty

an
y

pr
ev

io
us

an
im

at
io

ns
ar

e
st

op
pe

d
(U

nn
ec

es
sa

ry
In

co
rr

ec
tI

nf
or

m
at

io
n)

se
ts

th
e

va
r(

M
is

si
ng

A
ttr

ib
ut

e
Sp

ec
-

ifi
ca

tio
n)

p
u
b
l
i
c
v
o
i
d
s
e
t
H
e
i
g
h
t
(
i
n
t

h
e
i
g
h
t
)

{
c
o
n
t
a
i
n
e
r
H
e
i
g
h
t

=
h
e
i
g
h
t
;

}

th
is

m
et

ho
d

se
ts

th
e

m
in

i-
m

um
he

ig
ht

of
th

e
ta

bl
e

in
pi

xe
ls

se
ts

th
e

he
ig

ht
of

th
e

co
nt

ai
ne

r(
C

on
-

si
st

en
tb

ut
M

is
si

ng
Sp

ec
ifi

c
In

fo
)

se
ts

th
e

he
ig

ht
of

th
e

im
ag

e
(I

nc
or

-
re

ct
Id

en
tifi

er
/A

ttr
ib

ut
e)

se
ts

th
e

he
ig

ht
of

th
e

im
ag

e
(I

nc
or

-
re

ct
Id

en
tifi

er
/A

ttr
ib

ut
e)

p
u
b
l
i
c
v
o
i
d

t
e
s
t
F
o
r
C
o
n
n
e
c
t
i
o
n
(
)

t
h
r
o
w
s
E
x
c
e
p
t
i
o
n

{
s
e
r
v
e
r
C
o
n
t
r
o
l
.
p
i
n
g
(
)
;

}

tr
y

to
te

st
fo

r
a

co
nn

ec
tio

n
th

ro
w

s
ex

ce
pt

io
n

if
un

ab
le

to
ge

ta
co

nn
ec

tio
n

te
st

fo
ra

co
nn

ec
tio

n
(C

on
si

st
en

tb
ut

M
is

si
ng

Sp
ec

ifi
c

In
fo

)
te

st
s

th
e

co
nn

ec
tio

n
to

th
e

se
rv

er
(C

on
si

st
en

t
bu

t
M

is
si

ng
Sp

ec
ifi

c
In

fo
)

te
st

fo
r

th
e

ge
tte

r
of

th
e

pr
op

er
ty

(M
is

si
ng

A
ttr

ib
ut

e
Sp

ec
ifi

ca
tio

n)

p
u
b
l
i
c
v
o
i
d
s
e
t
P
a
t
h
(
P
a
t
h

p
a
t
h
)

{
m
P
a
t
h
=

p
a
t
h
.
t
o
S
t
r
i
n
g
(
)
;

}

se
ts

th
e

va
lu

e
of

th
e

”p
at

h”
at

tr
ib

ut
e

se
ts

th
e

pa
th

(C
on

si
st

en
tb

ut
M

is
si

ng
Sp

ec
ifi

c
In

fo
)

se
ts

th
e

pa
th

(C
on

si
st

en
tb

ut
M

is
si

ng
Sp

ec
ifi

c
In

fo
)

se
ts

th
e

pa
th

to
th

e
pa

th
of

th
e

pa
th

ar
e

no
t

re
la

tiv
e

to
th

e
pa

th
of

th
e

pa
th

(E
xt

re
m

e
R

ep
et

iti
on

)

Ta
bl

e
7:

D
et

ai
le

d
ca

se
st

ud
y

of
m

od
el

pr
ed

ic
tio

ns
w

ith
gr

ou
nd

tr
ut

h

16



Proceedings of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog 2021), pages 17–25
August 1–6, 2021. ©2021 Association for Computational Linguistics
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Abstract

We introduce CONTEST, a benchmark for
NLP-based unit test completion, the task of
predicting a test’s assert statements given its
setup and focal method, i.e. the method to
be tested. CONTEST is large-scale (with 365k
datapoints). Besides the test code and tested
code, it also features context code called by ei-
ther. We found context to be crucial for ac-
curately predicting assertions. We also intro-
duce baselines based on transformer encoder-
decoders, and study the effects of includ-
ing syntactic information and context. Over-
all, our models achieve a BLEU score of
38.2, while only generating unparsable code in
1.92% of cases.

1 Introduction

Testing is commonly considered an important part
of software development, but it tends to be ne-
glected in practice, as developers find it rather time-
consuming and tedious. This has motivated auto-
mated testing: Approaches such as EvoSuite (Cam-
pos et al., 2019) and Randoop (Pacheco and Ernst,
2007) can bootstrap tests with decent code cov-
erage using static code analysis and evolutionary
search. However, recent studies (Almasi et al.,
2017; Shamshiri, 2015) have found the readability
of those generated tests to be subpar, and have
– more importantly – found that the above ap-
proaches struggle with producing ”meaningful”
checks that truly assert the code to behave as ex-
pected.

Therefore, recent approaches have tackled AI-
based test completion as a research challenge for
NLP-based programming, using encoder-decoder
models with bidirectional recurrent networks (Wat-
son et al., 2020) or pre-trained transformers (Tu-
fano et al., 2020b). These models take the test’s
setup code, together with the targeted method call

(focal method) as input and predict the test’s as-
sertion. Since this assertion is arguably the test’s
part which requires the most understanding of the
target method, it is also the part where heuristic
approaches struggle the most. Here, an AI-based
approach can fill this gap and provide the most
valuable addition to existing solutions.

We extend this line of research by introducing
CONTEST, a new contextual benchmark for au-
tomated test completion. CONTEST is based on
Github data. Each of its datapoints features a test
method, linked with the tested focal method using a
fuzzy name matching. Additionally, the test is split
into segments using heuristics and static code anal-
ysis: We provide the focal method, test setup code
executed before the assertions, context methods
called within the setup code, and context methods
called within the focal method. A manual inspec-
tion of samples estimates its ground truth’s accu-
racy of matching the correct focal method at 94%,
but we even found the falsely matched methods to
be relevant to the test. Summarizing, CONTEST

offers the following benefits1:

• Context: CONTEST includes not only the test
code and focal method, but also context code
called by either of them, including the test
setup and recursively called methods from the
test file or tested file. Arguably, this context is
crucial for fully comprehending a test. Corre-
spondingly, we found it to strongly improve
accuracy.

• Scale: With 365k high-quality datapoints for
test completion, CONTEST is, to the best of
our knowledge, the largest test completion
dataset to date.

• Rigorous evaluation: When building CON-
1The dataset is available at https://github.com/lavis-

nlp/ConTest
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TEST, we have carefully avoided bias towards
simple cases. Besides common metrics such
as BLEU and ROUGE, CONTEST also esti-
mates a code’s unparsable rate in an accompa-
nied evaluation package. Finally, we also pro-
vide a project-based split, which enforces test
completion models to generalize to projects
unseen in training, a setup which we found to
be particularly challenging.

• Strong baselines: We provide Transformer-
based baseline experiments. These include
(1) enriching the input source code using Ab-
stract Syntax Trees (AST), which we found
to yield improvements by 4.1 BLEU points,
and (2) adding context methods called by ei-
ther test code or tested code (improvements
by 10.1 BLEU points). Our experiments also
show that the model struggles to generalize
knowledge it has gathered from tests within
the same project to tests in other projects (−21
BLEU). Nonetheless, our results indicate that
automated test completion is an interesting
direction for future research.

2 Related Work

Our work targets the fields of automated software
testing and natural language processing. Auto-
mated software testing can be divided into test
generation approaches, aiming to generate the com-
plete test (Tufano et al., 2020a) and test completion
approaches, aiming to generate meaningful assert
statements (Watson et al., 2020). Test completion
has been tackled by rule based approaches such as
Agitar (Belhumeur et al., 2004), Randoop (Pacheco
and Ernst, 2007), and EvoSuite (Campos et al.,
2019), which can bootstrap tests with decent code
coverage using static code analysis and evolution-
ary search. However, recent studies (Almasi et al.,
2017) have found that these approaches struggle
with producing ”meaningful” checks that truly as-
sert the code to behave as expected. Furthermore
these approaches require handcrafted rules in order
to generate assert statements.

Recently, the focus has shifted to approach auto-
matic software testing using natural language pro-
cessing (NLP) methods. White and Krinke (2018)
employ a RNN-based neural machine translation
system to generate complete tests, while more re-
cent work (Tufano et al., 2020a) adapts pre-trained
transformer models such as BART (Lewis et al.,
2019). This and most recent work builds on trans-

formers (Vaswani et al., 2017), which have be-
come ubiquitous in natural language processing
for sequence-to-sequence tasks. However, the au-
thors report that the model often had difficulties
to correctly initialize the object under test, as it
was lacking the context information to do so. Our
benchmark CONTEST includes such context infor-
mation.

Recently, test completion has been tackled with
machine translation methods by Watson et al.
(2020). The authors propose an RNN-based ap-
proach to assert generation called ATLAS, along
with a dataset of the same name. The ATLAS

dataset consists of 158, 096 tests paired with single
line assert statements and is, to the best of the au-
thors knowledge, the only available dataset for test
completion available. Note that the ATLAS dataset
is less than half the size of CONTEST, does not
contain any context information, does not provide
a project-wise split and in contrast to CONTEST

contains only single line assertions. ATLAS has
been used in recent studies of Tufano et al. (2020b),
where the authors pre-train the transformer-based
BART model on a large set of English texts and
code artifacts and subsequently fine-tune it to gen-
erate assert statements. Applying their model on
our dataset is an interesting direction for future
research.

3 Dataset

Java has been the most used programming language
in 2020, and its unit test framework JUnit has be-
come a widely adopted industry standard (Poirier,
2018). Driven by the vast amount of open-source
projects available on GitHub that employ JUnit as a
testing framework, we chose to build CONTEST by
scraping JUnit projects from GitHub. By limiting
the projects to only one testing framework the test
structure will stay more consistent throughout the
dataset. Furthermore, as JUnit requires annotating
tests with @Test, such methods can be located
easily.

3.1 Data collection

We utilize the publicly available Github BigQuery
Dataset (Hoffa, 2016), containing a snapshot with
more than 3TB data of 2.8 million open source
GitHub repositories2. Using BigQuery (Fernandes
and Bernardino, 2015), we filter relevant projects

2We found using the GitHub API to be infeasible due to
its rate limited of 5,000 requests per hour.
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1. Identify test 
    method

2. Identify focal 
    method call

3. Locate focal 
    method declaration

4. Resolve focal 
    method context

5. Identify 
    setup code

6. Resolve 
    setup context

7. Identify 
    assertion code

public class Counter {
  public int count = 0;
  
  public void setCount(int c) {
    count = inRange(c) ? c : 255;
  }  
  
  boolean inRange(int c) {
    return c <= 255;
  }
  
  public void inc() {
    setCount(count + 1);
  }
  
  public void reset() {
    count = 0;
  }
}

public class CounterTest {
  Counter counter;
  
  Counter initCounter() {
    return new Counter();
  }

  @Before
  public void before() {
    counter = initCounter();
  }
  
  @Test
  public void testInc() {
    int expected = 1;
    counter.inc();
    assertEquals(
      counter.count, 
      expected);
  }
}

Figure 1: Components of CONTEST and steps taken to build the dataset. The task is to generate assertions (red
box) given the partial test and its context. For each test we extract up to four parts: (1) the setup code of the
test (green) and also include global JUnit setup code (i.e. the initialization of the counter), (2) code of the focal
method (orange) matched using fuzzy string matching, and the source code of all additional methods that are called
(recursively) in any of the two files (3) in the test setup context (purple, i.e. initCounter) or (4) in the focal
method (blue, i.e. setCount, inRange).

by ensuring there is at least one .java file that
contains the substring org.junit, an indication
of an import from the JUnit package. Even though
GitHub stores large amounts of code, duplicates
are a major part of it (Lopes et al., 2017). We
therefore exclude forks from the dataset to prevent
duplicates, unless they have more than 20 GitHub
stars, indicating them being different enough from
the original repository to be relevant. We employ
additional per sample deduplication in a later stage
to further reduce duplicates. Finally, test methods
are identified by matching the @Test annotation.

3.2 Identifying and locating focal methods

For each test method, we need to identify the test
method’s so-called focal method, i.e. the method
that will be tested. Commonly, this method’s name
(e.g., inc()) is similar to the test method’s name
(e.g., testInc()). Therefore, we identify the
focal method by ranking method calls within the
body of the test method (referred to as candidates)
by their token similarity to the test’s method name
or the test’s class name3: We tokenize the name of
the test, the name of the test class and the candidate
method’s names (from which we exclude JUnit as-

3When matching the test name with all candidates fails,
we compare the candidates with the test’s class name,
as sometimes tests are named by a test scenario (e.g.
testMultipleCalls could be a test method of class
TestInc).

sertions) by splitting them on camel and snake case
into sets of tokens. We then lowercase the tokens
and remove the token test. This way identifiers
like createAllUsers, create all users,
CREATE ALL USERS, and test createAll-
Users all result in the tokens create, all and
users. We compute the following similarity
based on two sets of tokens:

sim(T,C) :=
|T ∩ C|
|T | (1)

with T,C being sets of tokens. Let Tname, Tclass
be the set of tokens in the test‘s name/class and Ci

the set of tokens in a candidate i’s method name.
Every unique candidate is first ranked by comput-
ing sim(Tname, Ci) and the highest ranked candi-
date with a score greater than a threshold δ=0.1
chosen as the focal method. If there are multiple
candidates with the same score or the score is below
δ, we repeat the ranking process with Tclass. If this
process fails we consider the test as unresolvable
and drop it from the dataset.

Knowing the name of the focal method, its dec-
laration is located using JavaParser’s TypeSolver
feature (van Bruggen et al., 2020), which infers the
type of a given AST node by analyzing surrounding
nodes and the ASTs of imported modules.

In a manual evaluation on 100 randomly selected
samples of our dataset we found that 94% were
correctly matched and that the false positives were
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also relevant to the test.

3.3 Identifying setup and assertion code

Next, we split the test method into setup vs. as-
sertion code (green vs. red in Figure 1). Con-
trary to ATLAS (Watson et al., 2020), we do not
only consider calls to JUnit assertion methods
(like assertEquals) assertion code, but also
the code leading up to it. This code could for exam-
ple contain variable initialization or a surrounding
for-loop, which is often essential to the assertion
logic. To achieve this, all lines of code following
the last focal method call (there can be multiple
calls) are considered assertion code, while the pre-
ceding code lines are considered setup code.

The code line containing the last focal
method call itself is considered part of the
setup code (see Figure 1), unless the call
happens inside a JUnit assert method (e.g.,
assertEquals(counter.inc(),17)). In
this case, it is considered part of the assertion code.

In JUnit the @Before or @BeforeEach an-
notation (depending on the JUnit version) declares
that code inside this methods should be executed
before every single test in that class, or with
@BeforeClass/@BeforeAll to be executed
only once before all tests. Therefore, methods an-
notated as such are also considered part of the setup
code in CONTEST.

3.4 Resolving contexts

The most notable novelty CONTEST provides is
the addition of the setup context (purple in Figure
1) and focal method context (blue). We consider a
method as part of such a context and thereby rel-
evant to the task, if it is called during setup or in
the focal method and belongs to any of the two
java classes. Additionally, we consider methods
called within the context methods as part of the
context, thereby defining it recursively. We resolve
those context methods using JavaParser’s previ-
ously mentioned TypeSolver feature.

Since crucial parts of a focal method’s logic may
be outsourced to its context, we argue that adding
the context of the setup code and focal method
to the input of a test completion model is crucial
to improve complex focal method understanding.
This assumption is also backed by previous work
reporting failed predictions due to missing context
information (Tufano et al., 2020a).

3.5 Dataset size

Using the approach described in the previous
sections 99,015 repositories were downloaded,
with a total compressed size of 535GB. In these
repositories 6,040,446 test methods in 1,127,415
test classes were found. Of those test methods
2,182,225 have successfully been mapped to their
target method in one of 430,934 target classes.
On the other hand, 3,858,221 tests could not be
mapped, as no target method was found using the
heuristics and resolving described in Section 3.2.
Of the successfully mapped tests the setup and as-
sertion code was identified for 1,336,360.

Another important distinction in the data is made
by the location of the focal method calls. As hav-
ing focal methods calls within the assertion code
would require a model trained to generate asser-
tion to also predict focal method calls, we limit
CONTEST to tests were focal method calls only
occur within the setup code, thereby limiting it to
845,497 datapoints4. After removing duplicates
and datapoints with excessively large contexts, the
final dataset contains 365,450 samples.

Following common practice (Watson et al., 2020;
Tufano et al., 2020a; White and Krinke, 2018),
we release CONTEST alongside the data split we
used to randomly distribute the dataset into train-
ing (80%), validation (10%) and test (10%) data.
However, when randomly distributing datapoints
into splits, the training and test split are likely to
contain tests from the same project, possibly even
testing the same class or method. Therefore, we
believe it must be carefully investigated whether
models trained using these splits exploit informa-
tion encountered during training, without generaliz-
ing beyond projects. To do so, CONTEST contains
another project-based split alongside the regular
split, where no project has tests in more than one
split.

Split Samples

Random Project-based

Train 292, 360 290,190
Validation 36,545 38,098
Test 36,545 37,162

Total 365,450 365,450

Table 1: Sizes of the splits in CONTEST

4We offer to make the unfiltered version available upon
request.
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3.6 Evaluation Protocol
Alongside the dataset, we release an evaluation
package that can be used to evaluate new models.
The evaluation protocol includes tokenization of
the predictions using javalang. We consider only
parsable predictions to be valid. The parsed to-
ken sequence is then evaluated using BLEU and
ROUGE, whereas we adjust the score s ∈ [0, 1]
of each metric to take unparsable predictions into
account:

adj(s) := s · (1− rup) (2)

where rup ∈ [0, 1] is the unparsable rate. This
scales the metric by the ratio of parsable samples.
By scaling BLEU/ROUGE in this manner, a similar
effect is achieved to having an unparsable predic-
tion score of 0, i.e. scores are penalized if the
model is not able to consistently generate parsable
code.

4 Approach

Our approach towards test completion is illustrated
in Figure 2. Similar to prior successful work on
test completion and test generation (Tufano et al.,
2020a), our model utilizes a transformer encoder-
decoder architecture. Additionally, we utilize con-
text code that is called by either test method or
focus method as additional input. Also, we inves-
tigate two fundamental ways of encoding source
code: (1) in form of linearized abstract syntax trees
(ASTs), and (2) a tokenized version of the source
code.

Our model pipeline is illustrated in Figure 2: We
process two source files containing the test and
the tested code by parsing relevant code parts into
ASTs, which are combined to the so-called source
tree describing the whole test. This tree is fed into
an encoder-decoder transformer, which produces a
assertion’s linearized AST. This is compared to the
target AST using a the cross entropy loss function.

4.1 Preprocessing
Our model’s input consists of four different parts:
(1) the setup code of the test (green in Figure 2), (2)
code of the focal method which is tested (orange),
and the source code of all additional methods in
any of the two files that are called (3) in the test
setup context (purple) and (4) in the focal method
(blue). Note, that the context resolution works
recursively, so that a method which is called by a
context method will also be included in the context.

Parsing: To encode the syntactic structure of the
code, we parse the code snippets into abstract syn-
tax trees (AST)5. Every code fragment is repre-
sented by a small tree, which we subsequently
combine into a larger tree structure by adding a
root node. This new tree is referred to as the source
tree in the following. Note that context methods
(3 and 4) – of which multiple ones may exist – are
subsumed in separate subtrees beforehand.

Vocabulary: For the ASTs’ leaf nodes – which
represent identifiers occurring in code, like variable
names – we follow common NLP practice (Babii
et al., 2019) and tokenize them into fine-grain to-
kens using Byte Pair Encoding (BPE)6. For exam-
ple an identifier like getCount may be splitted
into get and Count. We replace each leaf node
with multiple leaf nodes with the same parent for
each token in resulting list.

Linearization: Finally, to use the source tree as
an input to the transformer, it is linearized in a form
from which it can be decoded back into java source
code: We encode each non-terminal node by an
opening token <[NodeType]> and a closing to-
ken <[/NodeType]>, and render its child nodes
recursively in between. Non-terminal nodes with-
out children are represented by a single self-closing
token <[NodeType]><[/]>, while value nodes
simply result in a token representing their value.
The target assertion’s AST is encoded using the
exact same preprocessing steps. In JavaParser each
AST node is represented as an object, for which
the corresponding source code can be retrieved by
calling its toString() method. This enables
reconstructing the source code of a linearized AST
sequence.

4.2 Model
We train a vanilla transformer encoder-decoder
model to perform test completion. For brevity we
omit details about the transformer architecture here
and refer the reader to Vaswani et al. (2017).

The linearized source trees input tokens form a
sequence x = (x1, x2, x3, . . . , xn), which is first
processed by a transformer encoder, resulting in a
sequence of continuous representations z(x), or
shorter z = (z1, . . . , zn). From this, the auto-
regressive transformer decoder generates an out-

5We parse ASTs using Javaparser (van Bruggen et al.,
2020).

6More specifically we train a sentencepiece unigram
model (Kudo, 2018)
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public class Counter {
  public int count = 0;
  
  public void setCount(int c) {
    count = inRange(c) ? c : 255;
  }  
  
  boolean inRange(int c) {
    return c <= 255;
  }
  
  public void inc() {
    setCount(count + 1);
  }
  
  public void reset() {
    count = 0;
  }
}

focal method context

focal method declaration

setup context

setup code

D
EC

O
D

E

Decoder

Encoder

TRANSFORMER

PA
R

SE
 A

ST
public class CounterTest {
  Counter counter;
  
  Counter initCounter() {
    return new Counter();
  }

  @Before
  public void before() {
    counter = initCounter();
  }
  
  @Test
  public void testInc() {
    int expected = 1;
    counter.inc();
    assertEquals(
      counter.count, 
      expected);
  }
}

Figure 2: Visualization of our approach. We parse all four input parts into abstract syntax trees, which are then
combined into one large source tree, that is then linearized and fed into the transformer. With this as input the
transformer generates the linearized AST sequence of the target assertions (red). The generated AST is then
decoded back into source code.

put token sequence y = (y1, . . . , ym), i.e. the
remainder of the test x (red in Figure 2). When
generating token yi+1, the decoder attends to the
whole encoded sequence z as well as all previously
generated symbols y1, . . . , yi.

The sequence-to-sequence model is trained us-
ing teacher forcing (Williams and Zipser, 1989)
by maximizing the conditional probability of the
output sequence given the input, i.e. p(y|x) =∏m

i=1 p(yi|y≤i−1, z) with the cross entropy loss.

5 Experiments

We evaluate our transformer-based models on CON-
TEST to investigate the usefulness of contextual
information and compare our syntax-based AST
encoding with a token-only baseline. Finally, we in-
vestigate the effect of generalizing between training
and test projects using CONTEST’s project-level
split.

5.1 Hyperparameters and Setup

We use a standard transformer architecture consist-
ing of 6 transformer layers in both encoder and
decoder, with 8 attention heads, 2048-dimensional
feed-forward layers, d = 512 dimensional token

embeddings, and a dropout rate of 0.2. To reduce
the amount of parameters, we reuse the token em-
beddings of the transformer encoder as input and
output embedding matrices in the decoder. We train
our model using the Adam optimizer (Kingma and
Ba, 2014) and an inverse square root learning rate
scheduler with a linear warm-up.

Relevant training hyperparameters are optimized
using the Optuna framework (Akiba et al., 2019)
with the Tree-structured Parzen Estimator (Bergstra
et al., 2011) on the validation loss. We re-
port results for the model with the best valida-
tion loss. For the learning rate we investigate
the set {0.01, 0.005, 0.001, 0.0001, 0.00001}, for
warmup steps the set {500, 1000, 2000, 4000}, and
for the batch size the set of {64, 128, 256, 512} .
For our final evaluations, we generate sequences
with greedy sampling as we found this to outper-
form nucleus sampling (Holtzman et al., 2019) on
the validation set.

We train a Byte Pair Encoding with 16k sub-
words on the training set of the dataset and use the
same BPE-model throughout all experiments. We
implemented our model in PyTorch using existing
transformer modules and all experiments are exe-
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Model BLEU BLEU1 BLEU2 BLEU3 BLEU4
ROUGE-1
F-Measure

ROUGE-2
F-Measure

ROUGE-L
F-Measure

Unparsable
Rate (%)

Max length
exceeded (%)

Linearized Tree 38.19 56.31 42.35 32.85 27.15 73.00 56.43 70.64 1.92 9.06
Linearized Tree (adjusted) 37.34 55.04 41.40 32.12 26.54 70.58 55.16 69.06 1.92 9.06

Table 2: Results of our core model utilizing syntax in terms of linearized abstract syntax trees. Absolute metrics
(top) are compared with their adjusted version taking non-parsable outputs into account (bottom, see Equation (2)).

Model BLEU BLEU1 BLEU2 BLEU3 BLEU4
ROUGE-1
F-Measure

ROUGE-2
F-Measure

ROUGE-L
F-Measure

Unparsable
Rate (%)

Max length
exceeded (%)

(1)
Linearized Tree (LT) 37.05 55.55 41.22 31.70 25.98 70.24 54.39 68.64 1.91 9.41
Tokenized 32.97 49.63 36.67 28.16 23.06 68.97 53.58 67.49 1.07 3.79

(2)
Context (LT) 37.57 55.73 41.73 32.25 26.57 70.61 55.16 69.05 1.91 9.41
No Context (LT) 27.49 46.86 31.80 22.31 17.18 65.14 46.94 63.51 1.73 16.71

(3)
Random Split (LT) 36.46 54.88 40.58 31.14 25.47 69.31 53.46 67.72 1.91 9.41
Project-based Split (LT) 15.42 37.52 20.35 10.89 6.80 55.88 32.97 53.90 1.11 30.43

Table 3: We compare – in pairs of two – a transformer operating on a linearized tree (LT) with a variation of itself:
(1) one that operates on the actual tokens and not on the tree, (2) trained without contextual information, and (3)
trained and evaluated on a project-based split. Note, that the scores for (3) are not directly comparable, as the
dataset differs. All scores are adjusted.

cuted on a server using an Intel i9-10900X CPU,
128 GB of RAM and four NVIDIA GeForce 2080
Ti GPUs with 11 GB video memory each.

5.2 Results

We present the results of our experiments in Ta-
ble 2 and Table 3, where we report BLEU and
ROUGE scores. For BLEU we report the cu-
mulative BLEU4 (Papineni et al., 2002) score as
the main metric, as well as the single n-gram
scores (BLUE1−4), while for ROUGE we re-
port F-measures for ROUGE-1, ROUGE-2, and
ROUGE-L scores (Lin, 2004).

In Table 2 we report the scores of our core model
as described in Section 4. We evaluate once with
regular scores and once with the adjusted score
(compare Section 3.6) and find that the model
achieves a decent BLEU. In an ablation study in
Table 3 we analyze the parts of our dataset in which
we compare – in pairs of two – the best performing
model (transformer operating on linearized tree,
denoted by ”LT”) with a variation of itself: (1) a
”no-AST” baseline that only takes the actual tokens
as input, (2) trained without contextual information,
and (3) trained and evaluated on a project-based
split. Note, that the scores for (3) are not directly
comparable as the dataset differs. The models may
fail on different evaluation samples, therefore we
only report the adjusted metrics here (Equation
(2)) and compare only datapoints for which both
models were able to generate a parsable predic-
tion. Note that this causes the scores of the best
performing model to vary between experiments.

5.2.1 Syntax
We compare the transformer utilizing syntactical in-
formation by operating on a linearized tree against
a regular transformer trained on tokenized and
BPE’d source code. For the tokenized model we
tokenize the source code using javalang and
then apply the same BPE encoding as for the other
model. In the tree, each part of the input is repre-
sented by a subtree with a unique node label. For
the tokenized version we concatenate the sections
of the input sequence representing test code, tested
code and the respective contexts (compare Section
4.1), whereas each section is prepended by a spe-
cial marker token. We found that syntax is highly
beneficial when generating test assertions, as Table
3 (1) shows that the model utilizing syntax yields
an improvement of 4.1 in BLEU compared to the
tokenized approach. However, the tokenized ap-
proach is able to generate parsable code more often.
Due to the shorter sequence length it is also able to
generate longer output sequences. Recall that input
and output of the AST model is longer because of
the tree linearization format (compare Section 4.1).

5.2.2 Context
To evaluate the effect the context information has
on the model’s performance, another ablation ex-
periment is conducted. We train a variation of
the model with inputs in which context parts of
the input have been removed. We drop the test
setup context (Figure 1, purple) and focal method
context (blue). Note that this setup is similar to
other test completion datasets (i.e. ATLAS (Tu-
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fano et al., 2020a)) as those offer only parts of the
test before the assertions (1) and the focal method
(2) as input to the model. It is also worth not-
ing that the model trained with context benefits
from the additional information and is able to ap-
ply this knowledge to improve the quality of its
predictions by 10.1 BLEU. This feels natural, as
even for a developer it is often hard to understand
the functionality of a method without investigat-
ing methods called within. Consider the exam-
ple in Figure 1, in which there is no way of un-
derstanding the functionality of setCount(int
c) that increments until 255 without having access
to the method inRange(int c) called inside
setCount which implements this check.

5.2.3 Project-level Splits
The code style within a software project mostly fol-
lows certain paradigms, and tests inside the same
repository may employ the same coding style. This
could be exploited by the model, which then does
not need to learn the actual semantics of the code.
In a last – and maybe most important – experiment
we investigate how well the model is able to gen-
eralize to unseen repositories. We argue that this
is the most realistic use case, as most code models
will be applied to unseen repositories.

We therefore create a different version of our
dataset, in which it is split by software projects and
train the same model again on the resulting dataset
(see Section 3.5). From Table 3 (3) we can see
that the model trained on the project-based split
fails to generalize across projects. This results in
a BLEU score of 15.4, around half of what the
model on the random split achieves. We consider
this an open challenge and are looking forward
to future findings indicating whether pre-trained
language models on code can improve generaliza-
tion. Following previous research we would like
to emphasize that project-level splits should be the
golden standard if one creates a dataset for machine
learning on source code (Alon et al., 2019). How-
ever, as most code datasets are build upon GitHub
data one should consider test leakage when evalu-
ating large-scale pre-trained language models for
code.

6 Conclusion

We have proposed a large-scale benchmark for au-
tomatic test completion coined CONTEST. In addi-
tion to pairs of test and focal methods, our bench-
mark uniquely contains context and setup code,

offers multiline targets, and defines project-level
splits. We have shown in an ablation study that con-
text information appears to be extremely relevant
to the task of test completion, and that a sequence-
to-sequence transformer baseline struggles with
generalizing across projects. Future research could
aim to improve cross-project generalization, for ex-
ample by fine-tune large scale pre-trained language
models for code (Feng et al., 2020; Roziere et al.,
2021) on CONTEST.
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Balázs Kégl. 2011. Algorithms for hyper-parameter
optimization. In 25th annual conference on neural
information processing systems (NIPS 2011), vol-
ume 24. Neural Information Processing Systems
Foundation.

Danny van Bruggen, Federico Tomassetti, and Roger
Howell. 2020. Release javaparser - 3.16.1.
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Abstract
In version control using Git, the commit mes-
sage is a document that summarizes source
code changes in natural language. A good
commit message clearly shows the source
code changes, so this enhances collaboration
between developers. To write a good commit
message, the message should briefly summa-
rize the source code changes, which takes a lot
of time and effort. Therefore, a lot of research
has been studied to automatically generate a
commit message when a code modification is
given. However, in most of the studies so far,
there was no curated dataset for code modifica-
tions (additions and deletions) and correspond-
ing commit messages in various programming
languages. The model also had difficulty learn-
ing the contextual representation between code
modification and natural language.

To solve these problems, we propose the fol-
lowing two methods: (1) We collect code mod-
ification and corresponding commit messages
in Github for six languages (Python, PHP, Go,
Java, JavaScript, and Ruby) and release a well-
organized 345K pair dataset. (2) In order to re-
solve the large gap in contextual representation
between programming language (PL) and nat-
ural language (NL), we use CodeBERT (Feng
et al., 2020), a pre-trained language model
(PLM) for programming code, as an initial
model. Using two methods leads to successful
results in the commit message generation task.
Also, this is the first research attempt in fine-
tuning commit generation using various pro-
gramming languages and code PLM. Training
code, dataset, and pretrained weights are avail-
able at https://github.com/graykode/commit-
autosuggestions.

1 Introduction

Commit message is the smallest unit that summa-
rizes source code changes in natural language. Fig-
ure 1 shows the git diff representing code modifi-
cation and the corresponding commit message. A

Message : fix deprecated ref to tokenizer.max len

Figure 1: The figure above shows an example of com-
mit message and git diff in Github. In the Git process,
git diff uses unified format (unidiff 2): A line marked
in red or green means a modified line, and green high-
lights in ’+’ lines are the added code, whereas red high-
lights in ’-’ lines are the deleted code.

good commit message allows developers to visual-
ize the commit history at a glance, so many teams
try to do high quality commits by creating rules
for commit messages. For example, Conventional
Commits 1 is one of the commit rules to use a verb
of a specified type for the first word like ’Add’ or
’Fix’ and limit the length of the character. It is very
tricky to follow all these rules and write a good
quality commit message, so many developers ig-
nore it due to lack of time and motivation. So it
would be very efficient if the commit message is
automatically written when a code modification is
given.

Similar to text summarization, many studies
have been conducted by taking code modification
X = (x1, ..., xn) as encoder input and commit
message Y = (y1, ..., ym) as decoder input based
on the NMT (Neural machine translation) model.
(Jiang et al., 2017; Loyola et al., 2017; van Hal
et al., 2019) However, taking the code modifica-
tion without distinguishing between the added and

1https://conventionalcommits.org
2https://en.wikipedia.org/wiki/Diff
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the deleted part as model input makes it difficult
to understand the context of modification in the
NMT model. In addition, previous studies tend to
train from scratch when training a model, but this
method does not show good performance because
it creates a large gap in the contextual represen-
tation between programming language (PL) and
natural language (NL). To overcome the problems
in previous studies and train a better commit mes-
sage generation model, our approach follows two
stages:

(1) Collecting and processing data with the pair
of the added and deleted parts of the code X =
((add1, del1), ..., (addn, deln)). To take this pair
dataset into the Transformer-based NMT model
(Vaswani et al., 2017), we use the BERT (Devlin
et al., 2018) fine-tuning method about two sentence-
pair consist of added and deleted parts. This shows
a better BLEU-4 score (Papineni et al., 2002) than
previous works using raw git diff. Similar to Code-
SearchNet (Husain et al., 2019), our data is also
collected for six languages (Python, PHP, Go, Java,
JavaScript, and Ruby) from Github to show good
performance in various languages. We finally re-
leased 345K code modification and commit mes-
sage pair data.

(2) To solve a large gap about contextual repre-
sentation between programming language (PL) and
natural language (NL), we use CodeBERT (Feng
et al., 2020), a language model well-trained in the
code domain as the initial weight. Using Code-
BERT as the initial weight shows that the BLEU-4
score for commit message generation is better than
when using random initialization and RoBERTa
(Liu et al., 2019). Additionally, when we pre-train
the Code-to-NL task to document the source code
in CodeSearchNet and use the initial weight of
commit generation, the contextual representation
between PL and NL is further reduced.

2 Related Work

Commit message generation has been studied in
various ways. Jiang and McMillan (2017) collect
2M commits from the Mauczka et al. (2015) and
top 1K Java projects in Github. Among the commit
messages, only those that keep the format of ”Verb
+ Object” are filtered, grouped into verb types with
similar characteristics, and then the classification
model is trained with the naive Bayes classifier.

Jiang et al. (2017) use the commit data collected
by Jiang and McMillan (2017) to generate the

commit message using an attention-based RNN
encoder-decoder NMT model. They filter again in
a ”verb/direct-object pattern” from 2M data and
finally used the 26K commit message data. Loy-
ola et al. (2017) uses an NMT model similar to
Jiang et al. (2017), but uses git diff and commit
pairs collected from 1∼3 repositories of Python,
Java, JavaScript, and C++ as training data. Liu et al.
(2018) propose a retrieval model using Jiang et al.
(2017)’s 26K commit as training data. Code modi-
fication is represented by bags of words vector, and
the message with the highest cosine similarity is
retrieved. Xu et al. (2019) collect only ’.java’ file
format from Jiang and McMillan (2017) and use
509K dataset as training data for NMT. Also, to mit-
igate the problem of Out-of-Vocabulary (OOV) of
code domain input, they use generation distribution
or copying distribution similar to pointer-generator
networks (See et al., 2017). van Hal et al. (2019)
also argues that the Jiang and McMillan (2017)
entire data is noise and proposes a pre-processing
method that filters the better commit messages.

Liu et al. (2020) argue that it is challenging to
represent the information required for source code
input in the NMT model with a fixed-length. In
order to alleviate this, it is suggested that only the
added and deleted parts of the code modification
be abbreviated as abstract syntax tree (AST) and
applied to the Bi-LSTM model.

Nieb et al. presented a large gap between the
contextual representation between the source code
and the natural language when generating com-
mit messages. Previous studies have used RNN or
LSTM model, they use the transformer model, and
similarly to other studies, they use Liu et al. (2018)
as the training data. To reduce this gap, they try to
reduce the two-loss that predict the next code line
(Explicit Code Changes) and the randomly masked
word in the binary file.

3 Background

3.1 Git Process

Git is a version management system that manages
version history and helps collaboration efficiently.
Git tracks all files in the project in the Working di-
rectory, Staging area, and Repository. The working
directory shows the files in their current state. Af-
ter modifying the file, developers move the files to
the staging area using the add command to record
the modified contents and write a commit mes-
sage through the commit command. Therefore,
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the commit message may contain two or more file
changes.

3.2 Text Summarization based on
Encoder-Decoder Model

With the advent of sequence to sequence learning
(Seq2Seq) (Sutskever et al., 2014), various tasks
between the source and the target domain are being
solved. Text summarization is one of these tasks,
showing good performance through the Seq2Seq
model with a more advanced encoder and decoder.
The encoder and decoder models are trained by
maximizing the conditional log-likelihood below
based on source input X = (x1, ..., xn) and target
input Y = (y1, ..., ym).

p(Y |X; θ) = log
T∑

t=0

p(yt|y<t, X; θ)

where T is the length of the target input, y0 is
the start token, yT is the end token and θ is the
parameter of the model.

In the Transformer (Vaswani et al., 2017) model,
the source input is vectorized into a hidden state
through self-attention as the number of encoder
layers. After that, the target input also learns the
generation distribution through self-attention and
attention to the hidden state of the encoder. It shows
better summarization results than the existing RNN-
based model (Nallapati et al., 2016).

To improve performance, most machine transla-
tions use beam search. It keeps the search area by
K most likely tokens at each step and searches the
next step to generate better text. Generation stops
when the predicted yt is an end token or reaches
the maximum target length.

3.3 CodeSearchNet

CodeSearchNet (Husain et al., 2019) is a dataset to
search code function snippets in natural language.
It is a paired dataset of code function snippets
for six programming languages (Python, PHP, Go,
Java, JavaScript and Ruby) and a docstring summa-
rizing these functions in natural language. A total
of 6M pair datasets is collected from projects with
a re-distribution license. Using the CodeSearch-
Net corpus, retrieval of the code corresponding to
the query composed of natural language can be
resolved. Also, it is possible to resolve the prob-
lem of documenting the code by summarizing it in
natural language (Code-to-NL).

3.4 CodeBERT

Recent NLP studies have shown state-of-the-art
in various tasks through transfer learning consist-
ing of pre-training and fine-tuning (Peters et al.,
2018). In particular, BERT (Devlin et al., 2018) is
a pre-trained language model by predicting masked
words from randomly masked sequence input and
uses only encoder based on Transformer (Vaswani
et al., 2017). It shows good perfomances in various
datasets and is now extending out of the natural
language domain to the voice, video, and code do-
mains.

CodeBERT is a pre-trained language model in
the code domain to learn the relationship between
programming language (PL) and natural language
(NL). In order to learn the representation between
different domains, they refer to the learning method
of ELECTRA (Clark et al., 2020) which is consists
of Generator-Discriminator. NL and Code Genera-
tor predict words from code tokens and comment
tokens masked at a specific rate. Finally, NL-Code
Discriminator is CodeBERT after trained through
binary classification that predicts whether it is re-
placed or original.

CodeBERT shows good results for all tasks in
the code domain. Specially, it shows a higher score
than other pre-trained models in the code to natu-
ral language(Code-to-NL) and code retrieval task
from NL using CodeSearchNet Corpus. In addition,
CodeBERT uses the Byte Pair Encoding (BPE) to-
kenizer (Sennrich et al., 2015) used in RoBERTa,
and does not generate unk tokens in code domain
input.

4 Dataset

We collect a 345K code modification dataset and
commit message pairs from 52K repositories of six
programming languages (Python, PHP, Go, Java,
JavaScript, and Ruby) on Github. When using raw
git diff as model input, it is difficult to distinguish
between added and deleted parts, so unlike Jiang
and McMillan (2017), our dataset focuses only on
the added and deleted lines in git diff. The de-
tailed data collection and pre-processing method
are shown as a pseudo-code in Algorithm 1:

To collect only the code that is a re-distributable
license, we have listed the Github repository name
in the CodeSearchNet dataset. After that, all the
repositories are cloned through multi-threading.
Detailed descriptions of functions that collect the
commit hashes in a repository and the code modifi-
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Algorithm 1 Code modification parser from the
list of repositories.

1: procedure REPOPARSER(Repos)
2: for Repo in Repos do
3: commits = get commits(Repo)
4: for commit in commits do
5: mods = get modifications(commit)
6: for mod in mods do
7: if filtering(mod, commit) then
8: break
9: end if

10: Save (mod.add,mod.del) to dataset.
11: end for
12: end for
13: end for
14: end procedure
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Figure 2: Commit message verb type and frequency
statistics. Only ’upgrade’ is not included in the high
frequency, but is included in a similar way to ’update’.
This refers to the verb group in Jiang and McMillan
(2017).

cations in a commit hash are as follows:

• get_commits is a function that gets the
commit history from the repository. At this
time, the commits of the master branch are
filtered, excluding merge commits. Commits
with code modifications corresponding to 6
the program language(.py, .php, .js, .java, .go,
.ruby) extensions are collected. To implement
this, we use the open-source pydriller (Spadini
et al., 2018).

• get_modifications is a function that
gets the line modified in the commit. Through
this function, it is possible to collect only the
added or deleted parts, not all git diffs.

While collecting the pair dataset, we find that
the relationship between some code modifications

Number of Pair Dataset

Train Validation Test Number of
Repositories

Python 81517 10318 10258 12361
PHP 64458 8079 8100 16143

JavaScript 50561 6296 6252 11294
Ruby 29842 3772 3680 4581
Java 28069 3549 3552 4123
Go 21945 2699 2812 3960

Total : 345759 52462

Table 1: Dataset Statistics for each language collected
from 52K repositories of six programming languages.

and the corresponding commit message is obscure
and very abstract. Also, we check that some code
modification or commit message is a meaning-
less dummy file. To filter these, we create the
filtering function and the rules as follows.

1. To collect commit messages with various for-
mat distributions, we limit the collection of
up to 50 commits in one repository.

2. We filter commits whose number of files
changed is one or two per commit message.

3. Commit message with issue number is re-
moved because detailed information is abbre-
viated.

4. Similar to Jiang and McMillan (2017), the
non-English commit messages are removed.

5. Since some commit messages are very long,
the first line is fetched.

6. If the token of code through tree-sitter3, a
parser generator tool, exceeds 32 characters, it
is excluded. This removes unnecessary things
like changes to binary files in code diff.

7. By referring to the Jiang and McMillan (2017)
and Conventional Commits(§ 1) rules, the
commit message that begins with a verb is
collected. We use spaCy4 for Pos tagging.

8. We filter commit messages with 13 verb types,
which are the most frequent. Figure 2 shows
the collected verb types and their ratio for the
entire dataset.

As a result, we collect 345K code modification
and commit message pair datasets from 52K Github
repositories and split commit data into 80-10-10
train/validation/test sets. This results are shown in
Table 1.

3https://tree-sitter.github.io/tree-sitter
4https://spacy.io
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5 CommitBERT

We propose the idea of generating a commit
message through the CodeBERT model with the
our dataset (§ 4). To this end, this section de-
scribes how to feed inputs code modification (X =
((add1, del1), ..., (addn, deln))) and commit mes-
sage (Y = (msg1, ...,msgn)) to CodeBERT and
how to use pre-trained weights more efficiently to
reduce the gap in contextual representation between
programming language (PL) and natural language
(NL).

5.1 CodeBERT for Commit Message
Generation

We feed the code modification to the encoder and
a commit message to the decoder input by follow-
ing the NMT model. Especially for code mod-
ification in the encoder, similar inputs are con-
catenated, and different types of inputs are sep-
arated by a sentence separator (sep). Applying this
to our CommitBERT in the same way, added to-
kens (Add = (add1, ..., addn)) and deleted tokens
(Del = (del1, ..., deln)) of similar types are con-
nected to each other, and sentence separators are
inserted between them. Therefore, the conditional-
likelihood is as follows:

p(M |C; θ) = log
T∑

t=0

p(mt|m<t, C; θ),

m<t = (m0,m1, ...,mt−1)

C = concat([cls], Add, [sep], Del, [sep])

where M is commit message tokens, C is code
modification tokens and concat is list concatena-
tion function. [cls] and [sep] are speical tokens,
which are a start token and a sentence separator
token respectively. Other notions are the same as
Section 3.2.

Unlike previous works, all code modifications in
git diff are not used as input and only changed lines
in code modification are used. Since this removes
unnecessary inputs, it shows a significant perfor-
mance improvement in summarizing code modifi-
cations in natural language. Figure 3 shows how
the code modification is actually taken as model
input.

5.2 Initialize Pretrained Weights
To reduce the gap difference between two do-
mains(PL, NL), We use the pretrained CodeBERT

as the initial weight. Furthermore, we determine
that removing deleted tokens from our dataset (§ 4)
is similar to the Code-to-NL task in CodeSearchNet
(Section 3.3). Using this feature, we use the ini-
tial weight after training the Code-to-NL task with
CodeBERT as the initial weight. This method of
training shows better results than only using Code-
BERT weight in commit message generation.

6 Experiment

To verify the proposal in Section 5 in the commit
message generation task, we do two experiments.
(1) Compare the commit message generation re-
sults of using all code modifications as inputs and
using only the added or deleted lines as inputs. (2)
Ablation study several initial model weights to find
the weight with the smallest gap in contextual rep-
resentation between PL and NL.

6.1 Experiment Setup

Our implementation uses CodeXGLUE’s code-text
pipeline library 5. We use the same model archi-
tecture and experimental parameters for the two
experiments below. As a model architecture, the
encoder and decoder use 12 and 3 Transformer lay-
ers. We use 5e-5 as the learning rate and train on
one V100 GPU with a 32 batch size. We also use
256 as the maximum source input length and 128
as the target input length, 10 training epochs, and
10 as the beam size k.

6.2 Compare Model Input Type

To experiment generating a commit message ac-
cording to the input type, only 4135 data is col-
lected from data with code modification in the
‘.java’ files among 26K training data of Loyola et al.
(2017). Then we transform these 4135 data into
two types, respectively, and experiment with train-
ing data for RoBERTa and CodeBERT weights:
(a) entire code modification in git diff and (b) only
changed lines in code modification. Figure 3 shows
these two differences in detail.

Table 3 shows the BLEU-4 values when infer-
ence with the test set after training about these two
types. Both initial weights show worse results than
(b), even though type (a) takes a more extended
input to the model. This shows that lines other than
changed lines as input data disturb training when
generating the commit message.

5https://github.com/microsoft/CodeXGLUE

30



(a) Code modification in git diff

Encoder
(CodeBERT)

. . .

def adddef (subtract[CLS] a , b ) [SEP]: ( a , b ) [SEP]:

. . .

Decoder

Fix function name

. . .

(b) CommitBERT input

Figure 3: Illustration of a code modification example in git diff (a) and method of taking it to the input of
CommitBERT (b). (b) shows that all code modification lines in (a) are not used, and only changed lines are as
input. So, in this example, code modification (a) includes return a - b, but not in the model input (b).

Metric Initial Weight Python PHP JavaScript Java Go Ruby

BLEU-4 (Test)

(a) Random 7.95 7.01 8.41 7.60 10.38 7.17
(b) RoBERTa 10.94 9.71 9.50 6.40 10.21 8.95
(c) CodeBERT 12.05 13.06 10.47 8.91 11.19 10.33
(d) CodeBERT + Code-to-NL 12.93 14.30 11.49 9.81 12.76 10.56

PPL (Dev)

(a) Random 144.60 138.39 195.98 275.84 257.29 207.67
(b) RoBERTa 76.02 81.97 103.48 164.32 122.70 104.68
(c) CodeBERT 68.18 63.90 94.62 116.50 109.43 91.50
(d) CodeBERT + Code-to-NL 49.29 47.89 75.53 77.80 64.43 82.82

Table 2: Commit message generation result for 4 initial weights. In (c), CodeBERT is used as the initial weight.
And (d) uses the weight trained on the Code-to-NL task in CodeSearchNet with CodeBERT as the initial weight.
As a result, it shows BLEU-4 for the test set after training and the best PPL for the validation set in the during
training.

Initial Weight Input Type BLEU-4

RoBERTa (a) All code modification 10.91
(b) Only changed lines (Ours) 12.52

CodeBERT (a) All code modification 11.77
(b) Only changed lines (Ours) 13.32

Table 3: The result of generating the commit message
for the input type after collecting 4135 data with only
source code change among the data of Loyola et al.
(2017). (a) uses entire git diff(unidiff) as input, and
(b) uses only the changed line according to Section 5.1
as input.

6.3 Ablation study on initial weight

We do an ablation study while changing the ini-
tial weight of the model for 345K datasets in
six programming languages collected in Section
4. As mentioned in 5.2, when the model weight
with high comprehension in the code domain is
used as the initial weight, it is assumed that the
large gap in contextual representation between PL
and NL would be greatly reduced. To prove this,
we train the commit message generation task for
four weights as initial model weights: Random,
RoBERTa6, CodeBERT7, and the weights trained

6https://huggingface.co/roberta-base
7https://huggingface.co/microsoft/codebert-base

on the Code-to-NL task(Section 3.3) with Code-
BERT. Except for this initial weight, all training
parameters are the same.

Table 2 shows BLEU-4 for the test set and PPL
for the dev set for each of the four weights after
training. As a result, using weights trained on the
Code-to-NL task with CodeBERT as the initial
weight shows the best results for test BLEU-4 and
dev PPL. It also shows good performance regard-
less of programming language.

7 Conclusion and Future Work

Our work presented a model summarizing code
modifications to solve the difficulty of humans
manually writing commit messages. To this end,
this paper proposed a method of collecting data, a
method of taking it to a model, and a method of
improving performance. As a result, it showed a
successful result in generating a commit message
using our proposed methods. Consequently, our
work can help developers who have difficulty writ-
ing commit messages even with the application.

Although it is possible to generate a high-quality
commit message with a pre-trained model, future
studies to understand the code syntax structure re-
main in our work. As a solution to this, Com-
mitBERT should be converted to AST (Abstract
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Language Reference / Generated

Python added figsize to plot methods
added figure size to plot weights

PHP added default value to fieldtype
Added default values of the fieldtype

JavaScript Fix missing = in delete uri
Fixed an issue with delete

Java Fixed the parsing of orders without a cid
Fix bug in exchange order

Go Use ioutil . Discard for benchmark
Use ioutil . Discard for logging

Ruby fixing schema validation issues with
CCR export
fixing validation of ccr export

Table 4: The result of generating the commit message
for six languages (Python, PHP, Go, Java, JavaScript,
and Ruby) and the corresponding reference. We used
the (d) model of Table 2.

Syntax Tree) before code modification is taken into
the encoder like (Liu et al., 2020).
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Abstract

In this paper, we present a deep learning code
completion model for the R programming lan-
guage. We introduce several techniques to uti-
lize language modeling based architecture in
the code completion task. With these tech-
niques, the model requires low resources, but
still achieves high quality.

We also present an evaluation dataset for the R
programming language completion task. Our
dataset contains multiple autocompletion us-
age contexts and that provides robust valida-
tion results. The dataset is publicly available.

1 Introduction

Code completion feature (for simplicity we will re-
fer to it as autocompletion) is used in an integrated
development environment (IDE) to suggest the next
pieces of code during typing. Code completion en-
gines can accelerate software development and help
to reduce errors by eliminating typos.

In recent years quality improvements in the code
completion task have been achieved with the trans-
former language models. Models with a huge
amount of parameters usually demonstrate better
performance (Brown et al., 2020), but in practice
code completion is executed on a user laptop with
limited computational resources. At the same time
code completion should run as fast as possible to
be considered as a convenient development tool.

In this paper, we show that the autocompletion
task can be solved with a fairly good quality even
with a small transformer-based model. We propose
several techniques to adapt the model which was
originally designed for NLP tasks to our task.

It is hard to build a good autocompletion system
for dynamically typed languages without machine
learning methods (Shelley, 2014). Let us consider

1https://github.com/arti32lehtonen/
rcompletion evaluation dataset

an autocompletion of a function argument scenario.
In static languages, an argument type is determined
in the function definition. We can collect variables
of this type from the scope in which the function is
called. These variables may be used as an autocom-
pletion output. However, in dynamic languages the
argument type information is omitted. Since all
dynamic languages are interpreted, variable types
can not be obtained without running a program or
special tools usage.

We choose a dynamic R programming language
for our experiments. To the best of our knowledge,
there are no papers about code completion based
on deep learning for the R programming language
specifically.

We also propose an evaluation dataset for the
R programming language collected from the open-
source GitHub projects1. Our dataset is divided
into several groups specific for different code us-
age contexts. For example, there is a separate group
containing package imports and another one con-
taining function calls.

2 Related Work

There are many ways to design code completion
models. One of the methods is a frequency-based
system. The statistical language model is used to
rank a set of possible completions extracted by
the rule-based methods (Tu et al., 2014). Bruch
et al. (2009) proposed proposed a ranking machine
learning model, which additionally takes a feature
vector describing completion context as an input.

Lately, deep learning approaches have gained
popularity. Completions are generated by autore-
gressive models such as LSTM or transformer-
based language models (Li et al., 2017) trained
on a large source unlabeled code corpora. Some
large models such as GPT3 (Brown et al., 2020)
can even perform a full-line autocompletion with
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promising quality. Alon et al. (2019) suggest to pre-
dict the next node of the abstract syntax tree (AST)
of the program to get completions. Liu et al. (2020)
propose to predict the token and its type jointly to
improve completion performance for identifiers.

3 Model

3.1 Baseline model
We use conventional GPT-2 (Radford et al., 2019)
architecture with Byte Pair Encoding (BPE) tok-
enization (Sennrich et al., 2015), but with fewer
layers and heads and a lower hidden size. We train
it on a standard language modeling task, predicting
the next BPE token xt from the previous ones:

Llm =
∑

t

log p(xt|x<t)→ max (1)

However, we use special preprocessing to make
this task easier. In particular, we apply R lexer
to a source code to get so-called program tokens.
We use that information to replace numerical and
string literals by type-specific placeholders, delete
comments and remove vector content.

At inference time we exploit beams search and
softmax with temperature. To prevent generation of
the repeating elements we use penalized sampling
(Keskar et al., 2019).

3.2 Variable Name Substitution
As we know, transformers suffer from O(n2) com-
plexity with n as input length. It limits their ability
to exploit large contexts and therefore limits code
completion quality. If we take only the last tokens
as input, it can dramatically reduce a model quality
in a code completion task. For example, it is very
complicated to get a variable with a rare name in
the model output if it is declared at the start of the
program and never used after that.

While BPE tokenization allows us to represent
rare words with fixed-size vocabulary, they can still
have damaging effect on the training and the infer-
ence stages. We observe that rare variable names in
a source code unnecessarily extend input sequence
length, thus reducing effective context length. We
tried to use some transformer modifications such as
Reformer (Kitaev et al., 2020) to reduce inference
time but the quality drop was very high.

Here we propose a simple idea of replacing a rare
variable name with a placeholder (varK, where K
is the variable index number) if its frequency is
less than a certain threshold. Also, we should note,

that by such replacement the language modeling
task becomes a bit easier. Since there is no need to
remember complex variable names and the model
can concentrate on predicting more useful token
sequences.

Proposed substitution increases quality and
speed not only because of the context size. It is
impossible to get a long name variable from the
model output because there is a limit on the number
of generation iterations. While such transformation
allows us to generate a variable of any length.

3.3 Prefix Generation

We observe some discrepancy between training ob-
jective and model usage cases. Usually, the user
can improve completion results by typing in several
first characters of the desired token. The problem
is that during inference user may invoke an auto-
completion service, while the pointer is still in the
middle of the BPE token of the desired output. So,
at the training stage the tokenization is determined,
while during inference it can take an arbitrary form.
When the word is typed in by the user, its prefixes
may be decomposed into BPE tokens in several
different ways. For example, if a user wants to
get the variable maxDf consisting of max and df
BPE tokens, then the typed m can lead only to an
unlikely sequence m, ax, df.

We try to work around this issue by utilizing to-
ken prefixes. To incorporate signal from the prefix,
we propose to roll the pointer back to the start of the
program token and to utilize only those BPE tokens
that match our prefix during beam search. Search-
ing tokens with the right prefix is computationally
expensive (O(D) for each call, D is a dictionary
size). To overcome the computational cost we use
the trie data structure to store all the BPE tokens
(O(m) for each call, m is the maximum length of
the BPE token in the dictionary).

3.4 Beam Search with Early Stopping

We investigated full-line code completion setting,
where we try to predict a sequence of program to-
kens till the end of the line. We selected the average
number of correct program tokens predicted as our
quality metric. We found out, that if we restrict
model size and use regular language modeling ob-
jective, the model starts to hallucinate after 1-2
program tokens. So we decided to restrict our in-
ference only to 1 program token, introducing early
stopping into the beam search routine.
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It is easy to understand if a generated sequence
is exhausted in a single token completion task. The
lexer is applied to extract program tokens after
each beam search iteration. If at some point the
lexer output contains more than one program token,
the generation process is stopped for the current
sequence. We also stop the beam search if we have
already obtained k complete tokens, where k is a
hyperparameter. It helps to accelerate the inference
and has nearly no negative effect on model quality.

3.5 Distillation

Distillation is a model compression procedure in
which a student model is trained to match the out-
puts of a large pre-trained teacher model. Some
works (Bucila et al., 2006; Hinton et al., 2015)
show that distilled model can perform even better
than a trained from scratch model with the same
architecture and the same amount of parameters.

For distillation, we use the cross entropy loss
along with the KL divergence between the student
and teacher outputs (Equation 3, where ps is a stu-
dent model, pt is a teacher model, and α is hyper-
parameter to balance losses).

q(x, t) = −(1− α) log ps(xt|x<t) +

+ αKL (ps(xt|x<t) || pt(xt|x<t)) (2)

Ldist =
∑

t

q(x, t)→ min (3)

4 Dataset

The dataset used for the model training consists of
500k R Markdown files (Rmd). Non-code infor-
mation is erased from each file and the rest of the
text is transformed into a script. Additionally, in
one of the experiments we use a larger dataset that
contains more than 4kk with both R and Rmd files.

The evaluation dataset was collected from the
Github open-source projects and consists of 35k
examples from the 9k R files. There is an issue
with the using of the open-source project codes for
the evaluation. It is very likely for the training and
the test sets to intersect. A lot of repositories have
forks with minimal differences and it is very hard
to distinguish them from the source one. That is
why we evaluate most of our models on R files only
while training on Rmd files to avoid encountering
the training samples in the test set.

Some papers investigate autocompletion be-
haviour on real-world autocompletion logs. Aye
et al. (2020) showed that autocompletion models

after operator $ 2158
after operator %>% 1493
after operator -> 43
after operator :: 1024
after operator <- 3748
after operator = 4488
c key argument 598
c positional argument 1776
f key argument 8920
f positional argument 6730
library 748
new line variable 1774
new line function 1113
with prefix 15470
without prefix 19143

Table 1: Dataset group sizes

trained as language models on an unlabelled cor-
pus perform much worse on the real-world logs
than models trained on a logs dataset initially. Hel-
lendoorn et al. (2019) showed a difference in the
distributions of the completed tokens between the
real completion events and the synthetic evaluation
datasets.

Not having the real logs available, we decided to
divide our synthetic evaluation dataset into several
groups. It is useful to validate a model behaviour
on different autocompletion contexts. This way, the
model can be fine-tuned to improve quality in con-
crete autocompletion situations, such as a package
import or a function call completion. Firstly, we
divide the dataset into prefix and non-prefix groups.
The last program token is always incomplete in the
prefix group. Also, we divide our examples into
groups by the usage context. For example, there is
a group with the filling of the function arguments
and a group with new variables declaration.

The first type of dataset groups corresponds to
completion events following the concrete operators
($, %>%, ->, :: <-, =). Another type covers auto-
completion events during the positional or keyword
arguments completion in vectors or functions. The
next one consists of packages import usage con-
texts. The last one corresponds to the completion
of a variable or a function name at the start of the
new line.

5 Experiments

The code completion task may be considered a
ranking problem. We use mean reciprocal rank
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score (MRR) and mean Recall@5 score for eval-
uation in our experiments. There is only one rele-
vant element a in the autocompletion task and with
search results denoted as s the formulas can be
written as follows.

RR(a, s) =

{
i−1, if si = a

0, if a /∈ s

Recall@k(a, s) =

k∑

i=1

I[a = si]

5.1 Implementation Details
Our aim is to build a model light enough to run
smoothly on an average laptop. We evaluate our
models on a laptop equipped with Intel Core i7
with 6 cores and 16 GB RAM. The average time
for the single autocompletion event should be close
to 100ms and RAM consumption should not exceed
400MB.
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Figure 1: Mean inference time over 50k objects for
different model parameters

Figure 1 presents average inference times for
our model with all the proposed modifications. We
keep the number of heads = 4 and vary hidden
size and number of layers. It can be seen that the
model with the hidden size = 256 and number of
layers = 4 is the most complicated model that still
satisfies the performance requirements.

5.2 Quality and Inference Speed
In this experiment, we evaluate each of our pro-
posed modifications from the section 3. We apply
modifications one by one and measure metrics and
mean inference time for each of them. We use a
transformer model with parameters from the previ-
ous experiment (hidden size = 256, heads amount
= 4, number of layers = 4) as the baseline. For all
experiments, we use Adam (Kingma and Ba, 2017)

optimizer with the default parameters, cosine an-
nealing learning rate scheduler (Smith and Topin,
2018) with upper learning rate boundary 5e-3 and
gradient norm clipping by 10.

The results show that without the prefix gen-
eration modification the model is unable to take
advantage of the given prefixes. It should be noted
that almost 45% of the examples from the evalua-
tion dataset contain unfinished tokens with a given
prefix. Additional manipulations with the prefix
slow down the model but it is compensated by the
following two modifications. Variable name sub-
stitution during the prepossessing leads to both
quality improvement and inference speed up. Gen-
eration early stopping procedure accelerates the
inference without any ranking drawback.

MRR Recall@5 time
baseline 0.319 0.364 150 ms
+ prefix
generation

0.64 0.709 195 ms

+ variable
replacing

0.673 0.748 183 ms

+ BS early
stopping

0.676 0.751 98 ms

Table 2: Model modifications performance

5.3 Big Dataset Effect
One of the standard methods to improve model per-
formance in data science is to collect more data.
As we mentioned before, we can not guarantee to-
tal fairness of the evaluation process in this setup,
but we try to make sure that all the training exam-
ples are removed from the test set by eliminating
possible duplicates.

MRR Recall@5
l4 s256 0.676 0.751
l6 s1024 0.683 0.751
+ more data 0.761 0.815
+ distillation 0.701 0.767

Table 3: Increasing dataset size and distillation effects

We consider multiple types of models in this
experiment. The first one is the best model from
experiment 5.2. The second experiment is similar
to the first one but consists of six layers instead of
four and has hidden size of 1024 instead of 256.
The third experiment has the same architecture as
the second one and is trained on a larger training set.
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w/o prefix with prefix both
MRR Recall@5 MRR Recall@5 MRR Recall@5

after operator $ 0.596 0.669 0.727 0.779 0.656 0.719
after operator %>% 0.566 0.714 0.840 0.895 0.702 0.804
after operator -> 0.218 0.276 0.214 0.286 0.217 0.279
after operator :: 0.614 0.716 0.798 0.858 0.709 0.789
after operator <- 0.563 0.659 0.787 0.849 0.666 0.746
after operator = 0.624 0.707 0.765 0.793 0.682 0.743
c key argument 0.659 0.706 0.796 0.824 0.719 0.758
c positional argument 0.752 0.820 0.815 0.846 0.778 0.831
f key argument 0.713 0.784 0.840 0.876 0.771 0.826
f positional argument 0.719 0.812 0.803 0.852 0.755 0.829
library 0.183 0.299 0.775 0.870 0.463 0.570
new line function 0.586 0.704 0.676 0.771 0.630 0.737
new line variable 0.274 0.316 0.329 0.377 0.299 0.344

Table 4: Distilled model performance on separate groups. Rows correspond to autocompletion contexts. Results
for no prefix subset, prefix subset, and entire dataset are split into columns.

We apply Adaptive Softmax (Grave et al., 2017)
during the first training iterations to speed up the
training process. The fourth experiment is a result
of distillation of the third one into the model with
the architecture from the first experiment.

As we see from the results (Table 3) both increas-
ing training set size and distillation have positive
effect on the metrics. The distilled model outper-
forms all the models trained on a small dataset,
even the more complicated ones.

5.4 Error Interpretation

Table 4 shows the distilled model performance on
different parts of the evaluation dataset. In general,
the additional prefix information allows achieving
a higher score. Groups related to function argu-
ments and vector content have the highest MRR
score. It is an interesting observation since the vec-
tor content is eliminated during the preprocessing
step. It seems that vector argument filling is very
close to function argument filling semantically and
the model is able to perform well in this situation
without any relevant training samples.

The additional prefix information is very impor-
tant for a library group. Library calls are usu-
ally located at the start of the program. If there is
no last token prefix then the only reasonable model
behaviour is to predict the most common comple-
tion.

Autocompletion usage after the <- operator
means that we want to get a variable computation
statement based on a variable name. In opposite,

usage after the -> means that we want to get a
variable name based on given computations. Cor-
responding groups at the table show that we are
much better at the first one completion group. It
makes sense as the user has no limits in the variable
name design. Another reason for the low quality
for the after operator -> is a low amount of
examples for this operator in the training data. That
is why the quality for the new line variable
group is better even though the task is harder.

6 Conclusions

In this work, we present a model for the R pro-
gramming language completion. We introduced
simple but effective techniques, which can improve
a code completion quality, while not affecting the
model architecture or the training objective. Thus,
these techniques can be easily combined with other
works in the field and any dynamic programming
language. We also present an evaluation dataset
for the R programming language containing differ-
ent autocompletion contexts. The diversity of our
dataset provides a robust estimation.
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Abstract

We present CoTexT, a pre-trained, transformer-
based encoder-decoder model that learns
the representative context between natural
language (NL) and programming language
(PL). Using self-supervision, CoTexT is pre-
trained on large programming language cor-
pora to learn a general understanding of lan-
guage and code. CoTexT supports down-
stream NL-PL tasks such as code summariz-
ing/documentation, code generation, defect de-
tection, and code debugging. We train CoTexT
on different combinations of available PL cor-
pus including both ”bimodal” and ”unimodal”
data. Here, bimodal data is the combination of
text and corresponding code snippets, whereas
unimodal data is merely code snippets. We
first evaluate CoTexT with multi-task learning:
we perform Code Summarization on 6 differ-
ent programming languages and Code Refine-
ment on both small and medium size featured
in the CodeXGLUE dataset. We further con-
duct extensive experiments to investigate Co-
TexT on other tasks within the CodeXGlue
dataset, including Code Generation and Defect
Detection. We consistently achieve SOTA re-
sults in these tasks, demonstrating the versatil-
ity of our models.

1 Introduction

In recent years, pre-trained language models (LM)
have played a crucial role in the development of
many natural language processing (NLP) systems.
Before the emergence of large LMs, traditional
word embedding gives each word/token a global
representation. Large pre-trained models such as
ELMo (Peters et al., 2018), GPT (Brown et al.,
2020), BERT (Devlin et al., 2018), and XLNet
(Yang et al., 2020) can derive contextualized word
vector representations from large corpora. These
methods can learn generalized representations of
language and have significantly improved a broad

range of downstream NLP tasks. These LMs
make use of learning objectives such as Masked
Language Modeling (MLM) (Devlin et al., 2018)
where random tokens in a sequence are masked
and the model predicts the original tokens to learn
the context. The success of pre-trained models in
NLP has created a path for domain-specific pre-
trained LMs, such as BioBERT (Lee et al., 2019a)
on biomedical text, or TaBERT (Yin et al., 2020)
on NL text and tabular data.

We introduce CoTexT (Code and Text Trans-
fer Transformer), a pre-trained model for both nat-
ural language (NL) and programming language
(PL) such as Java, Python, Javascript, PHP, etc.
CoTexT follows the encoder-decoder architecture
proposed by (Vaswani et al., 2017) with attention
mechanisms. We then adapt the model to match T5
framework proposed by (Raffel et al., 2019). We
test CoTexT by performing exhaustive experiments
on multi-task learning of multiple programming
languages and other related tasks.

We train CoTexT using large programming lan-
guage corpora containing multiple programming
languages (including Java, Python, JavaScript,
Ruby, etc.). Here, we test different combinations
of unimodal and bimodal data to produce the best
result for each downstream task. We then fine-
tune CoTexT on four CodeXGLUE tasks (Lu et al.,
2021) including CodeSummarization, CodeGenera-
tion, Defect Detection and Code Refinement (small
and medium dataset). Results show that we achieve
state-of-the-art values for each of the four tasks.
We found that CoTexT outperforms current SOTA
models such as CodeBERT (Feng et al., 2020) and
PLBART (Ahmad et al., 2021a).

In this paper we offer the following contribution:

• Three different versions of CoTexT that
achieve state-of-the-art on the CodeXGLUE’s
CodeSummarization, CodeGeneration, Defect

40



Detection and Code Refinement (small and
medium dataset) tasks. We publicize our
CoTexT pre-trained checkpoints and related
source code available for future studies and
improvements.

2 Related Work

Recent work on domain adaptation of BERT show
improvements compared to the general BERT
model. BioBERT (Lee et al., 2019b) is further
trained from BERTBASE on biomedical articles
such as PubMed abstracts and PMC articles. Simi-
larly, SciBERT (Beltagy et al., 2019) is trained on
the full text of biomedical and computer science
papers. The experimental results of these models
on domain-specific datasets show the enhanced per-
formance compared to BERTBASE.

Relating specfically to our work, CodeBERT is
(Feng et al., 2020) trained on bimodal data of NL-
PL pairs. This strategy allows CodeBERT to learn
general-purpose representations of both natural lan-
guage and programming language. GraphCode-
BERT (Guo et al., 2021) is an extension of Code-
BERT that moves beyond syntactic-level structure
and uses data flow in the pre-training stage to cap-
ture the semantic-level structure of code. More
recently, PLBART (Ahmad et al., 2021b) is a pre-
trained sequence-to-sequence model for NL and
PL. Through denoising autoencoding, this model
can perform well on NL-PL understanding and gen-
eration tasks.

3 CoTexT

3.1 Vocabulary

Following the example of T5 (Raffel et al., 2019),
we use the Sentence Piece Unsupervised Text Tok-
enizer proposed by (Kudo and Richardson, 2018).
The Sentence Piece model extracts the sub-words
that contain the semantic context of a sequence. We
employ Sentence Piece as a vocabulary model for
all of our contributed CoTexT models. However,
the special tokens used in code (such as ”[”, ”{”,
”$”, etc) are out-of-vocab for the SentencePiece
model 1. These tokens have a crucial representative
context in programming languages. Therefore, to
enhance the robustness of the model, we encode
all of these missing tokens into a natural language
representation during both self-supervised and su-
pervised training.

1https://github.com/google/sentencepiece

)def add ( a , b : return a + b

def <X> a , b <Y> : return <Z>

<X> add ( <Y> ) <Z> a + b

Transformer

Figure 1: An illustration about Fill-in-the-blank objec-
tive

3.2 Pre-training CoTexT
We train CoTexT on both bimodal and unimodal
data. Bimodal data contains both code snippets and
the corresponding natural text in each sequence,
while unimodal data contains only the sequence
of code. We use two main datasets during self-
supervised training: CodeSearchNet Corpus Col-
lection (Husain et al., 2020) and GitHub Reposi-
tories2 data. The combinations of corpus used to
train CoTexT are listed in Table 1. To save both
time and computing resources, we initialized the
checkpoints from the original T5 that was trained
on the C4 corpus. (Raffel et al., 2019).

3.2.1 CodeSearchNet Corpus Collection
CodeSearchNet Corpus (Husain et al., 2020) con-
tains coded functions from open-source non-forked
Github repositories. This dataset spans 6 coding
languages (Python, Java, Javascript, PHP, Ruby,
Go), which facilitates multi-task learning. Code-
SearchNet also contains a natural language descrip-
tion for each function. For bimodal data, we simply
concatenate the natural language snippet with the
corresponding code snippet to create one input se-
quence. These data are then processed as described
in 3.1.

3.2.2 GitHub repositories
We download a large collection of Java and Python
functions from the GitHub repositories dataset
available on Google BigQuery. These Java and
Python functions are then extracted and the natural
language descriptions are obtained using the pre-
processing pipeline from (Lachaux et al., 2020).
These datapoints also run through a pipeline to
replace special tokens (as described in 3.1).

3.3 Input/Output Representations
CoTexT converts all NLP problems into a text-
to-text format. This means that during both self-

2https://console.cloud.google.com/marketplace/details/github/github-
repos
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Table 1: Pre-training CoTexT on different combinations of natural language and programming language copora

Model N-modal Corpus combination

T5 NL C4
CoTexT (1-CC) PL C4 + CodeSearchNet
CoTexT (2-CC) NL-PL C4 + CodeSearchNet
CoTexT (1-CCG) PL C4 + CodeSearchNet + Github Repos

supervised pre-training and supervised training, we
use an input sequence and a target sequence. For
the bimodal model, we concatenate a sequence
of natural language text and the corresponding se-
quence of programming language text as an in-
put. For the unimodal model, we simply use each
coded function as an input sequence. During self-
supervised training, spans of the input sequence
are randomly masked and the target sequence (Raf-
fel et al., 2019) is formed as the concatenation
of the same sentinel tokens and the real masked
spans/tokens.

3.4 Model Architecture

CoTexT follows the sequence-to-sequence encoder-
decoder architecture proposed by (Vaswani et al.,
2017). We initialize the Base T5 model released
by (Raffel et al., 2019) which has 220 million pa-
rameters. We train the model with a 0.001 learning
rate and an input/target length of 1024. With the
provided TPU v2-8 on Google Colab, we train with
the recommended setting of model parallelism 2
and batch size 128.

3.5 Multi-task Learning

The model is trained with maximum likelihood ob-
jective (that is using ”teacher forcing” (Williams
and Zipser, 1989)) regardless of the text-code or
code-text tasks. Therefore, for CoTexT, we lever-
age the potential for Multi-Task learning (Raffel
et al., 2019) to complete both text-code and code-
text generation on CodeSummarization and Code
Refinement tasks. To specify the task our model
should perform, we simply add a task-specific pre-
fix to the input sequence. For example, when fine-
tuning of the CodeSummarization task for each pro-
gramming language, we simply prepend a prefix
for each PL name (i.e., Java) to the input sequence.

4 Experiments

In this section, we will first describe the benchmark
dataset for code intelligence CodeXGLUE, then we

CoTexT
javascript: console.log("Hello");

ruby: puts "Hello"

go: fmt.Println("Hello")

python: print("Hello")

java: System.out.println("Hello");

PHP: echo "Hello";

To display Hello on the screen

Figure 2: An illustration about Multi-task learning

will explain the experimental setup on the tasks we
perform and discuss the results of each task. The
evaluation datasets are summarized in Table 3.

4.1 CodeXGLUE

General Language Understanding Evaluation
benchmark for CODE (CodeXGLUE) (Lu et al.,
2021) is a benchmark dataset to facilitate machine
learning studies on code understanding and code
generation problems. This dataset includes a collec-
tion of code intelligence tasks (both classification
and generation), a platform for model evaluation,
and a leaderboard for comparison. CodeXGLUE
has 10 code intelligence tasks including code-text,
text-code, code-code, and text-text scenarios. For
CoTexT, we focus on Code Summarization, Code
Generation, Code Refinement, and Defect Detec-
tion tasks.

4.2 Evaluation Tasks

We evaluate our programming language and natural
language generation tasks on TPU v2-8 with the
settings from the original T5 model (Raffel et al.,
2019). The input length and target length for each
task are described in Table 2.

4.2.1 Code Summarization
For Code Summarization, the objective is to gener-
ate a natural language description for a given code
snippet. The task includes a CodeSearchNet dataset
(Husain et al., 2019) with 6 different programming
languages: Python, Java, Javascript, PHP, Ruby,
Go. The data comes from public open-source non-
fork GitHub repositories and the annotations are ex-
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Table 2: The input and target sequence length settings for each self-supervised learning, code summarization, code
generation, code refinement, and defect detection task

Task Dataset Task Type Input Length Target Length

Self-supervised Learning
CodSearchNet Corpus 1024 1024
GitHub Repositories 1024 1024

Code Summarization CodeSearchNet Multi-Task 512 512

Code Generation CONCODE Single-Task 256 256

Code Refinement Bugs2Fixsmall Multi-Task 512 512
Bugs2Fixmedium

Defect Detection Devign Single-Task 1024 5

tracted from function documentation as described
in (Husain et al., 2019).

4.2.2 Code Generation

Text-to-Code Generation aims to generate a coded
function given a natural language description. This
task is completed using the CONCODE dataset
(Iyer et al., 2018), a well-known dataset for Java
language generation. Within the dataset, there are
tuples which contain a natural language description,
code environments, ad code snippets. The goal is to
generate the correct Java function from the natural
language description in the form of Javadoc-style
method comments.

4.2.3 Code Refinement

Code Refinement, or Code Repair, aims to au-
tomatically correct bugs in Java code. We used
the Bug2Fix corpus released by CodeXGLUE (Lu
et al., 2021), which divides the task into 2 subsets:
SMALL and MEDIUM The small dataset includes
only Java code functions with fewer than 50 to-
kens. The medium dataset includes functions with
50-100 tokens.

4.2.4 Defect Detection

For Defect Detection tasks, we attempt to clas-
sify whether a PL snippet contains vulnerabilities
that could lead to damaging outcomes such as re-
source leaks or DoS attacks. The task uses the De-
vign dataset (Zhou et al., 2019), which contains C
programming language from open-source projects.
This dataset is labeled based on security-related
commits. For details on the annotation process,
refer to (Zhou et al., 2019).

4.3 Experimental Setup

4.3.1 Baselines
We compare our model with some well-known pre-
trained models:

• CodeGPT, CodeGPT-adapted are based on the
architecture and training objective of GPT-2
(Budzianowski and Vulic, 2019). CodeGPT
is pre-trained from scratch on CodeSearch-
Net dataset (Lu et al., 2021) while CodeGPT-
adapted learns this dataset starting from the
GPT-2 checkpoint.

• CodeBERT (Feng et al., 2020) employs the
same architecture as RoBERTa (Liu et al.,
2020) but aims to minimize the combined loss
from masked language modeling and replaced
token detection.

• PLBART (Ahmad et al., 2021b) is a
Transformer-based model. BART (Lewis
et al., 2019) is trained on PL corpora using
three learning strategies: token masking, to-
ken deletion, and token infilling.

4.3.2 Performance Metrics
• BLEU (Papineni et al., 2002) is an algo-

rithm which performs automatic evaluation
of machine-translated text. This method cal-
culates the n-gram similarity of a candidate
translation compared to a set of reference texts.
Similar to (Feng et al., 2020) and (Ahmad
et al., 2021b), we use smooth BLEU-4 score
(?) for Code Summarization and corpus-level
BLEU score for all remaining tasks.

• CodeBLEU (Ren et al., 2020) is designed to
consider syntactic and semantic features of
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Table 3: Data statistics about Code Intelligence datasets

Category Task Dataset
Size

Language
Train Val Test

Code-Text
Code Summarization

(Lu et al., 2021)
CodeSearchNet

164K 5.1K 10.9K Java
58K 3.8K 3.2K Javascript
251K 13.9K 14.9K Python
241K 12.9K 14K PHP
167K 7.3K 8.1K Go
24K 1.4K 1.2K Ruby

Code-Code

Defect Detection
Devign 21K 2.7K 2.7K C

(Zhou et al., 2019)

Code Refinement
(Lu et al., 2021)

Bugs2Fixsmall 46K 5.8K 5.8K
Java

Bugs2Fixmedium 52K 6.5K 6.5K

Text-Code
Code Generation

CONCODE 100K 2K 2K Java
(Iyer et al., 2018)

codes based on the abstract syntax tree and
the data flow structure.

• Accuracy is the ratio of the number of gener-
ated sequences that harmonise the reference
to the total number of observations.

5 Results

5.1 Multi-Task Learning
We first report the result of CoTexT in Multi-Task
Learning tasks including Code Summarization and
Code Refinement.

5.1.1 Code Summarization
For the Code Summarization task, we perform
Multi-Task Learning by using the T5 framework
(Raffel et al., 2019) to finetune CoTexT on 6 difer-
ent programming language (Ruby, Javascript, Go,
Python, Java, and PHP). The results of the Code
Summarization task are shown in Table 5.

First, we observe that the base T5, which is
pre-trained only on the general domain corpus
(C4), is effective on this task. In fact, base T5
achieves higher overall results on the BLEU-4 met-
ric compared to all other related models on the
CodeXGLUE leaderboard. This shows the impor-
tance of domain-specific T5 models, which we ex-
pect to achieve superior results compared to base
T5.

We further observe that CoTexT achieves state-
of-the-art (SOTA) on the overall score, the Python-

specific score, the Java-specific score, and the Go-
specific score. While CoTexT does not significantly
outperform other pre-trained models, we observe
that CoTexT achieves SOTA on two very common
programming languages (Python and Java) while
still obtaining competitive results on other program-
ming languages. We attribute this result to the
large amount of training data for Python and Java
compared to the other languages (training size de-
scribed in Table 3). Based on this result, CoTeXT
has the potential to further surpass competitor mod-
els as more training data becomes availible.

5.1.2 Code Refinement
We also tested CoTexT by performing multi-task
learning for Code Refinement. In this case, both the
small and medium test sets have a task registry with
respective prefix prepending to the input sequence.

The Code Refinement results of each model are
shown in Table 6. For this task, the base T5, which
is pre-trained only on natural language text, does
not perform well compared to other transformer-
based models. Yet, after the training on a large
programming language corpus, the result from Co-
TexT improves significantly on all metrics for both
small and medium test sets. CoTexT achieves
SOTA for all metrics on the small test set and on
the accuracy metric for the medium test set.

5.2 Single-Task Learning

In addition to multi-task learning, we also evalu-
ate CoTexT performance single-task learning with
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Table 4: Test result on Code Generation task

Model
Text2Code Generation

EM BLEU CodeBLEU
PLBART 18.75 36.69 38.52
CodeGPT-adapted 20.10 32.79 35.98
CodeGPT 18.25 28.69 32.71
T5 18.65 32.74 35.95
CoText (1-CCG) 19.45 35.40 38.47
CoText (2-CC) 20.10 36.51 39.49
CoText (1-CC) 20.10 37.40 40.14

Notes: The best scores are in bold and second best scores are underlined. The baseline scores were obtained from the
CodeXGLUE’s Leaderboard (https://microsoft.github.io/CodeXGLUE/)

Table 5: Test result on Code Summarization task

Model All Ruby Javascript Go Python Java PHP

RoBERTa 16.57 11.17 11.90 17.72 18.14 16.47 24.02
CodeBERT 17.83 12.16 14.90 18.07 19.06 17.65 25.16
PLBART 18.32 14.11 15.56 18.91 19.3 18.45 23.58
T5 18.35 14.18 14.57 19.17 19.26 18.35 24.59

CoTexT (1-CCG) 18.00 13.23 14.75 18.95 19.35 18.75 22.97
CoTexT (2-CC) 18.38 13.07 14.77 19.37 19.52 19.1 24.47
CoTexT (1-CC) 18.55 14.02 14.96 18.86 19.73 19.06 24.58

Notes: The best scores are in bold and second best scores are underlined. The baseline scores were obtained from the
CodeXGLUE’s Leaderboard (https://microsoft.github.io/CodeXGLUE/)

Table 6: Test result on Code Refinement task

Small test set Medium test set
Model BLEU Acc(%) CodeBLEU BLEU Acc(%) CodeBLEU

Transformer 77.21 14.70 73.31 89.25 3.70 81.72
CodeBERT 77.42 16.40 75.58 91.07 5.16 87.52
PLBART 77.02 19.21 / 88.5 8.98 /
T5 74.94 15.3 75.85 88.28 4.11 85.61

CoTexT (1-CCG) 76.87 20.39 77.34 88.58 12.88 86.05
CoTexT (2-CC) 77.28 21.58 77.38 88.68 13.03 84.41
CoTexT (1-CC) 77.79 21.03 76.15 88.4 13.11 85.83

Notes: The best scores are in bold and second best scores are underlined. The baseline scores were obtained from the
CodeXGLUE’s Leaderboard (https://microsoft.github.io/CodeXGLUE/)

45



Table 7: Test result on Defect Detection task

Model Accuracy

RoBERTa 61.05
CodeBERT 62.08
PLBART 63.18
T5 61.93

CoTexT (1-CCG) 66.62
CoTexT (2-CC) 64.49
CoTexT (1-CC) 65.99

Notes: The best scores are in bold and second
best scores are underlined. The baseline scores
were obtained from the CodeXGLUE’s Leaderboard
(https://microsoft.github.io/CodeXGLUE/)

a Code Generation Task and a classification task
relating to Defect Detection.

5.2.1 Code Generation

In Table 4, we reported our results for the Code
Generation task wherein natural language is trans-
lated into Java code. The result shows that our
proposed model achieves SOTA results based on
3 metrics: Exact Match (EM), BLEU, and Code-
BLEU. For each individual metric, CoTexT has
only slightly outperformed other models (e.g both
CoTexT and CodeGPT-adapted achieve 20.10 for
EM). However, our model is consistently superior
across the 3 metrics. Prior to CoTexT, CodeGPT-
adapted was SOTA for the EM metric and PLBART
was SOTA for the BLUE/CodeBLUE metrics.
From this result, we infer that CoTexT has the best
overall performance on this task and has great po-
tential in the area of code generation.

5.2.2 Defect Detection

The Defect Detection results are shown in Table
7. Specifically, CoText outperforms the previ-
ous SOTA model (PLBART) by 3.44%. For this
task, extra training on a large programming cor-
pus allows CoTexT to outperform all other models
and achieve SOTA results. The Defect Detection
dataset consists of code written in the C program-
ming language, which is not contained in our train-
ing data. Our model has a strong understanding of
similar languages, and is thus able to perform De-
fect Detection in C with improved results compared
to competitor models.

6 Conclusion

In this manuscript, we introduced CoTexT, a pre-
trained language representation for both program-
ming language and natural language. CoTexT fo-
cused on text-code and code-text understanding and
generating. Leveraging the T5 framework (Raffel
et al., 2019), we showed that pre-training on a large
programming language corpus is effective for a di-
verse array of tasks within the natural language and
programming language domain. CoTexT achieves
state-of-the-art results on 4 CodeXGLUE code in-
telligence tasks: Code Summarization, Code Gen-
eration, Code Refinement, and Code Detection. For
future work, we plan to test CoTexT on a broader
range of programming language and natural lan-
guage generation tasks, such as autocompletion or
code translation.
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Abstract

Decompiling binary executables to high-level
code is an important step in reverse engineer-
ing scenarios, such as malware analysis and
legacy code maintenance. However, the gen-
erated high-level code is difficult to under-
stand since the original variable names are
lost. In this paper, we leverage transformer
models to reconstruct the original variable
names from decompiled code. Inherent dif-
ferences between code and natural language
present certain challenges in applying conven-
tional transformer-based architectures to vari-
able name recovery. We propose DIRECT,
a novel transformer-based architecture cus-
tomized specifically for the task at hand. We
evaluate our model on a dataset of decompiled
functions and find that DIRECT outperforms
the previous state-of-the-art model by up to
20%. We also present ablation studies evalu-
ating the impact of each of our modifications.
We make the source code of DIRECT available
to encourage reproducible research.

1 Introduction

Proprietary software often comes in binary form,
making it difficult to comprehend its functionality,
as many high-level code abstractions (e.g., mean-
ingful variable names, code structures, etc.) are
lost when source code is compiled to binaries. To
extract meaningful information from binaries, soft-
ware analysts typically use reverse engineering that
converts binary executables into another form that
can be more easily comprehended (Ďurfina et al.,
2013). Reverse engineering is often applied in bi-
nary code inspection, legacy software maintenance,
malware analysis, and cyber forensics. For exam-
ple, reverse engineering uncovered the rebirth of
ZeUS malware variants during the coronavirus pan-
demic of 2020 (Osborne, 2020).

∗ Equal contribution

void __fastcall add_match(char *a1) {
// ... var declarations omitted ...
v1 = ( i n t)(a1 - 1);
whi le ( 1 ) {
v3 = *(unsigned __int8 *)(v1++ + 1);
v2 = v3;
i f ( !v3 ) break;
v4 = v2 > 0x7F;
i f ( v2 != 127 )
v4 = v2 > 0x1F;

i f ( !v4 ) {
free(a1);
re turn;

}
}
// ... some code omitted ...

}

Figure 1: Real world Hex-Rays decompilation. Recon-
structed source differs significantly from original, and
it is hard to deduce original developers’ intentions.

Traditionally, the primary reverse engineering
tools are disassemblers, which extract assembly
instructions from a binary executable. However,
in recent years, decompilers like Ghidra (Ghidra)
and Hex Rays (Hex-Rays) have become practical
and popular. They produce a source code-like ap-
proximation of the binary code as shown in Figure
1. While these tools can retrieve the approximate
code structure, they introduce variable names that
have no semantic meaning, drastically reducing
code readability and comprehensibility (Katz et al.,
2018; Hu et al., 2018; Hayati et al., 2018).

In recent years, Machine Learning-based mod-
els have shown promise in recovering lost variable
names from decompiled code using a frequency-
based model (He et al., 2018) or LSTMs (La-
comis et al., 2019). However, variables in source
code are not independent of each other and often
have hidden long-range dependencies. LSTMs and
frequency-based models are not well-suited to cap-
ture such dependencies. Since transformer-based
models can more effectively capture long-range
dependencies (Vaswani et al., 2017), in this work
we explore transformer-based models to recover
variable names from decompiled code.
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Transformers are popular in natural language
processing (Vaswani et al., 2017; Devlin et al.,
2019; Yang et al., 2019). However, code differs
from natural language in many significant ways
(Allamanis et al., 2018; Ding et al., 2020), hence
vanilla transformer architectures need modifica-
tions for practical application to the task of variable
recovery. Consider the following problems:

Unknown number of tokens to be predicted:
Transformers that capture bidirectional context usu-
ally predict a known number of tokens, but to make
the vocabulary size manageable, identifiers must
be split into subtokens. For example, an identifier
like my var could be split up as three subtokens -
“my”, “ ”, and “var”. Each identifier can be com-
prised of an arbitrary number of subtokens, and the
model needs to access the information contained
in the entire sequence while predicting the name
for an identifier. To deal with this problem, we use
an encoder-decoder transformer architecture as in
(Ahmad et al., 2021).

Syntactic constraints: Unlike natural language,
code’s strict syntax requires that a variable assigned
a name at one occurrence in the prediction must be
the same at all other occurrences. For example, if
a decompiled identifier name v1 appears on line
3 and line 100, the predicted name must be the
same on both lines. We propose a novel algorithm
that uses the joint probability over sequences to
predict variable name identifiers while still obeying
constraints imposed by the code syntax.

Token Non-uniformity: While training a
model for natural language, all tokens are usu-
ally given equal importance (Vaswani et al., 2017).
However, for semantic understanding of code the
identifier tokens are more important than those to-
kens that are built into the language syntax. For ex-
ample, a variable name like “click count” pro-
vides much more sematic information than a key-
word like ”while”. We propose a token weighting
scheme specially crafted for the variable name re-
covery problem.

Code sequences are long: Adaptations of NLP
techniques to code often consider functions analo-
gous to sentences. Traditional transformers limit
the maximum sequence size to a few hundred to-
kens. While this restriction rarely presents a prob-
lem dealing with sentences, many functions are
much longer. For example, the longest function in
our benchmark dataset (Section 4.1) is over 4000
tokens long. To handle longer functions we propose

a mechanism to break long sequences into smaller
pieces and recombine their individual predictions
while still obeying code’s syntactic constraints.

Putting all these together, we propose DIRECT
(Decompiled Identifier Renaming Engine using
Contextual Transformers), the first transformer-
based model built specially for variable recovery
from decompiled binaries. We compare DIRECT
to DIRE (Lacomis et al., 2019), the state of the art
in variable name recovery on a benchmark dataset
and show that DIRECT improves on the baseline
by 20%. We also evaluate the individual impact of
each of our specific adaptations by performing a
series of ablation studies. We provide the source
code for DIRECT 1 in the hope that it will prove to
be a useful tool for other researchers.

2 Related Work

Variable Name Recovery: DIRE (Lacomis et al.,
2019), compared to in the evaluation, performs the
same task as DIRECT but uses traditional LSTMs
combined with GGNNs. DIRECT uses DIRE’s to-
kenizer as is, our innovations replace DIRE’s bidi-
rectional LSTM with our task-specific transformer
architecture. Prior to DIRE, Debin (He et al., 2018)
represented the prior state of the art using decision
tree-based modeling.

Type Inference: Debin also attempted to re-
cover type information – which is a different prob-
lem. Typilus (Allamanis et al., 2020) is a new
GGNN-based approach for type inference.

Function Name Recovery: An orthogonal de-
compilation problem is function name recovery.
Function names are usually left in executables’
metadata, by default, but in malware these sym-
bols are probably stripped. Recent work by Ar-
tuso et al. (Artuso et al., 2020) has shown trans-
formers are highly applicable to this task and the
pre-training/fine-tuning paradigm has a place in
code analysis, but they limit their experiments
to function names. Other work like David et al.
(David et al., 2020) uses LSTM architectures to
encode API call sequences as function profiles and
learned the function names commonly associated
with those call sequences.

Transformers for Filling-in Blanks: Filling in
blanks in an input sequence necessitates a model
that can capture bidirectional context. BERT’s
pre-training objective (Devlin et al., 2019) solves

1https://github.com/DIRECT-team/
DIRECT-nlp4prog
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Figure 2: Our state-of-the-art variable renaming model, DIRECT. DIRECT breaks the function into pieces, passes
each piece through a BERT encoder and decoder, and combines the predictions of all the pieces. For simplicity,
we have omitted the advanced prediction algorithm (Algorithm 1; Figure 3) in this diagram. For more details, refer
to Section 3.2.

this problem by reconstructing random masked to-
kens. SpanBERT (Joshi et al., 2020) focuses on
contiguous spans of masked tokens with a modi-
fied pre-training objective. These methods require
the location and length of each blank to be known
in advance, but Insertion Transformers (Stern and
Uszkoreit, 2019) solve for variable-length blanks
without explicitly controlling insertion.

Blank Language Models (Shen et al., 2020) solve
for fixed blanks with variable length with a special
blank character that the model can predict and feed
back in a loop. Another architecture that solves the
same problem is BART (Lewis et al., 2020). Sim-
ilar to us, BART uses a BERT encoder and a left-
right decoder to perform arbitrary transformations
on the input. However both these approaches can-
not be directly applied to variable renaming without
modification to guarantee that multiple blanks have
the same prediction.

Decompilers: There are two decompilers used
in practice. One is Hex-Rays (Hex-Rays), from
which the training set was built, and the other is the
open-source Ghidra platform (Ghidra), which both
fail to make meaningful efforts at reconstructing
variable names without debugging information. A
research compiler DREAM++ (Yakdan et al., 2016)
function signature heuristics to generate meaning-
ful variable names, but does not apply ML models.

Adapting ML to SE tasks: Recent works like

(Rahman et al., 2019) and (Ding et al., 2020) have
also investigated the difficulties of applying ML
models from other disciplines directly to software
engineering tasks.

3 Design

Figure 2 provides an overview of DIRECT. In this
section we detail each of the problems we encoun-
tered and the design decision solutions.

3.1 Encoding/Decoding

Transformers are traditionally used to predict entire
sequences; however in our problem setting most
tokens are fixed. Therefore we need to adapt trans-
formers from predicting entire sequences to pre-
dicting individual tokens based on the fixed tokens.

While making a prediction on an occurrence of
a particular variable, the model should ideally have
access to the information contained in the entire
input sequence. The naive solution is to use a bidi-
rectional transformer that with a Masked Language
Model (MLM) training scheme, such as BERT.
However by design, an MLM is designed to predict
the same number of tokens as in the input sequence.
In our case, because of subtokenization, the pre-
dicted subsequences can be of unknown length.
Adapting an MLM transformer to solve this prob-
lem is non-trivial.

The next option is to use a transformer as a
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sequence-to-sequence language model to predict
the immediate next token given all the preceding
tokens. One could feed the entire sequence until a
variable is reached, start generating tokens one at
a time in an autoregressive manner, and stop when
a special end token is predicted. However such a
model cannot use bidirectional context while mak-
ing a prediction, and can only leverage the part of
the sequence that precedes each variable.

We propose to use an encoder-decoder setup,
as in (Vaswani et al., 2017). The transformer en-
coder embeds each input token, and the sequential
decoder attends over these encoder embeddings
while making predictions one token at a time. So
although we give the decoder only the portion of
the input sequence that precedes the variable of in-
terest, it also has access to the entire input sequence
through the encoder embeddings.

Of course, this still leaves open the question of
how to constrain multiple instances of the same
variable to have the same prediction. While we
will present a better solution to this problem in
Section 3.2, a good first approximation is to simply
use the prediction at the first occurrence of the
variable we are interested in. We hypothesize that
since the encoder-decoder model has access to the
entire sentence while making a prediction for each
occurrence, one cannot do drastically better than
this simple approximation.

3.2 Advanced Prediction Algorithm

Effective sequence modeling requires not only mak-
ing predictions, but also predictions that fit the
problem setting (Ding et al., 2020). Semantic pre-
serving identifier renaming mandates that once a
variable has been renamed it must have the same
value at each occurrence. This additional constraint
poses a challenge for vanilla transformers since
they predict each token independently in traditional
language modeling. Exhaustively searching the tar-
get vocabulary space is computationally intractable,
so we narrow the search space with a specialized
prediction algorithm that fits the problem setting.

At the variable’s first occurrence, we make m
predictions for its name, each of which leads to a
different sequence of variable name assignments.
Throughout our algorithm, we maintain the top k
sequences only. Thus at the first occurrence of a
variable, we generate m × k possible sequences,
and pick the top k. In practice, we use m = k.

At later occurrences of a variable, we update the

scores of the existing predictions, thus maintaining
the list of k sequences. This is where our algorithm
differs from standard beam search. Note that the
predictions made at the first occurrence of a vari-
able constrain its predictions at further occurrences,
but choosing a large k mitigates this problem.

This procedure, “Advanced prediction”, is
shown in Figure 3 for the case when k = 2. Algo-
rithm 1 describes it in detail. In our experiments,
we observed that choosing k = 5 was optimal.

Algorithm 1 Advanced Prediction
1: Input : A sequence of decompiler output to-

kens S, and a model M

2: Output : S with predicted names

3: gen← [[ ]], probs← [1]

4: for tok ∈ S do
5: if tok is not a variable then
6: for seq ∈ gen do
7: seq.append(tok)
8: continue
9: if tok has been seen before then

10: for j ∈ 1...len(gen) do
11: n← current pred of tok in gen[j]
12: p← prob assigned to n by M at

the current position

13: gen[j]← gen[j] + p
14: probs[j]← probs[j]× p

15: else
16: for j ∈ 1...len(gen) do
17: Using beam search over sub-

tokens with M, find the top k
possibilities for the name of tok

18: Let the names be n1, ..., nk and
their probabilities be p1, ..., pk

19: Replace gen[j] with
(gen[j] + n1), ..., (gen[j] + nk)

20: Replace probs[j] with
(probs[j] · p1), ..., (probs[j] · pk)

21: Sort gen and probs in desc. order of probs
22: gen← gen[1 : k]
23: probs← probs[1 : k]

24: return gen[1]
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Figure 3: Advanced Prediction with k = 2. The de-
coder takes as input the portion of the sequence that
precedes the variable being predicted. Our algorithm
differs from standard beam search in the prediction of
the second occurrence of v1. Rather than generate mul-
tiple predictions for v1, the algorithm simply updates
the scores of the existing predictions in order to obey
the syntactic constraints of code.

3.3 Identifier Token Coefficient

A typical transformer treats all tokens identically
when computing the loss function during pre-
training and fine-tuning. Code differs from natural
language in the grammar requires the majority of
the tokens. The only opportunity for the program-
mer to inject semantic meaning into the source
code text is through identifiers, which makes this
problem compelling in the first place. The model
should therefore treat identifier tokens differently.

We implement this concept by training with a
custom loss function as shown in Figure 4. Tra-
ditional NLP architectures predict the entire se-
quence, and then train on a loss function by aver-
aging the error uniformly across all tokens. Our
custom weighting scheme places increased signif-
icance on prediction of identifiers, using a mask
which increases the loss 50-fold for identifiers as
compared to all other tokens. We expect that this
identifier token coefficient (ITC) hyper parameter
could be tuned in the future for better performance.

Predicting the identifiers and ignoring the rest
of the characters in the sequence would result in a
model that doesn’t learn the context surrounding
the identifier which informs the prediction.
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Figure 4: Identifier Token Coefficient loss function.
The Negative Log Likelihood (NLL) loss is computed
for each token, and a weighted sum taken to compute
the loss.

3.4 Splitting and Merging Mechanism

Another inherent difference between code and nat-
ural language when considering sequence to se-
quence modeling is the length of the sequence. Dis-
cussion of natural language modeling overlooks
this aspect since sentences rarely exceed 200 to-
kens. In code however functions are significantly
longer so the ML models must support sequences
of arbitrary length. In fact our benchmark dataset
contains a small number of sequences with length
greater than 2000. With respect to identifier re-
covery, longer sequences mean more variables to
recover, multiple usages per variable, and more
opportunity for errors. This poses a problem for
transformers as traditional transformer based archi-
tectures, like BERT, require a maximum sequence
length set in advance. Furthermore since attention
must be trained across all tokens, the memory us-
age increases quadratically with sequence length.

In order to use our model for arbitrary sequence
lengths, we developed a novel splitting and joint
prediction mechanism. As described in Figure 2
we divide the sequence into multiple chunks of
512 tokens upon which the model predicts. A sin-
gle variable can have a different prediction in each
chunk we combine these predictions using the pre-
diction at the first chunk in which a variable occurs.

We also tried using the chunk with the highest
confidence, but we found that this did not perform
as well. We suspect this is because the probabili-
ties are less than one, and multiplications with each
successive variable only decrease the probability of
the entire sequence. Hence smaller pieces with per-
haps just one or two occurrences of a variable will
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be more confident in their predictions despite hav-
ing less information. One could impose a penalty
for pieces with fewer variables, but we defer this
analysis to future work.

Other transformer variants can handle sequences
arbitrary lengths like XLNet (Yang et al., 2019),
and we expect these advanced models will handle
this issue as well as present new challenges. We
again leave these endeavors to future work.

3.5 DIRECT

Using the techniques from the previous sections,
we put it all together to get DIRECT, a state-of-
the-art variable renaming system. Given an input
sequence, DIRECT splits it into pieces of length
at most 512 each (default BERT architecture), and
puts each piece through a BERT encoder and a
BERT decoder with advanced prediction (Algo-
rithm 1). Different predictions across pieces for the
same variable are combined by taking the predic-
tion of the first piece in the sequence that contains
the variable. Figure 2 depicts the entire model.

4 Experimental Setup

4.1 Data

We use the dataset provided by DIRE (Lacomis
et al., 2019). It was generated using C binaries
from Github, which were then decompiled using
Ida’s Hex-Rays decompilation plugin (Hex-Rays).
The training data set consists of 1,011,049 func-
tions, with a median of 16 variables per function,
a median of 4 unique variables per function, and
a median sequence length of 150 subtokens. We
follow DIRE and use Sentencepiece (Kudo and
Richardson, 2018) to split the functions into subto-
kens.

We use only the “Body-not-in-train” subset for
the validation and test data. They consist of 23662
and 24862 examples, respectively.

4.2 Metrics

We define accuracy as an exact match between the
original variable name as determined by the debug
information mapping, and the name predicted by
DIRECT. We also examine the edit distance be-
tween predicted names and true names, and use the
edit distance per number of characters (the charac-
ter error rate) as our metric as in DIRE (Lacomis
et al., 2019) to capture success of partial matches.
We also measure the Jaccard similarity which is
the ratio of the number of overlapping n-grams

between two sequences to the total number of n-
grams contained in them. We use n=1, so that each
word is treated as a set of its constituent charac-
ters. There are some instances when decompiler
variables have no corresponding true name. These
are ignored from all metrics.

4.3 Pre-training Procedure

We pre-train one BERT model using the standard
MLM task on source sequences directly from the
decompiler output (with the dummy variable names
from the decompiler). We call this the BERT en-
coder. Similarly we pre-train another BERT model
using MLM on target sentences (with the true vari-
able names), and call this the BERT decoder. Both
models used 4 attention heads, 6 hidden layers,
and a hidden embedding size of 256. We trained
the encoder and decoder for 220k and 140k steps,
respectively, using a batch size of 128 sequences.
While masking tokens, we do not differentiate be-
tween variable and non-variable tokens since we
want the model to learn the complete structure of
the code sequences. We also used the standard op-
timization techniques employed by BERT (Devlin
et al., 2019), wherein an Adam optimizer is used
with a variable learning rate. The learning rate in-
creases linearly from 0 to 10−4 over the ”warm-up”
period of 40k iterations, and then decreases linearly
from 10−4 to 0 at the end of pre-training.

4.4 Fine-tuning Procedure

After reviewing our proof of concept experiments
we trained our best configuration for 85 epochs to
produce the DIRECT prototype. We follow the
same convention as DIRE (Lacomis et al., 2019),
whereby the number of sequences per batch is vari-
able, but the total number of tokens in the batch
is fixed to define the size of the batch. We used
a batch size of 4096 tokens per batch. We used a
learning rate of 1e-4 for the first 10 epochs, 0.3e-4
for the next 10, and 1e-5 thereafter.

5 Results

5.1 DIRECT Evaluation

In order to evaluate the effectiveness of DIRECT,
we compare its performance against that of DIRE
on our test dataset. The results are shown in Table
1. We observe that DIRECT achieves an increase
of 7.1 percentage points in accuracy over DIRE,
which is a relative increase of 19.9%. We obtained
all DIRE results by re-running the authors’ code on
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Model Accuracy (%) ↑ Top-5 Accuracy (%) ↑ CER ↓ Jaccard Dist ↓
DIRE 35.8 41.5 .664 .537

DIRECT 42.8 49.3 .663 .501
Improvement 20% 19% .2% 6.5%

Table 1: Test Accuracy, Top-5 Accuracy (computed by taking the top 5 predictions for each sequence and using
the predictions of variables contained in these sequences), Character Error Rate and Jaccard distance of DIRE vs
DIRECT. DIRECT outperforms DIRE on all four metrics. DIRE results are reproduced by re-running the authors’
code on our dataset.

Figure 5: A visualization of the attention weights of
the trained decoder while predicting variables. Darker
represents larger weights. The variable subtokens that
are being predicted are boxed . For more details, refer
to Section 5.

the dataset, rather than simply using the numbers
from their paper.

5.2 Qualitative Analysis

We also perform some qualitative inspection of
the attention weights of the trained model to un-
derstand what information it is using to make its
inferences. An example of this is shown in Figure
5 where the predicted identifier is outlined in black.
The attentions shown are the weights used while
predicting a name for the variable shown in a box,
averaged over all attention heads at the last layer
of the decoder.

We observe that when making a prediction on
the first occurrence of a variable, the decoder model
pays attention mainly to the function header, more
specifically the return type and function name.
However for later occurrences of the same vari-
able, although it does look at the function header

0-50
51-100

101-150
151-200

201-300
301-400

401-500
501-750

751-1000
1000+

Length of Sequence

0

10

20

30

40

50

60

Pr
ed

ict
io

n 
Ac

cu
ra

cy
 (%

)

DIRECT Accuracy
DIRE Accuracy
% of Corpus

Figure 6: Variation of Accuracy of DIRECT and DIRE
with length. The spike in DIRE’s performance for the
last two categories with very few examples is likely to
be an anomaly and not representative of its true perfor-
mance on sequences of those lengths. Note that this is
on the validation set.

to some extent, it relies chiefly on its predictions
for earlier instances of the same variable.

5.3 Performance on Long Sequences

The graph in Figure 6 shows the accuracy of DI-
RECT on sequences of various lengths. As we
cross the 500 token mark, and the splitting tech-
nique takes over, there is a steep drop in accuracy.
This problem is mirrored in DIRE’s accuracy al-
though not quite as steeply. Still for sequences of
length less than 512 tokens DIRECT has a improve-
ment of 10 percentage points over DIRE (48.9%
vs. 38.8%). DIRE has high accuracy in the longest
two sets of sequences, but this is likely an anomaly
caused by insufficient samples sizes.

Other transformer based variants address this
sequence issue such as XLNet (Yang et al., 2019),
and we expect these advanced models will handle
this issue as well as present new challenges. We
again leave these endeavors to future work.
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Model Accuracy (%) ↑ CER ↓
Uniform token weighting 30.0 .80
Weighting identifiers only 33.7 .76

ITC weighting scheme 34.4 .75

Table 2: Validation accuracy and Character Error Rate for various token weighting schemes. Prediction is done
using the “first prediction” strategy. All the models are trained for 15 epochs. Refer to Section 3.3 for more details.

Model Accuracy (%) ↑ CER ↓
First pred 34.4 .75

Advanced pred 34.6 .75

Table 3: Validation accuracy and Character Error Rate
for advanced prediction versus first prediction. Both
models are trained for 15 epochs. Refer to Section 3.2
for more details.

Model Accuracy (%) CER
Decoder Only 19.6 .97

Encoder-Decoder 34.4 .75

Table 4: Validation accuracy and Character Error Rate
for our encoder-decoder model versus a decoder-only
model. Both models are trained for 15 epochs. Refer
to Section 3.1 for more details.

5.4 Ablation Studies
In this section, we evaluate the impact of each of
our design choices. We train all the models for 15
epochs and evaluate them on the validation set.

5.4.1 Encoder-Decoder Architecture
Table 4 shows the performance of our encoder-
decoder model vs a decoder-only model (a single
transformer, operating as an autoregressive lan-
guage model) using the prediction at the first occur-
rence of each variable. As we can see, the decoder-
only model does significantly worse, which is ex-
pected since it has access only to a part of the func-
tion while making a prediction at the first instance
of a variable.

5.4.2 Advanced Prediction Algorithm
Table 3 compares the results of advanced prediction
with “first prediction”, i.e., taking the prediction at
the first occurrence of a variable. We observe that
advanced prediction improves the performance of
our encoder-decoder model by a small amount.

This could be explained by our observation in
Section 5.2 that the model seems to rely its earlier
predictions while predicting the name of a particu-
lar variable. Later predictions of a variable refer to
the value assigned at the first prediction, and so the

prediction of a variable seldom changes from what
was predicted at the first instance.

5.4.3 Identifier Token Coefficient
We compare the performance of three different
token weighting schemes in the loss function -
weighting all tokens uniformly, weighting accord-
ing to ITC (as described in Section 3.3), and weight-
ing the identifiers only while ignoring the rest of
the tokens.

As seen in Table 2, ITC shows a 4.4% increase in
accuracy relative to the uniform weighting scheme,
without hyperparameter tuning of the coefficient.
As expected the model that ignores the surrounding
tokens in the loss function performs worse. This
is because the model doesn’t effectively learn the
context surrounding the identifiers, resulting in a
decrease in accuracy by 0.7 percentage points.

6 Conclusion and Future Work

The problem of variable name reconstruction poses
certain challenges for traditional transformer-based
models. Specifically, the variable length of the
prediction target, the constraints imposed by code
syntax, architecture limitations that make long
sequences difficult, and the task specific non-
uniformity of token significance. In this work, we
developed a series of solutions to address these is-
sues, namely 1) an encoding/decoding scheme to
handle arbitrary sub-token length prediction, 2) a
specialized prediction algorithm, 3) a customized
identifier token coefficient weighting scheme, and
4) a splitting and combining algorithm for stan-
dard transformers to handle sequences of arbitrary
length. In addition to empirical studies evaluating
the effectiveness of each of these techniques, we
also combined them to create DIRECT, a practical
open-sourced identifier renaming engine. We eval-
uated DIRECT using a standard benchmark dataset
against the state of the art, DIRE (Lacomis et al.,
2019), and found that DIRECT provides a 20%
improvement. We hope that in addition to an open-
sourced tool, this work functions as a roadmap for
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other researchers trying to solve the types of prob-
lems we encountered when adapting transformer-
based models to code analysis tasks. Future work
could leverage the Abstract Syntax Tree (AST) of
each function, and employ new transformer archi-
tectures like XLNet (Yang et al., 2019) to avoid
splitting up the input while handling longer se-
quences. Our approach might also improve the
results of other code analysis tasks like type infer-
ence, function re-naming, docstring prediction, and
function boundary identification.
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Abstract

We take the first step to address the task of au-
tomatically generating shellcodes, i.e., small
pieces of code used as a payload in the ex-
ploitation of a software vulnerability, start-
ing from natural language comments. We
assemble and release a novel dataset (Shell-
code IA32), consisting of challenging but com-
mon assembly instructions with their natural
language descriptions. We experiment with
standard methods in neural machine transla-
tion (NMT) to establish baseline performance
levels on this task.

1 Introduction and Related Work

A growing body of research has dealt with auto-
mated code generation: given a natural language
description, a code comment or intent, the task is
to generate a piece of code in a programming lan-
guage (Yin and Neubig, 2017; Ling et al., 2016).
The task of generating programming code snip-
pets, also referred to as semantic parsing (Yin and
Neubig, 2019; Xu et al., 2020), has been previ-
ously addressed to generate executable snippets in
domain-specific languages (Guu et al., 2017; Long
et al., 2016), and several programming languages,
including Python (Yin and Neubig, 2017) and Java
(Ling et al., 2016).

We consider the task of generating shellcodes,
i.e., small pieces of code used as a payload to ex-
ploit software vulnerabilities. Shellcoding, in its
most literal sense, means writing code that will re-
turn a remote shell when executed. It can represent
any byte code that will be inserted into an exploit
to accomplish the desired, malicious, task (Mason
et al., 2009). An example of a shellcode program in
assembly language and the corresponding natural
language comments are shown in Listing 1.

Shellcodes are important because they are the
key element of security attacks: they represent code
injected into victim software to take control of

1 global _start; Declare global _start.
2 section .text; Declare the text section.

3 _start:; Define the _start label.
4 xor eax, eax; Zero out the eax

register
5 push eax; and push its contents

on the stack.
6 push 0x68732f2f;Move /bin//sh
7 push 0x6e69622f;into the ebx register.
8 mov ebx, esp
9 push eax; Push the contents of eax

onto the stack
10 mov edx, esp; and point edx to the

stack register.
11 push ebx; Push the contents of ebx

onto the stack
12 mov ecx, esp; and point ecx to the

stack register.
13 mov al, 11; Put the system call 11

into the al register.
14 int 0x80; Make the kernel call.

Listing 1: x86 assembly code used to spawn /bin/sh
shell on Linux OS. Lines 4-5, 6-7-8, 9-10, 11-12 are
multi-line snippets generated by four different intents.

a machine, to escalate privileges, and to use the
machine for malicious purposes such as DDoS at-
tacks, data theft, and running malware (Arce, 2004).
Well-intentioned actors (security practitioners and
product vendors) also develop shellcodes to run
non-harmful proof-of-concept attacks, to show how
security weaknesses can be exploited to identify
vulnerabilities and patch systems. Thus, shellcode
generation using (semi-) automated techniques has
become a popular and very active research topic
(Bao et al., 2017). However, writing shellcodes
is technically challenging since they are typically
written in assembly language (c.f. Listing 1). The
most sophisticated shellcodes can reach hundreds
of assembly lines of code.

The task of the shellcode generation has been
addressed by several works and tools. Bao et al.
(2017) designed ShellSwap, a system that can mod-
ify an observed exploit and replace the original
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shellcode with an arbitrary replacement shellcode.
The system uses symbolic tracing, with a combi-
nation of shellcode layout remediation and path
kneading to achieve shellcode transplants. Pwn-
tools (pwntools, Accessed: 2021-05-29) is a CTF
framework and exploit development library written
in Python. It is designed for rapid prototyping and
development and intended to make exploit writing
as simple as possible.

Differently from previous work in the security
literature, we approach this problem as a machine
translation (NMT) task. We apply neural machine
translation (Goodfellow et al., 2016), which un-
like the traditional phrase-based translation system
consisting of many small sub-components tuned
separately, attempts to build and train a single, large
neural network that reads a sentence and outputs a
correct translation (Bahdanau et al., 2015). NMT
has emerged as a promising machine translation
approach, showing superior performance on public
benchmarks (Bojar et al., 2016), and it is widely
recognized as the premier method for the transla-
tion of different languages (Wu et al., 2016). NMT
has also been used to perform complex tasks on the
UNIX operating system shell (Lin et al., 2017) (e.g.
file manipulation and search), by stating goals in
English (Lin et al., 2018), to automatically gener-
ate commit messages (Liu et al., 2018), etc. How-
ever, the NMT techniques have not heretofore been
adopted to automatically generate software exploits
from natural language comments.

Since NMT is a data-driven approach to code
generation, we need a dataset of intents in natu-
ral language, and their corresponding translation
(in our context, in assembly language) for shell-
code generation. In this preliminary work, we
address the lack of such a dataset by presenting
Shellcode IA32, a dataset containing 3, 200 lines of
assembly code extracted from real shellcodes and
described in the English language. Moreover, we
present experiments on our dataset using a baseline
technique, in order to establish performance levels
for evaluating shellcode generation techniques.

2 Dataset

We compiled a dataset, Shellcode IA32, specific
to our task. This dataset consists of 3,200 examples
of instructions in assembly language for IA-32 (the
32-bit version of the x86 Intel Architecture) from
publicly-available security exploits. We collected
assembly programs used to generate shellcode from

shell-storm (Shellcodes database for study cases,
Accessed: 2021-04-22) and from Exploit Database
(Exploit Database Shellcodes , Accessed: 2021-04-
22), in the period between 2000 and 2020.

Our focus is on Linux, the most common OS for
security-critical network services. Accordingly, we
added assembly instructions written with Netwide
Assembler (NASM) for Linux (Duntemann, 2000).
NASM is line-based. Figure 1 shows a simple ex-
ample of a NASM source line. Every source line
contains a combination of four fields: an optional
label used to represent either an identifier or a con-
stant, a mnemonic or instruction, which identifies
the purpose of the statement and followed by zero
or more operands specifying the data to be manip-
ulated, and an optional comment, i.e., text ignored
by the compiler. A mnemonic is not required if a
line contains only a label or a comment.

wordvar: resw 1 ; reserve a word for wordvar

label instruction operand comment 

Figure 1: Layout of NASM source line

Each line of Shellcode IA32 dataset represents
a snippet – intent pair. The snippet is a line or a
combination of multiple lines of assembly code,
built by following the NASM syntax. The intent is
a comment in the English language (c.f. Listing 1).

To take into account the variability of descrip-
tions in natural language, multiple authors de-
scribed independently different samples of the
dataset in the English language. Where available,
we used as natural language descriptions the com-
ments written by developers of the collected pro-
grams. We enriched the dataset by adding exam-
ples of assembly programs for the IA-32 architec-
ture from popular tutorials and books (Duntemann,
2011; Kusswurm, 2014; Tutorialspoint, Accessed:
2021-04-22) to understand how different authors
and assembly experts describe the code and, thus,
how to deal with the ambiguity of natural language
in this specific context. Our dataset consists of
∼ 10% of instructions collected from books and
guidelines and the rest from real shellcodes.
Multi-line Snippets: To automatically generate
shellcodes, we need to look beyond a one-to-one
mapping between a line of code and its commen-
t/intent. For example, a common operation in shell-
codes is to save the ASCII “/bin/sh” into a regis-
ter. This operation requires three distinct assembly
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Intent: jump short to the decode label if the contents of the
al register is not equal to the contents of the cl register
else jump to the shellcode label
Multi-line Snippets: cmp al, cl \n
jne short decode \n jmp shellcode

Intent: jump to the label recv http request
if the contents of the eax register is not zero else subtract
the value 0x6 from the contents of the ecx register
Multi-line Snippets: test eax, eax \n
jnz recv http request \n sub ecx, 0x6

Table 1: Examples of multi-line snippets

instructions: push the hexadecimal values of the
words “/bin” and “//sh” onto the stack register be-
fore moving the contents of the stack register into
the destination register (lines 6-8 in Listing 1). It
would be meaningless to consider these three in-
structions as separate. To address such situations,
we include 510 lines (∼ 16% of the dataset) of
intents that generate multiple lines of shellcodes
(separated by the newline character \n). Table 1
shows two further examples of multi-line snippets
with their natural language intent.
Statistics: Table 2 presents the descriptive statis-
tics of the Shellcode IA32 dataset. The dataset
contains 52 distinct assembly instructions (exclud-
ing function, section, and label declaration). The
two most frequent assembly instructions are mov
(∼ 30% frequency), used to move data into/from
registers/memory or to invoke a system call, and
push (∼ 22% frequency), which is used to push
a value onto the stack. The next most frequent
instructions are the cmp (∼ 7% frequency), xor
and jmp instructions (∼ 4% frequency). The low-
frequency words (i.e., the words that appear only
once or twice in the dataset) contribute to the 3.6%
and 7.3% of the natural language and the assembly
language, resp. Figure 2 shows the distribution of
the number of tokens across the intents and snip-
pets in the dataset. We publicly share our entire
Shellcode IA32 dataset on a GitHub repository.1

Size of our dataset: Our dataset contains 3, 200
instances, which may seem relatively small com-
pared to training data available for most common
NLP tasks. We note, however, that our dataset is
comparable in size to the CoNaLa annotated dataset
(2, 379 training and 500 test examples), which is
one of the standard datasets in code generation (for
English-Python code generation) (Yin et al., 2018).
Further, Shellcode IA32 contains a higher percent-

1The dataset can be found here: https://github.
com/dessertlab/Shellcode_IA32

Statistics Natural
Language

Assembly
Language

Unique Statements 3,184 2,248

Unique Tokens 1,498 1,244

Avg. tokens per
statement 9.22 4.38

Min tokens per
statement 1 2

Max tokens per
statement 46 30

Table 2: Shellcode IA32 statistics

≥

≥

Figure 2: Histogram of the Shellcode IA32 dataset
showcasing the distribution of token counts across in-
tents and snippets.

age of multi-line snippets (∼ 16% vs. ∼ 4%).
We also note here that existing code generation
datasets do contain a larger, potentially noisy, sub-
set of training examples (ranging in several thou-
sand) obtained by mining the web. For example,
the CoNaLa mined (as opposed to the CoNaLa
annotated) dataset contains 598,237 training exam-
ples mined directly from Stack Overflow (Yin et al.,
2018). In our case, although shellcodes are written
in assembly language, it is not feasible to simply
mine examples of natural language–assembly from
the web: not all assembly programs are shellcodes.
Thus, our Shellcode IA32 dataset, which contains
∼ 20 years of shellcodes from a variety of sources
is the largest collection of shellcodes in assembly
available to date.

3 Preliminary Evaluation

We performed a set of preliminary experiments
with our dataset, in order to assess the applicability
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Number
Layers

Layer
Dimension

BLEU-1
(%)

BLEU-2
(%)

BLEU-3
(%)

BLEU-4
(%) ACC (%)

1

64 75.75 69.76 65.14 60.8 34.69
128 80.80 76.29 73.10 69.69 42.5
256 75.50 70.50 66.65 62.86 43.75
512 83.55 80.08 78.06 76.12 51.25

2

64 63.25 53.24 46.12 39.46 15.62
128 71.79 64.24 58.25 51.65 26.25
256 75.13 68.63 63.94 58.93 25.62
512 80.22 75.00 71.11 67.24 43.44

3

64 61.98 50.68 43.02 36.15 9.38
128 69.75 61.08 55.09 49.18 19.06
256 76.93 71.32 67.41 63.50 31.87
512 74.99 68.58 64.23 60.36 29.38

4

64 61.41 50.68 43.58 37.33 10.00
128 63.26 51.98 44.62 37.57 10.94
256 66.94 57.85 51.97 46.87 15.31
512 70.51 62.44 56.27 50.15 18.75

Table 3: Performance results obtained by varying the model hyper-parameters. The best performances for each
number of layers are in bold.

of NMT in the context of shellcode generation and
to establish baseline performance levels for evalu-
ating techniques for future research. Similar to the
encoder-decoder architecture with attention (Bah-
danau et al., 2015), we use a bi-directional LSTM
as the encoder to transform an embedded intent se-
quence E = |e1, ..., eTS

| into a vector c of hidden
states with equal length. We implement this archi-
tecture with Bahdanau-style attention (Bahdanau
et al., 2015) using xnmt (Neubig et al., 2018). We
use an Adam optimizer (Kingma and Ba, 2015)
with β1 = 0.9 and β2 = 0.999. The last step is
inference. During inference, the auto regressive in-
ference component uses beam search with a beam
size of 5. The train/dev/test split is train (N = 2560),
dev (N = 320), and test (N = 320) using a random
80/10/10 ratio. The test set includes 44 multi-line
snippets (13.75% of the test set).

Following prior work in this area (Ling et al.,
2016; Yin and Neubig, 2017; Oda et al., 2015), we
evaluate the translation performance in terms of
averaged token level BLEU scores (Papineni et al.,
2002). BLEU uses the modified form of n-grams
precision and length difference penalty to evaluate
the quality of the output generated by the model
compared to the referenced one. BLEU measures
translation quality by the accuracy of translating
ngrams to n-grams, for values of n usually rang-
ing between 1 and 4 (Han, 2016; Munkova et al.,
2020). We measure the performance of the eval-
uation task also in terms of exact match accuracy
(ACC), which is the fraction of exactly matching

samples between the predicted output and the refer-
ence (Yin and Neubig, 2017). Both metrics range
between 0 and 1.

During our experiments, we set a basic config-
uration of the model: α = 0.001, layers = 1, vo-
cabulary size = 4, 000, epochs (with early stopping
enforced) = 200, beam size = 5, minimun word fre-
quency = 1. Next, we performed experiments by
varying the dimensionality of the layers from 64 to
1024, and the number of layers from 1 to 4 while
keeping all other hyper-parameters constant. Table
3 summarizes the results. We notice that increasing
the number of layers leads to worse performance,
while a layer dimension set between 256 and 512
is found to be the best option.

All experiments were performed on a Linux OS
running on a virtual machine with 8 CPU cores and
8 GB RAM. The computational times are highly de-
pendent on the model hyper-parameters, and range
between few minutes to ∼ 105 minutes, with the
average training time equal to ∼ 28 minutes.

4 Qualitative Analysis

Automated metrics (BLEU and accuracy) provide
a somewhat limited window into the efficacy of the
models to accomplish our task: the task of auto-
matically generating assembly code from natural
language intents. We conducted a qualitative anal-
ysis of the outputs to address this issue and present
our findings through cherry- and lemon-picked ex-
amples from our test set (Table 4). In particular,
we manually expected the outputs predicted by the
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Natural Language Ground Truth Model Output

Put ASCII /bin/sh into eax
push 0x68732f2f \n
push 0x6e69622f \n

mov eax , esp

push 0x68732f2f \n
push 0x6e69622f \n

mov eax, esp

Place address buff into esi mov esi, buff lea esi, [buff]

Perform a bit-wise inversion of edx not edx and edx, 0

if the contents of the bl register is greater than or
equal to the value 78h then jump to the memory

location loc 402B1D

cmp bl, 78h \n jge
short loc 402B1D

cmp bl, 78h \n jle
short loc 402B1D

Table 4: Illustrative examples of correct and incorrect output. The prediction errors are red/bold.

best model configurations found in Table 3 (layers
number = 1, layer dimension = 512).

The first two rows of Table 4 are illustrative
examples of categories of intent – snippet pairs that
the model can successfully translate. The first row
demonstrates the ability of the model to generate
multi-line snippets from a relatively abstract intent.
The example in the second row shows the model’s
ability to properly use the instruction lea with the
correct addressing mode (specified by the bracket
[] in NASM syntax) to translate the intent. We note
here that a1though the output would be considered
incorrect based on automated metrics (e.g. BLEU-
4), it is considered correct using manual inspection.

We also highlight problems with the models
through illustrative examples of failure outputs
(Rows 3 and 4, Table 4). In the third row of the ta-
ble, the model generates the wrong instruction due
to the model’s failure in using implicit knowledge
(i.e. the bit-wise inversion to negate the contents
of the register) because it was not explicitly men-
tioned in the intent. Row 4 illustrates the model’s
failure in predicting the right command among fif-
teen different conditional jumps in the dataset (jle
instead of jge) in an if-then statement. To summa-
rize, the failures we observed are caused either by a
lack of implicit intent knowledge, the model gener-
ating incorrect instruction/identifiers (i.e., register
names, labels, etc), or even both.

5 Ethical Considerations

Recognizing that attackers use exploit code as a
weapon, it is important to specify that the goal of
the proof-of-concept (POC) exploits is not to cause
harm but to surface security weaknesses within
the software. Identifying such security issues al-
lows companies to patch vulnerabilities and protect
themselves against attacks.

Offensive security is a sub-field of security re-

search that employs ethical hackers to probe a sys-
tem for vulnerabilities or can be a technique used
to disrupt an attacker. Automatic exploit generation
(AEG), an offensive security technique, is a devel-
oping area of research that aims to automate the
exploit generation process and to explore and test
critical vulnerabilities before they are discovered
by attackers (Avgerinos et al., 2014). Indeed, study-
ing exploits on compromised systems can provide
valuable information about the technical skills, de-
gree of experience, and intent of the attackers who
developed or used them. Using this information,
it is possible to implement measures to detect and
prevent attacks (Arce, 2004).

6 Conclusion

We address the problem of automated exploit gener-
ation through NLP. We use Neural Machine Trans-
lation to translate the natural language intents into
assembly code. The contribution in this work is
a new dataset, Shellcode IA32, containing 3, 200
pairs of instructions in assembly language code
snippets and their corresponding intents in English.
These assembly language snippets can be combined
together to generate attacks or exploits on Linux
OS running on Intel Architecture 32-bit machines.

Shellcode IA32 represents a first step towards
the ambitious goal of automatically generating
shellcodes from natural language. Our experimen-
tal evaluation has shown promising early results,
demonstrating the feasibility of generating assem-
bly code instructions with high accuracy.
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Abstract

Answering a programming question using
only its title is difficult as salient contextual
information is omitted. Based on this obser-
vation, we present a corpus of over 40,000
StackOverflow question texts to be used in
conjunction with their corresponding intents
from the CoNaLa dataset (Yin et al., 2018).
Using both the intent and question body, we
use BART to establish a baseline BLEU score
of 34.35 for this new task. We find further im-
provements of 2.8% by combining the mined
CoNaLa data with the labeled data to achieve
a 35.32 BLEU score. We evaluate prior state-
of-the-art CoNaLa models with this additional
data and find that our proposed method of us-
ing the body and mined data beats the BLEU
score of the prior state-of-the-art by 71.96%.
Finally, we perform ablations to demonstrate
that BART is an unsupervised multimodal
learner and examine its extractive behavior.1

1 Introduction

The goal of semantic parsing is to translate a Natu-
ral Language(NL) utterance to its logical compo-
nents. There is a large body of research on applying
semantic parsing for source code generation in a
multitude of domain specific languages such as
lambda calculus and SQL (Dahl et al., 1994; Zelle
and Mooney, 1996; Zettlemoyer and Collins, 2005;
Ling et al., 2016; Xiao et al., 2016; Rabinovich
et al., 2017; Dong and Lapata, 2018; Guo et al.,
2019; Hwang et al., 2019; Tabassum et al., 2020).
However, the task of translating an NL utterance
to a general-purpose programming language has
proven to be more challenging. A significant issue
contributing to this is the difficulty in acquiring
quality data due to the necessary domain knowl-
edge needed in the annotation process.

Despite this, the past few years have seen a large
number of datasets released for different text-to-

1https://github.com/gabeorlanski/stackoverflow-
encourages-cheating

Figure 1: Overview of our approach. From the com-
bined annotated + mined set, we concatenate the in-
tent and question body for inputs to BART(Lewis et al.,
2020) and use beam search for generation.

code related tasks (Ling et al., 2016; Iyer et al.,
2018; Yao et al., 2018; Yu et al., 2018; Lu et al.,
2021). Some datasets such as CodeSearchNet (Hu-
sain et al., 2019) contain snippets from a multitude
of different languages. Others focus on distinct
tasks within a specific language, such as JuICe
(Agashe et al., 2019), which contains executable
Python programming assignments. Utilizing these
corpora, prior works (Suhr et al., 2018; Yin and
Neubig, 2017, 2018; Sun et al., 2019; Hayati et al.,
2018; Yin and Neubig, 2019; Xu et al., 2020; Drain
et al., 2021) have found success with a large variety
of model architectures. These methods, however,
struggle with domain agnostic open-ended code
generation in general-purpose languages. One idea
to combat this is to utilize large pretrained language
models.

Transformers (Vaswani et al., 2017) have demon-
strated that they can both be few-shot (Brown et al.,
2020) and unsupervised multitask (Radford et al.,
2019) learners. They have been successfully ap-
plied to programming language tasks. CodeBERT
achieved strong performance on the CodeSearch-
Net task through pretraining on bimodal NL com-
ment and code pairs(Feng et al., 2020), while Sun
et al. (2019) used abstract syntax trees(AST) and
transformers to achieve state of the art performance
on the HearthStone benchmark(Ling et al., 2016).
Roziere et al. (2021) proposed the deobfuscation

65



pretraining task to incorporate structural features
of code into transformer models without the use of
ASTs. More recently, Shin et al. (2021) explored
the capabilities of large pretrained language models
to be few-shot semantic parsers.

Yet open-domain programming question answer-
ing on sites such as StackOverflow(SO)2 has re-
mained an elusive goal. Yin et al. (2018) created an
annotated dataset with the site in which the intent
and answer snippet pairs were automatically mined
from the question. They then had crowd workers
rewrite the intents to reflect the corresponding code
better. Currently, state-of-the-art was achieved by
pretraining an LSTM model on resampled API and
mined data (Xu et al., 2020). Subsequent work
conducted an empirical study on the effectiveness
of using a code generation model in an IDE plu-
gin and find that developers largely had favorable
opinions of their experience(Xu et al., 2021). An
inherent issue with the approach of Xu et al. (2020),
more fundamentally the dataset and parameters of
the task, is that the intent can only contain a limited
amount of information.

Figure 2: Example StackOverflow question with la-
beled elements. The corresponding rewritten intent for
this question is "add a new axis to array a."

Consider the question from Figure 2 in
which a valid python snippet could be a[:,

(np.newaxis)]. Arriving at this answer from the
intent "add a new axis to array a" requires not only
the disambiguation of data types for variable a, but
also the use of multiple distinct library-specific con-
cepts. Further, this must be accomplished while
maintaining syntactically correct code and proper
order of arguments. However, neither the original
title nor the rewritten intent contains the necessary
information to accomplish this task. Although the
previous state-of-the-art-model by Xu et al. (2020)
uses abstract syntax trees (AST) to guarantee syn-
tactically valid python code, it incorrectly generates
a[(-1),:]=a. One potential remedy would be to

2https://stackoverflow.com/

increase the amount of training data, but as dis-
cussed previously, getting high-quality annotated
code generation data is especially difficult.

Motivated by the limitations to the amount of
information a given intent can contain and the sub-
stantial difficulty involved with gathering more la-
beled data, we utilize the multimodal text from the
question bodies provided by the StackExchange
API3. We take advantage of the strong perfor-
mances of transformer models to beat the previ-
ous state-of-the-art by 3.06 BLEU. We ensure a
fair comparison by training the models from prior
works with the extra data to adequately evaluate
our proposed method. When all models are trained
with the extra data, using BART beats the previous
state of the art by 15.12 BLEU.

Our main contributions are the following:

• Expanding upon the original CoNaLa dataset
(Yin et al., 2018) to include the multimodal
textual question bodies and thus the pertinent
contextual information they contain such as
inputs, outputs, and required libraries.

• Demonstrating that BART does not rely on a
single modality, but rather achieves its best
performance on our dataset when all modal-
ities are included. This indicates at least a
shallow understanding of both natural and pro-
gramming language as well as how they are
related in the context of SO questions.

• Conducting experiments revealing that
BART’s struggle to generate syntacically
correct code is likely a result of its tendency
to be extractive rather than generative in the
task of text-to-code generation.

2 Methodology

As detailed in Figure 1, our overarching approach
is to: (1) gather textual bodies from SO for both the
annotated and mined examples in the CoNaLa cor-
pus, (2) use the concatenated intents and question
bodies as inputs for a large pretrained language
model, and (3) use beam search to generate the
answer code snippet.

2.1 StackOverflow Data
Every example ei ∈ E from the CoNaLa dataset
(Yin et al., 2018) is comprised of an intent xi ∈ X
that concisely summarizes what the poster wants

3https://api.stackexchange.com/
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and a snippet of Python code yi ∈ Y that represents
an implementation of xi. Crowd sourcing was used
to rewrite a selection of the mined intents to reflect
the snippet better and to ensure that the snippet was
indeed a correct answer. As discussed, these intents
are limited in the amount of information they can
contain. The intent "add a new axis to array a" from
Figure 2 could refer to a wide variety of different
Python objects. It could range from the default
list to the Tensor object from PyTorch4. The
full question, or either its tags or title, is typically
enough for a human to disambiguate the correct
library to use. But the annotated intent lacks this
crucial information as it is rather difficult to design
an annotation task for SO data.5

We address this problem directly by using the ad-
ditional data found in the SO question. In Figure 2
there are four direct mentions of the NumPy library:
two in the question body and one each in both the
tags and the title. Further, there is a direct mention
of the ndarray data type from NumPy. It is, there-
fore, rather intuitive to include this additional data
as input with the hope that it improves the answer
generation performance. Although we did mention
that both the tags and title provide salient informa-
tion, the focus of this paper is only on using the
noisy textual question bodies. Therefore, for every
example ei the inputs now become the concatena-
tion of xi and the body qxi ∈ Q from the original
SO question. It is important to note that |Q| 6= |E|
as a single question can have many examples while
every question is, by definition, unique.

2.2 Unsupervised Modality Learning
Multiple modalities are present in the textual body
of a given question. These can range from em-
bedded images to messages from administrators
(or upset users) stating that the question is a du-
plicate of some tangentially related post that does
not have an answer. While these are useful to read-
ers, we limit our focus to three modalities: code
blocks, inline code, and NL. These modalities are
marked in Figure 2 with blue, green, and red, re-
spectively. Ideally, we would prefer to leave in
the HTML tags to serve as sentinel tokens, but,
looking at Figure 2, one immediately finds that
the poster forgot to mark _to_col as inline code.
Therefore, we remove all HTML tags from the
inputs, creating an unsupervised learning environ-

4https://pytorch.org/
5We direct readers to Yin et al. (2018) for a full discussion

of these challenges.

ment. Therefore, we propose that a transformer
model will learn each of the three modalities and
learn to use the relationships between each. We use
BART(Lewis et al., 2020) because its pretraining
focuses on denoising textual data and, to the best of
our knowledge, has minimal exposure to code ex-
amples. We used HuggingFace’s (Wolf et al., 2020)
BartForConditionalGeneration model which
has a default BART encoder-decoder model with a
linear layer and bias for outputs.

2.3 Unlabeled Data

We followed Xu et al. (2020) by using large
amounts of the mined but not annotated data. Un-
like Xu et al. (2020), however, we do not use this
data for pretraining. Instead, we combine this data
with the annotated data in our main training and
validation sets. By adding more questions to the
training set, we directly increase the probability
that the model encounters a larger and more repre-
sentative distribution of libraries. Intuitively, this
will reduce the variances between experiments as
we have reduced the dependency on the specific
examples used in the training and validation sets.
This variance reduction is especially useful when
working with a small dataset such as CoNaLa.

3 Experiments

3.1 Datasets

CoNaLa (Yin et al., 2018)6 is an open domain
text to code generation task constructed from SO
questions. It has 2,8797 annotated NL-code pairs
with more than 590K mined pairs from over 40,000
unique SO questions in the dataset.
StackOverflow Data For every unique question
in both the annotated and mined sets, we gather
additional data from the StackExchange API. As
discussed in subsection 2.1, we only use the ques-
tion body as input. Therefore the task is to generate
a valid answer snippet from both the intent and the
textual body. Detailed statistics for this dataset are
given in Table 1 and Table 2.

3.2 Methods

We removed 238 ( 10%) examples from the training
set to form the validation set. We then followed Xu
et al. (2020) in taking the top mined samples based
on their given probability that the NL-Code pair

6https://conala-corpus.github.io/
7Actual Number is lower due to errors in the dataset pre-

venting the usage of some examples.
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Split |E|∗ |Q|∗ |E|/|Q|¬ Intent Tokens Snippet Tokens Body Tokens®

Train 2376 1708 1.39±1.02 16.45±7.51 17.23±8.58 221.90±202.65

Test 498 364 1.37±0.88 15.98±6.62 18.47±12.90 208.04±164.74

Mined-10K 9988= 7181 1.39±0.80 11.29±3.94 16.58±9.27 297.53±367.09

Mined 593837 40522 14.65±7.01 11.41±4.22 28.70±42.81 371.24±483.67

Table 1: Statistics for the CoNaLa dataset with data from the StackOverflow API. |E| is # of examples. |Q| number
of questions. Values are reported as µ ± σ unless the column header has ∗. ¬Mean # of examples for a Question.
Per example. ® Number of tokens in the body regardless of modalitiy. =12 of the 10K questions were removed
because there was an issue with them.

Split Have Answer∗ Has Code Inline¬ Blocks¬ Code Tokens¬ NL Tokens¬

Train 87.88% 85.95% 1.21±2.09 1.42±1.26 95.54±157.52 124.60±92.02

Test 87.09% 87.91% 1.08±1.87 1.50±1.26 88.21±116.01 118.52±79.51

Mined-10K 86.16% 84.00% 1.30±2.36 1.46±1.34 133.20±278.20 164.54±207.08

Mined 81.92% 81.83% 1.50±2.86 1.47±1.44 172.57±372.32 197.98±257.71

Table 2: Detailed statistics for the StackOverflow questions. Mined-10K represents the top 10,000 samples selected
from the Mined data based on their probability that they are a valid NL-Code pair. ∗Percent of questions that have
an accepted answer. ¬Per question body.

is valid. However, we only used 10,000 samples
rather than the 100,000 Xu et al. (2020) used. From
this, we remove 1000 for validation.8 For all tests
of our model with the mined data, we combine the
two training and validation sets into one.

Every experiment and test conducted in this
work was conducting using Google’s Colab Pro
service. It afforded us the ability to use 512 input
tokens with a batch size of 16. More importantly,
we were able to use P100 and V100 graphics cards.
Following that, we perform an ablation study us-
ing BART and the different components of our
approach. Every ablation is run five separate times
with different seeds and validation splits. For each
test, the model with the lowest validation loss is
used in the evaluation. Each test is run for ten
epochs as we consistently observed overfitting af-
ter five to eight epochs.

Because we introduce new data at inference, we
needed to ensure we fairly compare our methods
with previous work. To this end, we run the prior
works with the question bodies as inputs. However,
for testing Xu et al. (2020) with the question bodies,
we limited the amount of mined data in pretraining
to 10,000 instead of 100,000. This was done due
to Google Colab’s execution time limits, as it took
upwards of four hours for each run of Xu et al.
(2020) with only 10,000 samples.

8Some questions were deleted from StackOverflow in both
the annotated and mined sets, so we could not use those.

3.3 Metrics
We measure the corpus level BLEU score of the
generated code snippets with the same postprocess-
ing methods and smoothing as Xu et al. (2020).
We evaluate our ablations by comparing the corpus
BLEU score and unigram, bigram, and trigram pre-
cision. Finally, we calculate the percentage of test
examples for which our model generated a syntac-
tically valid Python snippet.

For the previous state-of-the-art, we also report
the Oracle BLEU proposed by Yin and Neubig
(2019). This is calculated by choosing the can-
didate snippet si with the highest sentence level
BLEU score out of n generated snippets. For-
mally, given the candidate list C = [c1, . . . , cn]
and ground truth yi,

z = argmax
cj∈C

BLEU(cj , yi) (1)

Furthermore, we want to quantify how much
our model relies on the body of the question or
"cheats." To do this, we calculate the cheating for
the generated snippet si ∈ [s1, . . . , sN ] = S and
ground truth yi ∈ [y1, . . . , yN ] = Y with respect
to the input text bi ∈ [b1, . . . , bN ] = B. Given the
function m(a, b) that calculates a textual similarity
metric m, we define the cheating w.r.t. m as

Cm(S) =

∑
i∈[1;N ](m(si, bi)−m(yi, bi))

N
(2)

If the model is heavily "cheating" from the input,
then m(si, bi)� m(yi, bi), which leads to a large
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Cm. The quantity Cm is, by design, similar to a
standard mean squared error. The largest difference
is that the difference is not squared, to facilitate
distinguishing between less and more similar.

For the metric function m, we use BLEU and
ROUGE (Lin, 2004). For the former, we take
the bigram (CBB) and trigram (CBT ) precision
from BLEU. For ROUGE, we use bigram ROUGE
(ROUGE-2/CR2) and the longest common subse-
quence (ROUGE-L/CRL). The intuition behind
using these metrics is that there is a high probabil-
ity that unigram precision is large. The answers to a
question must address the contents of the said ques-
tion, leading to shared tokens between inputs and
outputs. However, the probability should massively
drop when considering multiple grams. Therefore,
the similarity between n-grams when n > 1 should
indicate the reliance on the inputs.

3.4 Implementation

We implemented our model with Python and Hug-
gingFace’s transformer library (Wolf et al., 2020)9.
We used a BART model with a linear layer and
a separate bias for text generation. We utilized
the smallest available BART model from FAIR,
which was the Facebook/BART-base10. For train-
ing, we again rely on HuggingFace’s trainer and
their implementation of the learning rate scheduler.
We used Adam (Loshchilov and Hutter, 2017) as
our optimizer with a learning rate of 5e−5 and
a linear learning rate scheduler. We also used a
warmup ratio of 0.05. Finally, for generation, we
used beam search with four beams, early stopping,
and a length penalty of 0.9.

4 Results

We list the previous state-of-the-art BLEU scores
for the CoNaLa dataset as well as the performance
of our models in Table 3. Using the intent and ques-
tion bodies achieved a BLEU score of 34.35±1.01.
This was further increased to 35.32±0.42 by includ-
ing the mined data in the training and validation set.
To better understand our model, we perform abla-
tion tests and report their results in Table 4. When
comparing our top performance with the previous
top performance, regardless of the data used, our
model beats the previous state of the art by 3.40
BLEU, a 10.54% increase. Notably, our model
outperforms the previous SoTA by 14.78 BLEU,

9https://github.com/huggingface/transformers
10https://huggingface.co/facebook/bart-base

a 71.96% increase when only comparing the ex-
periments with the question body. Furthermore,
BART with the mined data and question bodies
beats their Oracle BLEU by 1.61 BLEU, translat-
ing to a 4.78% increase. However, it is important
to note that Xu et al. (2020) outperforms our model
by 1.71(5.30%) when we do not use the textual
body. But they still both beat the baseline TranX
by 25.72% and 7.98%, respectively. The use of the
mined data further beat the reranker by 1.46%.

The 71.96% increase is likely because TranX
models were never intended to perform well with
very noisy data, as evidenced by the 36% dropoff
in corpus BLEU when adding the body to Xu et al.
(2020). In choosing BART, we intentionally picked
a transformer model designed for denoising (Lewis
et al., 2020). Further testing is likely needed to
determine if our approach is heavily dependent on
the underlying transformer, but that is beyond the
scope of this paper.

4.1 Impact of adding the Question Body

Adding the body of the question objectively im-
proved the performance of the model. The BLEU
score increased 30.92% to 34.35 and, per Table 4,
there was an increase across unigram, bigram, and
trigram precision. While they all do increase, the
amount is far from constant. The unigram precision
only saw a 3.61% increase, whereas bigram and
trigram precision increased by 12.77% and 22.90%,
respectively. This indicates that while the model
selected slightly more correct tokens, it greatly im-
proved its ordering of said tokens.

Similar improvements, albeit smaller in value,
also occurred when including the mined data with-
out the question bodies. However, there was a
sharp drop in the standard deviations for the three
precision metrics. In contrast, adding the question
body resulted in a steep increase in variance. This
is most probably a result of the "shrinking" of the
dataset that occurred when we added the bodies.
In Table 1 we report that every split of the dataset
has fewer unique questions than it does examples.
Also reported is that the number of tokens in the
body is, on average, significantly greater than that
of the intents. The effective dataset size is now
much smaller, while the number of unique answer
snippets stayed the same. The result is that the
model now performs better on the difficult test set,
at the cost of being more reliant on the training and
validation split. Using both the bodies and mined
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No Body With Body
Model Corpus BLEU Corpus BLEU Oracle BLEU
TranX (Yin and Neubig, 2018) 24.30 18.85±1.26 31.21±0.30

RR (Yin and Neubig, 2019) 30.11 19.85±1.21 31.21±0.30

EK (Xu et al., 2020) 30.69 20.37±1.44 33.71±0.83

EK+RR(Xu et al., 2020) 32.26 20.54±0.85 33.71±0.83

BART 26.24±0.31¬ 34.35±1.01 ≥ 34.35

BART W/ Mined 30.55±0.38¬ 35.32±0.42 ≥ 35.32

Table 3: Results compared to previous papers both with and without the use of the question body at inference. We
do not calculate the Oracle BLEU for either of our models as our corpus BLEU already surpasses their Oracle
BLEU. EK=Using External Knowledge. RR=Using Reranking. ¬Using only the rewritten intent, if available else
normal intent, as input.

data does mitigate this "shrinking" effect, as shown
by the lower standard deviations than those when
only using the body.

4.2 Is BART Reliant on a Single Modality

As discussed in subsection 2.2, we focus on three
modalities in the textual bodies: code blocks, in-
line code, and natural language. We put forth the
idea that a large pretrained language model such
as BART learns each modality in an unsupervised
manner. We designed four distinct ablations to
test if this was the case. Each was run both with
and without the mined data totaling eight ablations.
We report the full BLEU scores from these in Ta-
ble 4. Further, we calculate the performance with
respect to baselines in Table 5. Notably, there was
no modality whose removal resulted in a BLEU
score worse than when the question body was not
used in the input. There was also not a modality
whose removal improved performance. From our
ablations, it is clear that the most important modal-
ity in the question bodies is the code regardless of
if it is inline or in a block. But, using only code
is still 2.25% worse than when all three modalities
are included with mined. This indicates that the
NL surrounding acts not only as additional context,
but likely further both direct and indirect indicators
of salient code for the model.

4.3 Removing Code Improves Syntax

In Table 4 we report the percent of generated snip-
pets that are syntactically valid—adding only the
mined data results in a 9% increase. When us-
ing the question bodies, the addition of the mined
data also increases the percent of valid snippets
generated by 7.88%. While it is an improvement,
it is still a 3.76% drop from when the body was

excluded. Further, removing the code from the bod-
ies resulted in the highest percentages of 92.00%
and 84.92% with and without the mined data. We
then performed a finer analysis using a single seed
and the same training and validation data across all
ablations and reported the results in Appendix A.
Across all ablations, the majority of errors are
caused by mismatches of parentheses. In reality, a
large percentage of general syntax errors are likely
caused by this. However, syntax errors prevent the
extraction of the AST for further investigation of
these errors.

We also report in Table 9 the percentage of
valid snippets generated when the print function
is present. One of the more commonly occur-
ring incompatibilities between Python 2 and 3 is
that print now requires parentheses. Consider-
ing that the questions in the CoNaLa dataset are
from March 2017 or earlier (Yin et al., 2018) and
that support for Python 2.x only ended in January
202011, we hypothesize that these deprecated calls
are a large cause of the errors. When both the body
and snippet have print, the inclusion of the ques-
tion body led to the percent of valid snippets drop-
ping by 21.06 with and 21.05 without the mined
data with respect to their baselines. While there
are only 19 such questions in the test set, this is a
significant drop. The likely cause is that the autore-
gressive decoder of BART struggles to remember
to close the parentheses when wrapping the snippet
with a print statement. One solution would be to
run the 2to312 translator on all of the code. How-
ever, the possibilities for code blocks to contain
code and other modalities such as error messages
and console executions present significant hurdles

11https://www.python.org/doc/sunset-python-2/
12https://docs.python.org/3/library/2to3.html
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Input BLEU Unigram∗ Bigram∗ Trigram∗ Valid¬

Baseline 26.24±0.31 67.53±0.46 44.10±0.60 29.80±0.69 84.08±1.27

+Mined 30.55±0.38 67.81±0.23 45.55±0.27 31.69±0.37 93.08±1.28

Body 34.35±1.01 69.97±0.89 49.74±0.99 36.62±0.97 81.44±2.25

-NL 34.06±0.48 68.29±0.48 47.91±0.45 35.33±0.40 81.92±0.75

-Code 27.67±0.40 68.29±0.53 44.93±0.57 30.12±0.69 84.92±1.00

-Blocks 29.53±0.47 68.14±0.26 45.69±0.10 31.36±0.15 80.84±1.37

-Inline 33.57±0.94 70.50±0.27 49.56±0.40 36.54±0.46 82.16±1.53

Body+Mined 35.32±0.42 67.62±0.76 47.69±0.82 35.00±0.87 89.32±1.49

-NL 34.53±0.88 66.24±0.90 46.11±1.15 33.54±1.02 90.08±0.48

-Code 31.39±0.75 67.00±0.75 45.65±0.97 31.60±0.88 92.00±1.31

-Blocks 32.14±0.14 66.96±1.03 45.32±0.97 31.49±0.74 89.24±1.30

-Inline 35.06±0.49 67.04±1.54 46.99±1.29 34.31±1.04 89.20±0.42

Table 4: Ablation Experiments all with BART ran on 5 different random initializations. All tests have rewritten
intent as input in addition to the input described in the Input column. The bolded ablation indicates our best
performance while red text represents the worst performance. ∗Precisions. ¬Percent of generated snippets that are
valid python.

Body Body+Mined
-NL -0.29 -0.80
-Code -6.68 -3.93
-Blocks -4.83 -3.18
-Inline -0.79 -0.26

Table 5: Change in BLEU score for each ablation ver-
sus their respective baseline.

as 2to3 does not support these. Therefore we leave
that to future work.

4.4 Cheating

In subsection 3.3 we define the "cheating" equation
to measure if the generated snippet is more similar
to the question body than the ground truth is. The
ideal model would maximize the BLEU score while
minimizing the |Cm|. We run multiple ablations
on a single seed and calculate the "cheating" as
defined by Equation 2 and present these results in
Table 6.

Suffice to say that serious violations of academic
integrity have occurred. As expected, the base-
line is less similar to the question bodies than the
ground truth is. When the body was used as in-
put, CBT increased by 20.28 points, while CRL

rose by 3.16 points, representing a 293.49% and
159.60% increase over their respective baselines.
Including the mined data resulted in increases of
18.59 (308.13%) and 0.77(265.52%) when com-
pared to using only the intents. Both indicate that
the model’s generated output has significantly more

CBB CBT CR2 CRL

Baseline -6.82 -6.91 -1.62 -1.98
+Mined -6.03 -6.03 -1.41 -0.29

Body 11.65 13.37 1.75 1.18
-Code -4.18 -5.05 -1.06 -1.40
-NL 10.55 12.27 1.24 0.47
-Blocks -3.32 -3.48 -0.89 -1.09
-Inline 9.19 10.39 0.90 0.44

Body+Mined 10.19 12.55 1.39 0.48
-Code -4.37 -5.05 -1.08 -1.47
-NL 9.40 11.32 1.19 0.17
-Blocks -3.48 -4.16 -0.84 -1.19
-Inline 7.93 9.73 1.11 0.25

Table 6: Cheating Measurements calculated by Equa-
tion 2 using a single run but same seed and environ-
ment. CBB and CBT are the cheating w.r.t. BLEU Bi-
gram and Trigram Precision. CR2 and CRL are the
cheating w.r.t. ROUGE-2 and ROUGE-L.

shared multigram subsequences with the question
body than the ground truth does. In the ablations
where code was removed from the body, CBT in-
creased by only 0.98 and 1.86 with and without the
mined data. This represents a percent of increase
of only 16.25% and 26.92% over their respective
baselines. However, in the case where all NL was
removed, CBT increased by 17.35(287.73%) and
19.18(277.57%) points with respect to their base-
lines. The fact that these increases are lower than
that when all modalities are included provides fur-
ther evidence that BART is an unsupervised mul-
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timodal learner and understands the relationships
between each modality. The NL likely provides
both explicit and implicit hints about the impor-
tance of certain code spans.

4.5 Examples

Intent: multiply a matrix ‘p‘ with a 3d tensor ‘t‘ in scipy

3 scipy.tensordot(P, T, axes=[1,

1]).swapaxes(0, 1)

¬ np.einsum(‘...j,...j->...‘, P, T)

 np.einsum(’ij->ij->ik->j->ik’, p)

¬ P.dot(T).transpose(1, 0, 2)

Intent: concatenate items of list ‘l‘ with a space ’ ’

3 print(’ ’.join(map(str, l)))

¬ list(map(tuple,[]))

 [item for item in L if ” in item]

® print(’ ’.join(str(x) for x in L))

Intent: concatenate elements of list ‘b‘ by a colon ":"

3 """:""".join(str(x) for x in b)

¬ [‘ ‘.join(x) for x in b]

 b = [int(i) for i in b]

® print(’:’.join(map(str, b))

Table 7: Example intents and generated snippets.
Screenshots of the questions are located in Appendix B
and each intent links to the question. Red text indi-
cates that it is incorrect while blue text marks correct
tokens in the wrong place. 3ground truth. ¬EK+RR
no body (Xu et al., 2020). Mined. ®Body+Mined.

We select three examples that demonstrate the
benefits of our approach while also highlighting
the issues in both the use of the question body and
SO corpora in general and report them in Table 7.
In the first example, we can see that both ¬ and 

have learned how to use einsums, but neither is cor-
rect. ® in this case produces an answer that returns
the correct value. It is highly probable that BART
understood from the poster’s explicit mention that
P.dot(T).transpose(1, 0, 2) gives the desired
result and thus extracts it. However, this example
has two critical issues: the poster’s intent is to find
a "cleaner" way to multiply a matrix with a tensor,
and scipy.tensordot is deprecated. The latter
is to be expected, considering the answer is from
2010. But it does indicate that a better evaluation
based on inputs and outputs is likely needed.

The next two examples are quite similar but are
from two separate questions. ¬ likely mistakes the
core intent to be type conversion due to the inclu-
sion of the words "items" and "with."  also suffers

from the inclusion of these tokens but believes the
problem involves filtering. In the final example, ¬

recognizes that it must convert the items in b to str,
but does not return a joined string.  recognizes
that, again, the answer involves type conversion but
predicts the incorrect type.

Similar to the first example, ® produces answers
for both the second and third examples that func-
tionally return the correct results. However, run-
ning ®’s solution for the third example would result
in a syntax error due to the missing ")." On further
inspection of the question bodies, it becomes ap-
parent that the probable reason why one snippet is
syntactically valid while the other is not is the pres-
ence of a Python 2 print. The model recognizes
that a suitable answer can be found in the question
but must be converted to python 3. As discussed in
subsection 4.3, these print statements are prone to
cause syntactical issues.

5 Conclusion

We expand the CoNaLa dataset by adding the tex-
tual question bodies from the StackExchange API
and achieve state-of-the-art performance with a
simple BART model. Further, we demonstrate
that, for this task, BART performs best when code
blocks, inline code, and NL are all present. We then
examine the impact of the question body on syntax
errors and BART’s cheating through multimodal
understanding. Finally, we examine examples that
highlight the issues with both StackOverflow data
and code evaluation in general. Future work should
focus on extracting desired inputs and outputs for
a given intent. Further, additional efforts put into
creating corpora of executable code are likely to
improve not only generation but evaluation. Both
will also protect datasets from deprecated functions
and abandoned libraries.
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Error Count General Invalid Syntax Paranthesis Matching Other Matching
Baseline 61 39.34 45.90 14.75

+Mined 38 47.37 39.47 13.16
Body 104 39.42 46.15 14.42

-Code 82 30.49 60.98 8.54
-NL 75 25.33 53.33 21.33
-Blocks 94 36.17 53.19 10.64
-Inline 85 28.24 61.18 10.59

Body+Mined 59 38.98 49.15 11.86
-Code 52 26.92 67.31 5.77
-NL 48 33.33 47.92 18.75
-Blocks 51 23.53 66.67 9.80
-Inline 51 41.18 54.90 3.92

Table 8: Percentages of syntax errors for ablations in a single run.

No Print Has Print in Snippet Has Print in Body Has Print in Both
Baseline 88.28 84.62 86.59 84.21

+Mined 92.97 100.00 91.46 78.95
Body 78.91 84.62 82.93 63.16

-Code 84.38 92.31 80.49 73.68
-NL 84.38 84.62 89.02 78.95
-Blocks 82.29 92.31 76.83 68.42
-Inline 83.07 76.92 86.59 68.42

Body+Mined 90.89 92.31 81.71 57.89
-Code 91.67 69.23 84.15 84.21
-NL 89.84 100.00 91.46 89.47
-Blocks 90.36 92.31 92.68 63.16
-Inline 90.89 92.31 87.80 73.68

Table 9: Percentage of valid snippets based on the presence of print.

B Full Questions for Examples

75



(a) Full Stack Overflow Question for Example 1 in Table 7. Question can
be found https://stackoverflow.com/questions/4490961/numpy-multiplying-a-
matrix-with-a-3d-tensor-suggestion.

(b) Full Stack Overflow Question for Example 2 in Table 7. Question
can be found https://stackoverflow.com/questions/13550423/python-printing-
without-commas.

(c) Full Stack Overflow Question for Example 3 in Table 7. Question can be
found https://stackoverflow.com/questions/13954222/how-to-join-mixed-list-
array-with-integers-in-it-in-python.
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Abstract

Most available semantic parsing datasets, com-
prising of pairs of natural utterances and log-
ical forms, were collected solely for the pur-
pose of training and evaluation of natural lan-
guage understanding systems. As a result, they
do not contain any of the richness and vari-
ety of natural-occurring utterances, where hu-
mans ask about data they need or are curi-
ous about. In this work, we release SEDE,
a dataset with 12,023 pairs of utterances and
SQL queries collected from real usage on the
Stack Exchange website. We show that these
pairs contain a variety of real-world challenges
which were rarely reflected so far in any other
semantic parsing dataset, propose an evalu-
ation metric based on comparison of partial
query clauses that is more suitable for real-
world queries, and conduct experiments with
strong baselines, showing a large gap between
the performance on SEDE compared to other
common datasets.

1 Introduction

Semantic parsing, the task of mapping natural lan-
guage into logical forms that can be executed on
a database or knowledge graph, has been studied
mostly on academic datasets, where both the ut-
terances and the queries were written as part of a
dataset collection process (Hemphill et al., 1990;
Zelle and Mooney, 1996; Yu et al., 2018), and not
in a natural process where users ask questions about
data they need or are curious about. As a result,
these datasets generally do not contain any of the
richness and diversity of natural-occurring utter-
ances, even if the data on which the questions are
asked about is collected from a real-world source.

Recent methods (Wang et al., 2020a; Herzig
et al., 2020; Yu et al., 2021) have significantly im-
proved results on such academic datasets: state-of-
the-art models have yield impressive results of over

Title: Questions which attract bad answers
Description: posts which have attracted significantly more
controversial or bad answers than good ones
SELECT p.Id as [Post Link], p.Score from (
SELECT p.ParentId, count(*) as ContACnt from (
SELECT PostId,
up = sum(case when VoteTypeId = 2 then 1
else 0 end),

down = sum(case when VoteTypeId = 3 then 1
else 0 end)

FROM Votes v join Posts p on p.Id = v.PostId
WHERE VoteTypeId in (2,3) and PostTypeId = 2
group by PostId

) as ContA
JOIN posts p on ContA.PostId = p.Id
WHERE down > (up / ##UVDVRatio:int##) and
(down + up) > ##MinVotes:int##
GROUP BY p.ParentId

) as ContQ
JOIN posts p on ContQ.ParentId = p.Id
WHERE ContQ.ContACnt > (p.AnswerCount / 2) and
p.AnswerCount > 1
ORDER BY Score desc

Table 1: Example from SEDE for a title and descrip-
tion given by the user, together with the SQL query that
the user has written.

70%, for example, on Spider (Yu et al., 2018) in
a challenging cross-domain setup, where models
are trained and tested on different domains, and
up to 80%-90% (Nguyen et al., 2021; Zhao and
Huang, 2014) on single-domain datasets such as
ATIS (Hemphill et al., 1990) and GeoQuery (Zelle
and Mooney, 1996). While the cross-domain, zero-
shot setup introduces many generalization chal-
lenges such as non-explicit mentioning of column
names and domain-specific phrases (Suhr et al.,
2020; Deng et al., 2020), we argue that even in the
easier single-domain setup, it is still unclear how
well state-of-the-art models generalize to the chal-
lenges that arise from real-world utterances and
queries.

In this work, we take a significant step towards
evaluation of Text-to-SQL models in a real-world
setting, by releasing SEDE: a dataset comprised of
12,023 complex and diverse SQL queries and their
natural language titles and descriptions, written by
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real users of the Stack Exchange Data Explorer out
of a natural interaction.

In Table 1 we show an example for a SQL query
from SEDE, with its title and description. It intro-
duces several challenges that have not been com-
monly addressed in currently available datasets:
comparison between different subsets, complex us-
age of 2 nested sub-queries and an under-specified
question, which doesn’t state what “significantly
more” means (solved in this case with an input
parameter, ##UVDVRation##).

Compared to other Text-to-SQL datasets, we
show that SEDE contains at least 10 times more
SQL queries templates (queries after canonization
and anonymization of values) than other datasets,
and has the most diverse set of utterances and SQL
queries (in terms of 3-grams) out of all single-
domain datasets. We manually analyze a sample
of examples from the dataset and list the intro-
duced challenges, such as under-specification, us-
age of parameters in queries, dates manipulation
and more.

We also address the challenging problem of eval-
uating naturally-occurring Text-to-SQL datasets.
In academic datasets, standard evaluation metrics
such as denotation accuracy and exact compari-
son of SQL components can often be used with
relative success, but we found this to be a greater
challenge in SEDE. Denotation accuracy is inaccu-
rate for under-specified utterances, where any sin-
gle clause not mentioned in the question could en-
tirely change execution results, while exact match
comparison of SQL components (e.g. comparing
all SELECT, WHERE, GROUP BY and ORDER BY
clauses) are often too strict when queries are highly
complex. While solving these issues still remains
an open problem, to at least partially address them
we propose to measure a softer version of the ex-
act match metric, PCM-F1, based on partially ex-
tracted queries components, and show that this met-
ric gives a better indication of models’ performance
than common metrics, which yield a score that is
close to 0.

Finally, we test strong baselines on our dataset,
and show that even models that get strong results
on Spider’s development set (63.2% Exact-Match,
86.3% PCM-F1), perform poorly on our dataset,
with a PCM-F1 value of 50.6%. We hope that
the unique and challenging properties exhibited in
SEDE1 will pave a path for future work on gen-

1Our dataset and code to run all experiments and metrics is

eralization of Text-to-SQL models in real world
setups.

2 Background

In the past decades, a broad selection of datasets
have been used as benchmarks for semantic pars-
ing: ATIS (Hemphill et al., 1990), GeoQuery
(Zelle and Mooney, 1996), Restaurants (Tang and
Mooney, 2000), Scholar (Iyer et al., 2017), Aca-
demic (Li and Jagadish, 2014), Yelp and IMDB
(Yaghmazadeh et al., 2017), Advising (Finegan-
Dollak et al., 2018), WikiSQL (Zhong et al., 2017),
Spider (Yu et al., 2018), WikiTableQuestions (Pasu-
pat and Liang, 2015), Overnight (Wang et al., 2015)
and more. However, the utterances and queries in
all of these academic datasets, to the best of our
knowledge, were collected explicitly for the pur-
pose of evaluating semantic parsing models, usu-
ally with the help of crowd-sourcing (even though
in most cases questions are asked about real data).
As such, these academic datasets were generated in
an artificial process, which often introduces various
simplifications and artifacts which are not seen in
real-life.

Utterance-Query alignment One arising issue
with this artificial process is that utterances are of-
ten aligned to their SQL queries counterparts, such
that the columns and the required computations are
explicitly mentioned (Suhr et al., 2020; Deng et al.,
2020). In contrast, natural utterances often do not
explicitly mention these, since the schema of the
database is not necessarily known to the asking
user (for example, the question from Spider "ti-
tles of films that include ’Deleted Scenes’ in their
special feature section" might have been more nat-
urally phrased as "films with deleted scenes" in a
real-world setting).

Well-specified utterances Furthermore, the ut-
terances in academic datasets are mostly well-
specified, whereas in contrast, natural utterances
are often under-specified or ambiguous; they could
be interpreted in different ways and in turn be
mapped to different SQL queries. Consider the
example in Table 1: the definition of “bad an-
swers” is not well-defined, and in fact could be
subjective. Since under-specified utterances, by
definition, can not always be answered correctly,
any human or machine attempting to answer such a
question would have to either make an assumption

available at https://github.com/hirupert/sede.
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on the requirement (usually based on previously
seen examples) or ask follow-up questions in an
interactive setting (Yao et al., 2019; Elgohary et al.,
2020, 2021).

Scope Last, in academic datasets the utterances
are usually written by crowd-sourced workers,
asked to provide utterances on various data do-
mains which they do not necessarily need or are
interested with. As a result, the utterances and
queries are often not very diverse or realistic, are
inherently limited in scope, and might not reflect
real-world utterances.

3 Stack Exchange Data Explorer

To introduce a realistic Text-to-SQL benchmark,
we gather SQL queries together with their titles and
descriptions from a naturally occurring dataset: the
Stack Exchange Data Explorer. Stack Exchange is
an online question & answers community, with
over 3 million questions asked. The Data Ex-
plorer2 allows any user to query the database of
Stack Exchange with T-SQL (a SQL variant) to
answer any question they are curious about. The
database schema3 is spread across 29 tables and
211 columns. Common utterance topics are pub-
lished posts, comments, votes, tags, awards, etc.

Any query that users run in the data explorer is
logged, and users are able to save the queries with
a title and description for future use by the public.
All of these logs are available online, and Stack
Exchange have agreed to release these queries, to-
gether with their title, description and other meta-
data. We publish our clean version of this log,
which contains 12,023 samples, of which a sub-
set of 1,714 examples is verified by humans to be
correct and is used for validation and test. In this
section, we explain the cleaning process, analyze
the characteristics of the dataset and compare it to
other semantic parsing datasets.

3.1 Data cleaning
The raw aggregated log contains over 1.6 million
queries, however in its raw form many of the rows
are duplicated or contain unusable queries or titles.
The reason for this large difference between the
original data size and the cleaned version is that
any time that the author of the query executes it,
an entry is saved to the log. This introduces two

2Publicly available at https://data.
stackexchange.com/

3https://tinyurl.com/sedeschema

issues: First, many of the queries are not complete,
since they were executed before writing the entire
query (these incomplete queries are usually valid
and executable, but are missing some expressions
with respect to the given title and description). Sec-
ond, after completing the writing of a correct query,
users often keep changing and executing the query,
but they do not update the title and description
accordingly.

To alleviate these issues, we write rule-based
filters that remove bad queries/descriptions pairs
with high precision. For example, we filter out
examples with numbers in the description, if these
numbers do not appear in the query (refer to the pre-
processing script in the repository for the complete
list of filters and the number of examples each
of them filter). Whenever a query has multiple
versions due to multiple executions, we take the
last executed query which passed all filters. After
this filtering step, we are left with 12,309 examples.

Using these filters cleans most of the noise, but
not all of it. To complete the cleaning process,
we manually go over the examples in the vali-
dation and test sets, and either filter-out wrong
examples or perform minimal changes to either
the utterances or the queries (for example, fix a
wrong textual value) to ensure that models are eval-
uated with correct data. Out of the 2,000 exam-
ples that we have evaluated, we have kept 1,024
and fixed 6904, leading to a total of 1,714 vali-
dated examples which we use for validation and
test. While we do not perform verification on
the training set, the verification procedure on the
validation set allows us to estimate that most of
the queries (85.7%) are either entirely accurate or
need just a minimal change to be entirely accu-
rate. For example, when the utterance is ”users
in Brazil” while the matching query contains the
expression: WHERE users.location like
%russia% we either change the utterance to
”users in russia” or change the expression to WHERE
users.location like %Brazil%. The fi-
nal number of all training, validation and test ex-
amples is 12,023.

3.2 Dataset Characteristics

In this sub-section, we quantify and analyze the
introduced challenges in SEDE, compared to other
commonly used semantic parsing datasets.

First, we manually analyze a sample of 100 ex-

4We publish both the original and the fixed examples
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Category Dataset Example test cases

SEDE Spider ATIS Title SQL query

Under specification and Hid-
den assumptions 87 14 15

User List: Highest downvotes per
day ratio with minimum down-
votes

WHERE id <> -1

Parameters 40 0 0 Rollbacks by a certain user WHERE UserId = @UserId

Window functions 8 0 0 List of users in the Philippines. DENSE_RANK() OVER (ORDER BY Reputation DESC)

Dates manipulation 15 0 0 Quickest new contributor answers
to new contributor questions DATEDIFF(s, Q.CreationDate, A.CreationDate)

Numerical computations
and text manipulation 35 0 0 Average Number of Views per Tag sum(p.ViewCount)/count(*)

DECLARE/WITH 11 0 0 Rollbacks by a certain user DECLARE @UserId AS int = ##UserId:int##

CASE 10 0 0 Questions and answers per year CASE WHEN Score < 0 THEN 1 ELSE 0 END

Table 2: Dataset characteristics comparison of randomly selected 100 samples among SEDE and other popular
Text-to-SQL datasets.

amples from SEDE and define 7 categories of in-
troduced challenges. To quantify how often each
of these concepts appear in SEDE in comparison
to other datasets (SPIDER and ATIS), we sample a
subset of equal size from each of the other datasets
and count the appearances of these concepts. The
analysis is shown in Table 2. Next, we describe
each of these concepts.

Under specification and Hidden assumptions
Utterances in SEDE are often under-specified, that
is, they could be interpreted in different ways. For
example, when users write “top users”, they might
refer to users with the most reputation, but also
to users that have written the most answers. Like-
wise, when users write “last 500 posts” they might
expect to get just the title field of the posts, but pos-
sibly also IDs and dates. Similarly, query authors
often add various assumptions to the queries which
are not mentioned in the questions, because they
require some knowledge of the available data. For
example, they might filter out a special “Commu-
nity” user in StackExchange, which should not be
accounted for in computation of votes. We consider
an utterance/query pair to be under-specified or
contain an hidden assumption whenever the query
contains an expression in any of the SQL clauses
(SELECT, WHERE, etc.) which is not specified in
the utterance, or where it is specified in an ambigu-
ous way.

Parameters In some cases, query authors can
address under-specified utterances by letting the
user fill in the under-specified parameters, which
are marked in SEDE with either two hashtags (#)
on each side of the parameter name, optionally in-
cluding the required value type (int, string, etc.)
and a default value (e.g. ##UserId:int##), or

using a declared variable using SQL syntax (e.g.
@UserId). For example, in Table 1, the parameter
##UVDVRatio:int## is used to indicate that
the user should fill in an integer to specify the ratio
that “significantly more” refers to. More broadly,
parameters are also helpful for re-usability, allow-
ing users unfamiliar with a query to effortlessly
change some values in it.

Window functions Window functions operate
on a set of rows and return a single value for each
row from the underlying query, thus allowing to
perform various aggregation operators without the
need for a separate aggregation query. Window
functions are often used in SEDE to report per-
centiles of a specific value in a row, by using op-
erators such as ROW_NUMBER() OVER, NTILE,
TOP(X) PERCENT, etc.

Dates manipulation Queries in SEDE some-
times contain dates arithmetic expressions. See
the example category query in Table 2: this ex-
pression calculates the difference in seconds from
the time the question was created to the time the
answer was created.

Numerical computations and text manipulation
Queries can perform any arbitrary numerical com-
putation and text manipulation. The computations
in SEDE often include multiple nested operators
including rounding and conversions to float,
for example: ROUND(CAST(Main.Total
AS FLOAT) / Meta.Total, 2) AS
’Ratio’. Queries can also contain text
manipulation such as concatenation, for ex-
ample: ’stackoverflow.com/tags/’ +
t.tagName + ’/info’ as [Link] which
builds a URL from a tag name.
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Unique Unique Average unique Utterance SQL Avg. nesting Unique Average unique
Dataset Utterances Queries Tables / uttr 3-gram 3-gram Level Templates Queries / template

Spider 8,034 4491 1.71 41.7K 25.2K 1.15 1,059 7.6
WikiSQL 80,654† 77,840† 1† 375K 209K 1† 488† 165.3†

Academic 196† 185† 3.0† <1K <1K 1.04† 92† 2.1†

Advising 4,570† 211† 3.0† 20K 11.2K 1.18† 174† 20.3†

ATIS 5,280† 947† 3.8† 13.2K 5.8K 1.39† 751† 7.0†

GeoQuery 877† 246† 1.1† 1.5K 1.4K 2.03† 98† 8.9†

IMDB 131† 89† 1.9† <1K <1K 1.01† 52† 2.5†

Restaurants 378† 23† 2.3† <1K <1K 1.17† 17† 22.2†

Scholar 817† 193† 3.2† 2.6K 2.2K 1.02† 146† 5.6†

Yelp 128† 110† 1.0† <1K <1K 1.0† 89† 1.4†

SEDE 12,023 11,767 2.14 42.6K 173K 1.28 10,664 1.1

Table 3: Comparison of different semantic parsing datasets (for Spider, analysis is performed on training and
validation sets only). † denotes that numbers are reported from Finegan-Dollak et al. (2018). Average Unique
Queries / template denotes the number of different SQL queries per template, thus lower means more diversity in
the dataset. Datasets above dashed line are cross-domain, and below it are single-domain.

DECLARE/WITH SQL queries can be written
as a procedural process, where multiple commands
are executed sequentially. Query authors can store
values in simple variables with DECLARE, but
more importantly, they can store complete “views”
of tables with the WITH command. While these
commands do not add any expressivity (that is, any
query can be written without these commands),
they allow writing more clear and concise queries
with less nested expressions.

CASE The CASE clause is similar to an if-then-
else statement of any programming language, and
is often used to either make the query more read-
able (e.g. by returning names of values instead of
integers) or to perform conditional logic. For exam-
ple, the clause in Table 2 (last row) counts negative
scores using CASE function.

Comparison In Table 2 we see that a vast ma-
jority of SEDE is not well-specified, which im-
plies that in order for Text-to-SQL models to work
robustly in a real-world setting, it should iden-
tify cases of ambiguity and possibly proceed with
follow-up questions. We see that the rest of the
concepts appear in 10% to 40% of SEDE exam-
ples, whereas these concepts are not exhibited in
any other analyzed dataset.

Next, we show a comparison of quantifiable met-
rics of popular Text-to-SQL datasets compared to
SEDE in Table 3. We see that SEDE is the largest
dataset in terms of unique utterances and queries
out of all single-domain datasets. To compare di-
versity and scope, we also measure the number
of unique 3-grams for both the utterances and the
queries, and see that SEDE has a very diverse set
of SQL 3-grams, with almost 6 times the number

of the next follower, Spider, and only 17% less
than WikiSQL, which is 6.6 bigger in terms of
queries. The number of utterance 3-gram is the
second largest, after WikiSQL. Last, we count the
number of unique SQL templates, as defined in
Finegan-Dollak et al. (2018): we anonymize the
values and group all canonized queries. We see
that SEDE has more than 10 times templates than
the follower Spider, and that the average number of
queries per template is the lowest. We also see that
SEDE is third in terms of average nesting level,
after ATIS and GeoQuery.

3.3 Limitations

We note that in order to simulate the most realistic
setting, an ideal Text-to-SQL dataset would include
questions asked by users which are completely un-
aware of the schema, which are not SQL-savy, and
that the person asking the question would be dif-
ferent than the person answering it. While this is
not the case in SEDE, we believe its setting is still
significantly more realistic that other datasets.

4 Evaluation

Semantic parsing models are usually evaluated in
two different forms: execution accuracy and logi-
cal forms accuracy. In this section, we show why
using any of these metrics is difficult with complex
queries such as those in SEDE, and propose a more
loose metric for evaluation of models.

Execution accuracy This metric is measured by
executing both the predicted and gold query against
a dataset, and considers the query to be correct
if the two output results are the same (or similar
enough). While this metric appears to be exactly
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what we want to optimize (yielding a query the
outputs a correct output), it does not necessarily
cope well with two challenges: spurious queries
and under-specified questions. Spurious queries are
incorrect queries (with respect to the given ques-
tion) that happen to result in a correct answer, thus
leading to a false-positive count. The problem of
spuriousness can be addressed by executing the pre-
dicted query on modified versions of the dataset, as
proposed in Zhong et al. (2020). The second chal-
lenge, evaluating under-specification, is arguably
harder to address, as mentioned in Subsection 3.2.
For example, consider a question that asks for "the
top 1% active users". This question does not spec-
ify which columns should be returned, how the
rows should be ordered, and how does one measure
“being active”. As such, a query could be correct
with respect to some interpretation, yet its execu-
tion result might be different than the execution
result of the given gold query.

Logical form accuracy Instead of comparing ex-
ecution results, another frequent approach is to
simply perform a textual comparison between the
predicted and gold queries. When comparing SQL
queries, it is common to perform a more loose
comparison that does not consider the order of ap-
pearances of different clauses (e.g. it shouldn’t
matter which WHERE expression is written first), as
performed in Spider (Yu et al., 2018). However, as
discussed in Zhong et al. (2020), even this looser
metric leads to false-negative measures, since mul-
tiple queries can all be correct with respect to an
utterance, but written in various different manners.
Due to the richness of SQL queries in SEDE, its
extended scope and the fact that queries are written
by many different authors, in our case this problem
deteriorates: queries can be written in a substan-
tial number of ways. For example, a query that
contains a WITH statement could yield exactly the
same result without it, by including a nested FROM
clause instead.

4.1 Sub-tree elements matching

In this work, in order to alleviate the aforemen-
tioned issues with exact-match logical form eval-
uation, we loosen it so that models can get partial
scores if at least some part of their predicted ex-
pressions are found in the gold query. We do this
by parsing both the predicted query and the gold
query, comparing different parts of the two parsed
trees and aggregating the scores into a single met-

SELECT a,b WHERE b=1

SELECT b,c,d WHERE b=2

SELECT

prediction

gold

a
,

b

a

SELECT

b

b

d

c

WHERE

b
=

1

= 1

WHERE

b
=

2

= 2bc d

b

b

,

q1 =

q2 =

Figure 1: An example for sub-tree matching.

ric, as defined next. We term this metric Partial
Component Match F1 (PCM-F1).

Our proposed metric is based on the “Compo-
nent Matching” metric which is used in Spider’s
evaluation (Yu et al., 2019), except that we use a
parser that supports a large variety of queries (Spi-
der’s parser only supports specific types of queries),
define how to compute the metric in a general way
(not specific to any SQL-specific clause) and aggre-
gate (average) the F1 scores into a single value, as
defined next.

We first use an open-source SQL parser, JSql-
Parser,5 to parse a given SQL query q into a tree,
and extract a set of elements for each of its sub-
trees, considering a sub-tree only if all of its leaves
are terminal values in the query (similar to extract-
ing constituents from a parse tree). For example, as
can be seen in Figure 1, the predicted query q1 has
7 relevant sub-trees (marked in rectangles). The
sub-tree which represents the expression b=1 con-
tains four elements: b,=,1 and b=1. We then
split these sets into different categories, based on
the SQL query part that the root of the original
sub-tree belonged to, for each of the following
categories: C = {SELECT, TOP, FROM, WHERE,
GROUPBY, HAVING, ORDERBY}. We denote all
sets of elements for a query q in a category c ∈ C
as sc(q). For example, as can be seen in Figure 1,
the clause sSELECT(q1) yields 3 sub-trees. Given
a predicted query qp and a gold query qg, we com-
pute the average F1 metric of all aligned pairs of
sets sc(qp) and sc(qg):

PCM-F1(qp, qg) =
1

| C |
∑

c∈C
F1 (sc(qp), sc(qg))

5https://github.com/JSQLParser/
JSqlParser
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Model Spider-Dev

PCM-F1 PCM-EM PCM-F1-NOVALUES PCM-EM-NOVALUES EM

RAT (Wang et al., 2020b) 88.1 37.3 91.3 69.0 69.7†

RAT+GAP (Shi et al., 2020) 89.3 39.0 92.6 71.8 71.8†

T5-Base with schema 85.7 56.7 85.9 57.2 57.6
T5-Large with schema 86.3 61.2 86.6 62.6 63.2

Table 4: Results on Spider with various metrics. While we do not focus on Spider, we show our results for
comparison of the model and evaluation metric with a known benchmark. † denotes reported numbers from
Spider’s official leaderboard. PCM-F1-NoValues and PCM-EM-NoValues are modified versions of PCM-F1
and PCM-EM, respectively, such that all values in the SQL are anonymized and the ON clause is ignored, in order
to compare with Spider’s official Exact-Match (EM) metric.

where F1 score is the harmonic mean of the pre-
cision and recall of the predicted sub-trees sc(qp)
with respect to the gold sub-trees sc(qg). If for
some category c, we get that sc(qp) is an empty set
but sc(qg) is not, or vice-versa, we set F1 = 0.0
for that category.

Consider Figure 1 for an example.
sSELECT(q1) has 3 sub-trees while the gold
category sSELECT(q2) has 4 sub-trees. The
predicted SELECT clause has 2 wrong sub-trees
(a and a,b) leading to a precision p = 1

3 , and
2 missing elements leading to a recall r = 1

4 .
Similarly, the WHERE clause gets a precision
of p = 1

2 and a recall of r = 1
2 . Thus, we get

F1 = 0.285 for SELECT and F1 = 0.5 for
WHERE, leading to a final score PCM-F1 = 0.392.

4.2 Limitations

Parsing Queries JSqlParser could only parse
93.2% of the validation SQL queries in SEDE,
and 92.5% of the test queries. For that reason, for
evaluation we only use the subset of queries which
we can parse and evaluate 6. During evaluation, if
the predicted query was not parsed, it receives a
score of 0. Note that this does not affect training.

False negatives We note that our metric does not
address at all the issue of false negatives - in fact,
since it’s a looser metric than the Exact Match
metric, it is actually more prone to produce false
negative outcomes. For SEDE, this issue could be
mitigated by improving the similarity function that
compares two queries, or by adapting the execution
accuracy method in a way that will be less sensitive
to instances of under-specification. We leave this
challenge for future work.

6While we did not use the rest of the validation queries,
we have released them in the dataset for future use, assuming
at least some of them are valid queries.

Model SEDE-Dev SEDE-Test

PCM-F1 PCM-EM PCM-F1 PCM-EM

T5-Base 46.8 4.0 49.4 3.6
with schema 46.4 3.4 48.9 4.5

T5-Large 48.2 4.0 50.6 4.1
with schema 47.1 3.7 51.0 3.3

Table 5: Results on SEDE development and test sets.

5 Experiments

In this section, we describe our experimental setup,
test how strong baselines perform on SEDE, and
analyze their errors.

5.1 Experimantal Setup

Most models in the Spider leaderboard7 use a
grammar-based decoder designed for Spider, and
as a result, they cannot be used as-is on SEDE,
which uses a larger grammar. Thus, following
Shaw et al. (2020), we use a general-purpose pre-
trained sequence-to-sequence model, T5 (Raffel
et al., 2020), which was shown to be competitive
with Spider’s state-of-the-art models.

Since all queries in SEDE come from a single
schema which is seen during training time, it is not
clear if allowing the model to access the schema
during encoding and decoding is helpful. We thus
experiment with two versions. In the first one, T5,
the input is simply the utterance ū. In the second,
T5 with schema, the input is the utterance ū fol-
lowed by a separator token, and then the serialized
schema. We follow Suhr et al. (2020) and serial-
ize the schema by listing all tables in the schema
and all the columns for each table, with a separator
token between each column and table. Naturally,
we did not evaluate T5 (without schema) on Spider
since encoding the schema is crucial in a zero-shot

7https://yale-lily.github.io/spider
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Category & Utterance Gold Predicted

Under-specification and
Hidden assumptions

Positive scored ques-
tions without answers for
c++ tags

SELECT id as "" Post Link "", *
FROM posts
WHERE

answercount = 0
AND tags NOT LIKE ’%c++%’
AND score > 0
AND ClosedDate is null

ORDER BY score DESC

SELECT id as [Post Link], tags,
score, viewcount, CreationDate

FROM posts
WHERE

tags NOT LIKE ’%c++%’
AND answercount = 0
AND posttypeid = 1
AND score > 0
AND CreationDate > ’2018-01-01’

ORDER BY CreationDate DESC

Dates Manipulation

Percentage of votes -
depending on day after
posting (only questions)

SELECT
DATEDIFF(day, p.CreationDate,

v.CreationDate) AS Days,
COUNT(v.Id) AS Count,
COUNT(v.Id) * 100.0

/ SUM(COUNT(v.Id)) OVER ()
AS Percentage ...

SELECT
DATEDIFF(day, p.CreationDate,

v.CreationDate) AS Days,
COUNT(v.Id) AS Count,
COUNT(v.Id) * 100.0

/ COUNT(v.Id)
AS Percentage ...

Parameters

Top users in a tag
by score and answer
count

SELECT TOP 100 ...
WHERE ...

AND t.TagName = ’tagName’

SELECT TOP ##num?100## Users.id
AS [User Link], ...

WHERE tags.TagName = ’##tagname##’

Table 6: Error analysis of gold queries vs. predicted queries for some selected dataset characteristics mentioned in
3. For brevity, in some of the examples we show only relevant parts of the query.

setup. We perform textual pre-processing to the
queries in SEDE before training (i.e. remove non
UTF-8 characters and SQL comments, normalize
spaces and new lines, normalize apostrophes, re-
move comments, etc.). We show results for experi-
ments considering the titles alone, and ignore their
given description, which are given in 14.6% of the
examples. We have found that if we concatenate
the description to the title, we get slightly worse
results.

We use the SentencePiece (Kudo and Richard-
son, 2018) tokenizer, with its default vocabulary,
for all models. We fine-tune the model to mini-
mize the token-level cross-entropy loss against the
gold SQL query for 60 epochs with the AdamW
(Loshchilov and Hutter, 2019) optimizer and a
learning rate of 5e−5. We choose the best model
based on the performance on the validation set for
each dataset, using Exact-Match (EM) for Spider
and PCM-F1 for SEDE. For inference, we use
beam-search (of size 6) and choose the highest-
probability generated SQL query. We show results
for both T5-Base and T5-Large.

For each experiment we measure PCM-F1 to-
gether with a modified version of it, PCM-EM
(PCM exact match), that returns an accuracy of 1
for a given prediction if and only if the PCM-F1
value for that prediction is 1. For Spider, we use
the officially provided script to measure the EM
metric.

5.2 Main Results

We show experiments results for SEDE in Table 5
and for Spider in Table 4. The results indicate that
the performance gap between SEDE and Spider
is large: while T5-Large reaches a score of 63.2
EM on Spider’s validation set, not very far from
the state-of-the-art (a difference of 8.6 points), and
a PCM-F1 of 86.3, when trained on SEDE, it only
receives 48.2 and 50.6 PCM-F1 on the validation
and test set of SEDE, respectively. This supports
our main claim, that single-schema datasets could
still impose a substantial challenge when tested in a
realistic setup. We also notice in Table 4 that large
improvements in EM do not necessarily imply a
large increase in PCM-F1, since PCM-F1 num-
bers are already high for Spider in any of the tested
models, implying that the model is generating SQL
queries that are close to the exact gold SQL, only
different by a small change (e.g. value or column
name).

Comparing experiments with and without encod-
ing the schema shows that encoding the schema
does not significantly improve results in this single-
domain setup. We also observe that PCM-EM is
close to 0 in all experiments, supporting our moti-
vation to create a loosened evaluation metric.

5.3 PCM-F1 Validation

In order to validate the correctness of our proposed
evaluation metric, we compare PCM-EM with the
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more established EM metric of Spider. There are
two differences in the way EM is calculated com-
pared to PCM-EM: (1) EM anonymizes all val-
ues in the queries and (2) EM ignores the ON ex-
pressions in the JOIN clauses. For those reasons,
we define PCM-F1-NOVALUES and PCM-EM-
NOVALUES, modified versions of PCM-F1 and
PCM-EM, respectively, such that all values in the
SQL are anonymized and the ON expressions are
ignored. Table 4 shows that EM and PCM-EM-
NOVALUES are only different by up to 0.7 points
for all models, showing that PCM-F1 is well cali-
brated with Spider’s EM.

5.4 Error Analysis

Next, we analyze errors and successful outputs of
the model. Table 6 shows examples of gold vs.
predicted queries by our model, with respect to
some of the introduced challenges mentioned in
3.2.

We can see from the first example that the
model is often wrong whenever the question is
not specified well: In this example, this happens
in the SELECT, WHERE and ORDER fields. In the
SELECT clause, the model predicts extra columns
in comparison to the gold query, most likely as it
has learned to do so for similar questions. In addi-
tion, since the desired order of the results are not
mentioned in the utterance, it leads to a different
predicted ORDER BY clause. A hidden assump-
tion the author had added to the query is taking into
account only open questions (i.e. questions with
no close date: ClosedDate is null). The
model, which could not deduce this assumption
from the utterance alone, predicts a wrong filter ex-
pression CreationDate > ’2018-01-01’.

The second example shows how the model cor-
rectly uses the DATEDIFF function to manipulate
dates, although it predicted a wrong computation
of the percentage (i.e. without the SUM function).

The last example shows how the model gener-
ates a SQL query with parameters, for the number
of required users (with a predicted default value
of 100) and for the tag name. In this case, the pre-
dicted query is possibly better than the gold one as
it uses a reusable parameter instead of a fixed one.

6 Conclusion

In this work, we take a significant step towards
improving and evaluating Text-to-SQL models in
a real world setting, by releasing SEDE, a dataset

comprised of real-world complex and diverse SQL
queries with their utterances, naturally written by
real users. We show that there’s a large gap be-
tween the performance of strong Text-to-SQL base-
lines on SEDE compared to the commonly studied
dataset Spider, and hope that the release of this
challenging dataset will encourage research on im-
proving generalization for real-world SQL predic-
tion.
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Abstract

The task of semantic code search is to re-
trieve code snippets from a source code cor-
pus based on an information need expressed
in natural language. The semantic gap be-
tween natural language and programming lan-
guages has for long been regarded as one of
the most significant obstacles to the effective-
ness of keyword-based information retrieval
(IR) methods. It is a common assumption
that “traditional” bag-of-words IR methods are
poorly suited for semantic code search: our
work empirically investigates this assumption.
Specifically, we examine the effectiveness of
two traditional IR methods, namely BM25 and
RM3, on the CodeSearchNet Corpus, which
consists of natural language queries paired
with relevant code snippets. We find that the
two keyword-based methods outperform sev-
eral pre-BERT neural models. We also com-
pare several code-specific data pre-processing
strategies and find that specialized tokeniza-
tion improves effectiveness. Code for repro-
ducing our experiments is available at https:
//github.com/crystina-z/CodeSearch

Net-baseline.

1 Introduction

Community Question Answering forums like Stack
Overflow have become popular1 methods for find-
ing code snippets relevant to natural language ques-
tions (e.g., “How can I download a paper from
arXiv in Python?”). Such forums require commu-
nity members to provide answers, which means
that potential questions are limited to public code,
and a large portion of questions cannot be answered
in real time. The task of semantic code search re-
moves these limitations by treating a code-related
natural language question as a query and using it to
1https://stackoverflow.blog/2020/01/21/
scripting-the-future-of-stack-2020-pla
ns-vision/

retrieve relevant code snippets. In this way, novel
questions can be immediately answered whether in
public or private code repositories.

Consequently, the semantic code search task is
receiving an increasing amount of attention. Sev-
eral early efforts showed promising results apply-
ing neural networks models to various code search
datasets (Gu et al., 2018; Sachdev et al., 2018; Cam-
bronero et al., 2019; Zhu et al., 2020; Srinivas et al.,
2020). To facilitate research on semantic code
search, GitHub released the CodeSearchNet Cor-
pus and Challenge (Husain et al., 2019), providing
a large-scale dataset across multiple programming
languages with unified evaluation criteria. This
dataset has been utilized by multiple recent pa-
pers (Feng et al., 2020; Gu et al., 2021; Sun et al.,
2020; Arumugam, 2020).

Work on semantic code search has focused on
neural ranking models under the assumption that
such methods are necessary to bridge the semantic
gap between natural language queries and relevant
results (i.e., code snippets). Such approaches usu-
ally design a task-specific joint vector representa-
tion to map natural language queries and program-
ming language “documents” into a shared vector
space (Gu et al., 2018; Sachdev et al., 2018; Cam-
bronero et al., 2019). Inspired by progress in pre-
trained models (Devlin et al., 2019), researchers
proposed CodeBERT (Feng et al., 2020), a pre-
trained transformer model specifically for program-
ming languages, which yields impressive effective-
ness on this task.

Beyond utilizing the raw text of code corpora,
another thread of research conducts retrieval using
structural features parsed from code, which are be-
lieved to contain rich semantic information (Srini-
vas et al., 2020). Multiple papers have also pro-
posed incorporating structural information with
neural ranking models (Gu et al., 2021; Sun et al.,
2020; Ling et al., 2021; Guo et al., 2020).
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In contrast to these comparatively sophisticated
methods, in this work we explore the effectiveness
of traditional information retrieval (IR) methods on
the semantic code search task. This exploration is
of interest for two reasons:

First, while neural methods can take advantage
of distributed representations (i.e., static or con-
textual embeddings) to model semantic similarity,
Yang et al. (2019) found that pre-BERT neural
ranking models can underperform traditional IR
methods like BM25 with RM3 query expansion,
especially in the absence of large amounts of data
for training. Prior work has claimed that tradi-
tional IR methods are unfit for code search (Husain
et al., 2019), but there is a lack of empirical evi-
dence supporting this claim. In fact, in one of the
few comparisons with traditional IR methods avail-
able (Sachdev et al., 2018), BM25 performed well
in comparison to the proposed neural methods on
an Android-specific dataset.

Second, neural approaches are often reranking
methods that rerank candidate documents identi-
fied by a first-stage ranking method. Even dense re-
trieval methods that perform ranking on shared vec-
tor representations directly can benefit from hybrid
combinations with keyword-based signals as well
as another round of reranking (Gao et al., 2020). It
is thus useful to identify the best-performing tradi-
tional IR methods in this domain, so that they can
provide a complementary source of evidence.

Thus, our work has two main contributions: First,
we provide strong keyword baselines for seman-
tic code search, demonstrating that traditional IR
methods can in fact outperform several pre-BERT
neural ranking models even without a semantic
matching ability, which extends the conclusions
drawn by Yang et al. (2019) on ad hoc retrieval
to the semantic code search task. Second, we in-
vestigate and quantify the impact of specialized
pre-processing for code search.

2 Related Work

As discussed above, joint-vector representations
have been widely used in recent work on code
search. NCS (Sachdev et al., 2018) proposed an
approach integrating TF-IDF, word embeddings,
and an efficient embedding search technique where
the word embeddings are learned in an unsuper-
vised manner. CODEnn (Gu et al., 2018) devel-
oped a neural model based on queries and separate
code components. UNIF (Cambronero et al., 2019)

investigated the necessity of supervision and so-
phisticated architectures for learning aligned vector
representations. After concluding that supervision
and a simpler network architecture are beneficial,
the authors further enhanced NCS by adding a su-
pervision module on top. In addition to introduc-
ing the dataset, the CodeSearchNet paper also pro-
posed joint-embedding models as baselines, where
the embeddings may be learned from neural bag
of words (NBoW), bidirectional RNN, 1D CNN,
or self-attention (SelfAtt). In this work, we com-
pare against the best-performing of these baselines,
NBoW and SelfAtt.

Unlike attempts to learn aligned vector represen-
tations from each dataset, CodeBERT (Feng et al.,
2020) built a BERT-style pre-trained transformer
encoder with code-specific training data and objec-
tives, and then fine-tuned the model on downstream
tasks. This approach has been highly successful.

Another line of work tries to enhance retrieval
by incorporating structural information. In work
where queries and code snippets are encoded sep-
arately, this is usually achieved by merging the
encoded structure into the code vector. Sun et al.
(2020) extracted paths from the abstract syntax tree
(AST) of the code and directly used the encoded
path to represent the code snippet. Gu et al. (2021)
built a statement dependency matrix from the code
and transformed it into a vector, which is then
added to the code vector prepared from the text.
Ling et al. (2021) utilized a graph neural network
to embed the program graph into the code vector.
Adopting a different approach, Guo et al. (2020) ex-
tended CodeBERT by adding two structure-aware
pre-training objectives, and showed that the bene-
fits of structural information are orthogonal to the
benefits of large-scale pre-training.

While neural ranking models are popular ap-
proaches to the code retrieval task, we found few
papers that compared them with traditional algo-
rithms. To the best of our knowledge, only Sachdev
et al. (2018) compared their embedding model with
BM25, finding that BM25 performed acceptably.

3 Models

In this section, we describe the traditional IR meth-
ods that we used in our experiments and the neural
ranking models that have been evaluated on the
CodeSearchNet Corpus in previous work (Husain
et al., 2019; Feng et al., 2020).
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3.1 Traditional IR Baselines

To test the effectiveness of traditional IR methods,
we chose two well-known and effective retrieval
methods as our baselines: BM25 (Robertson and
Zaragoza, 2009) and RM3 (Lavrenko and Croft,
2001; Abdul-Jaleel et al., 2004). Both have been
widely used for ad hoc retrieval and have been
demonstrated to be strong baselines compared to
multiple pre-BERT neural ranking models (Yang
et al., 2019).

BM25 is a ranking method based on the prob-
abilistic relevance model (Robertson and Jones,
1976), which combines term frequency (tf) and
inverse document frequency (idf) signals from in-
dividual query terms to estimate query–document
relevance. RM3 is a query expansion technique
based on pseudo relevance feedback (PRF) that can
be combined with another ranking method such as
BM25. It expands the original query with selected
terms from initial retrieval results (e.g., results of
BM25) and applies another round of retrieval (e.g.,
with BM25) using the expanded query. We omit a
comprehensive explanation of these two methods
here and refer interested readers to the cited papers.

3.2 Neural Ranking Models

We compare the traditional IR methods described
above with three neural ranking models: neural
bag of words (NBoW), self-attention (SelfAtt), and
CodeBERT. Results of the first two models are
reported by Husain et al. (2019), and the last model
by Feng et al. (2020). We use their reported scores
in this paper.

According to Husain et al. (2019), both NBoW
and SelfAtt encode natural language queries and
code into a joint vector space, and then aggre-
gate the sequence representation into a single vec-
tor. The models are trained with the objective
of maximizing the inner products of the aggre-
gated query vectors and code vectors. The two
models only differ in the encoding step, where
NBoW encodes each token through a simple em-
bedding matrix and SelfAtt encodes the sequence
using BERT (Devlin et al., 2019). Feng et al. (2020)
pre-trained a bi-modal (natural language and pro-
gramming language) transformer encoder based
on RoBERTa (Liu et al., 2019), with the hybrid
objectives of Mask Language Model (MLM) and
Replaced Token Detection (RTD). The model is
then fine-tuned for the code search task on each
programming language dataset. We refer readers

Datapoints Unique Docstrings
Total Training Validation Test

Go 346 365 277 118 253 979 11 757 11 382
Java 496 688 372 894 340 380 11 621 20 893

JS 138 625 123 738 111 443 6 876 5 419
PHP 578 118 424 657 387 470 17 843 19 344

Python 457 461 421 263 379 864 20 897 20 502
Ruby 53 279 47 763 43 549 2 089 2 125

All 2 070 536 1 667 433 1 516 685 71 083 79 665

Table 1: Dataset Size Statistics.

to the original papers (Husain et al., 2019; Feng
et al., 2020) for further model details and hyper-
parameters.

4 Dataset and Pre-processing

In this section, we introduce the CodeSearchNet
Dataset (Husain et al., 2019) used in this paper and
the code specific pre-processing strategies (e.g.,
tokenization) to be compared.

4.1 Dataset

CodeSearchNet2 is a proxy dataset prepared from
non-fork open-source Github repositories. It con-
sists of 2M docstring–code pairs and 4M unla-
beled code fragments, where the code fragments
are function-level snippets and their respective doc-
strings (if any) serve as substitutes for natural
language queries. Under CodeSearchNet, there
are two sub-datasets, namely CodeSearchNet Cor-
pus and CodeSearchNet Challenge. The Code-
SearchNet Corpus dataset uses 2M docstrings as
automatically-labeled queries, whereas the Code-
SearchNet Challenge dataset uses another 99 free-
text queries that were manually judged.

In this work we conduct all experiments on the
CodeSearchNet Corpus dataset. The labeled data
are split into training, validation, and test sets in a
ratio of 80:10:10. Table 1 shows the overall dataset
size and the number of unique docstrings in each
data split. The test set is partitioned into segments
of size 1000 at the evaluation stage, and the correct
code snippet for a given query is compared against
the other snippets within the same segment. That
is, the code snippets in the 1000 <docstring,
code snippet> pairs naturally form the dis-
tractor set for each other.

4.2 De-duplication

According to Husain et al. (2019), the crawled
data are filtered according to certain heuristic rules,

2https://github.com/github/CodeSearchNet
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1 # Appends the given string at the end of
the current string value for key k.

2 def putcat (k, v)
3 k = k.to_s; v = v.to_s
4 lib.abs_putcat(@db, k, Rufus::Tokyo.

blen(k), v, Rufus::Tokyo.blen(v))
5 end
6

7 # Appends the given string at the end of
the current string value for key k.

8 def putcat (k, v)
9 k = k.to_s; v = v.to_s

10 @db.putcat(k, v)
11 end

Figure 1: Docstring duplication example (unused doc-
string and extra blank lines are removed).

Docstrings Duplicates (Number / Fraction)
Total Same repo

Go 277 118 18 531 6.7% 15 255 82.3%
Java 372 894 39 067 10.5% 34 072 87.2%

JS 123 738 7 254 5.9% 3 342 46.1%
PHP 424 657 42 058 9.9% 23 515 55.9%

Python 421 263 20 776 4.9% 16 608 79.9%
Ruby 47 763 3 006 6.3% 2 499 83.1%

All 1 667 433 130 692 7.4% 95 291 72.9%

Table 2: Docstring Duplicate Statistics. The Docstring
column is the same as the the Unique Docstring in
Table 1. Total indicates the number and proportion
of duplicate docstrings in each programming language
across the entire dataset. From Same Repo indicates the
number and proportion of docstrings whose duplicates
are found all in the same repository.

including removing (1) pairs where the docstring is
shorter than three tokens, (2) functions that contain
fewer than three lines, contain the “test” substring,
or serve as constructors or standard extension meth-
ods, and (3) duplicate functions. Nevertheless, even
though duplicate functions are removed, queries
prepared from docstrings can still repeat. That
is, different functions can share the same docu-
mentation. Such duplication may result from func-
tion overloading, oversimplified documentation, or
mere coincidence. An example of this duplication
is shown in Figure 1.

Table 2 shows that such query duplication can
be observed in all programming languages to some
degree, and most of the duplication arises from
functions in the same repository. Considering the
number of duplicate docstrings, it is inaccurate to
consider all functions other than the one matched
to the current query as negative samples. In this
work, we aggregate all functions sharing the same
docstring and regard all of them as relevant results.

4.3 Pre-processing
In all experiments, we apply the Porter stemmer
and perform stopword removal using the default
stopwords list in the Anserini toolkit (Yang et al.,
2017), which is a Lucene-based IR system.

On top of this default configuration, we investi-
gate the effectiveness of the following tokenization
and stopword removal strategies specific to pro-
gramming languages:

• no-code-tokenization: No extra pre-processing is
applied other than Porter stemmer and removal
of English stopwords.

• code-tokenization: Tokens in both camelCase
and snake case in code snippets and docu-
mentation are further tokenized into separate to-
kens, e.g., camel case and snake case.3

• code-tokenization + remove reserved tokens: Con-
sidering that reserved tokens in programming
languages intuitively add little value in exact
match methods, we remove the reserved tokens
of each programming language on top of the code-
tokenization condition.

We show length and vocabulary statistics after ap-
plying each pre-processing strategy in Table 3. In
the table, total vocab size is the number of tokens
that appear in either docstring or code, and over-
lapped vocabulary ratio is the percentage of tokens
appearing in both docstring and code in the entire
vocabulary. The table shows that code tokenization
greatly shrinks the vocabulary size and raises the
overlapped vocabulary ratio. Interestingly, reserved
token removal shortens the code snippets length,
but shows little impact on the overall vocabulary
size. This results from the fact that reserved tokens
are commonly contained in variable names as sub-
tokens and thus reappear after code tokenization
(e.g., the variable name class dir would be to-
kenized into class and dir, therefore class
would still appear in the final vocabulary).

5 Experiments

5.1 Experimental Setup
All our experiments were conducted with Capre-
olus (Yates et al., 2020), an IR toolkit integrating
ranking and reranking tasks under the same data
3According to Husain et al. (2019), NBoW and SelfAtt tok-
enize ‘camelCase’ tokens into subtokens (‘camel’ and ‘case’),
which is similar to our code-tokenization setting.
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Ruby JS Go Python Java PHP

no-code-tokenization
keep reserved tokens

avg docstring length 14 13 20 14 15 8
avg code length 37 73 44 60 47 45
total vocab size 160 175 455 771 651 143 1 255 725 1 248 229 1 061 762
overlapped vocab % 13.58% 10.18% 33.02% 9.92% 8.02% 7.49%

code-tokenization
keep reserved tokens

avg docstring len 15 13 24 14 16 8
avg code len 57 110 64 88 85 72
total vocab size 31 999 76 305 68 877 191 608 105 005 134 729
overlapped vocab % 40.13% 28.24% 36.83% 26.41% 28.62% 21.34%

code-tokenization
remove reserved tokens

avg docstring len 15 13 28 14 16 8
avg code len 48 93 57 78 74 62
total vocab size 31 999 76 305 68 877 191 608 105 004 134 729
overlapped vocab % 40.12% 28.24% 36.83% 26.41% 28.62% 21.34%

Table 3: Average length and vocabulary statistics after applying each pre-processing strategy.

Models Ruby JS Go Python Java PHP
CodeBERT 0.6926 0.7059 0.8400 0.8685 0.7484 0.7062
NBoW 0.4285 0.4607 0.6409 0.5809 0.4835 0.5181
SelfAtt 0.3651 0.4506 0.6809 0.6922 0.5866 0.6011

no-code-tokenization + keep reserved tokens
BM25 0.4484 0.4097 0.6979 0.4317 0.4002 0.3758
BM25+RM3 0.4427 0.4123 0.6761 0.4216 0.3988 0.4062

code-tokenization + keep reserved tokens
BM25 0.5789 0.5522 0.7289 0.5989 0.6022 0.5929
BM25+RM3 0.5735 0.5312 0.7214 0.5865 0.5777 0.5379

code-tokenization + remove reserved tokens
BM25 0.5707 0.5312 0.7317 0.5905 0.5838 0.5399
BM25+RM3 0.5703 0.5269 0.7246 0.5871 0.5794 0.5400

Table 4: MRR on the test set of the CodeSearchNet Corpus where each model searches for the correct code snippet
against the 999 distractors. The highest scores among non-BERT models are highlighted in bold, and the ones
among keyword-only models are underlined. We copied the scores of neural ranking models from Husain et al.
(2019) and Feng et al. (2020).

processing pipeline. We chose the toolkit to en-
hance reproducibility and to support future com-
parisons. Note that although Capreolus is primar-
ily designed for text ranking with neural ranking
models, in this work we do not use any of those
features. The underlying implementation of BM25
and RM3 are provided by the Pyserini toolkit (Lin
et al., 2021), which in turn is built on the Lucene
open-source search library, but Capreolus provides
simplified mechanisms for parameter tuning and
other useful features for end-to-end experiments.

Following the original paper (Husain et al.,
2019), each correct code snippet was searched
against a fixed set of 999 distractors, as described
in Section 4.1. All experiments were evaluated
with Mean Reciprocal Rank (MRR). In all exper-
iments, we tuned the parameters k1 and b for
BM25 and originalQueryWeight, fbDocs,
fbTerms for RM3 on the validation set, then ap-
plied the parameters from the best result on the test
set. Note that since BM25 and RM3 only require
parameter tuning, we did not use the training set
mentioned in Table 1.

k1 [0.7, 1.3], step size 0.1
b [0.7, 1.0], step size 0.1
fbDocs [55, 95], step size 10
fbTerms 2, 5, 7, 10
originalQueryWeight 0.7, 0.8, 0.9

Table 5: BM25 and RM3 parameter values explored.

After pilot experiments on the Ruby and Go
datasets to determine reasonable parameter ranges
to search, we performed a grid search on each lan-
guage dataset over the values shown in Table 5.

5.2 Results and Analysis

The results are shown in Table 4. The first row re-
ports the results of CodeBERT (Feng et al., 2020).
We list this result here to better compare the IR
baselines with the state-of-the-art model in the field.
The next two rows are pre-BERT neural model re-
sults copied from Husain et al. (2019). The remain-
ing rows show the scores of BM25 and RM3 with
the three aforementioned pre-processing strategies
on the six programming language datasets.
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As Table 4 shows, BM25 and BM25 + RM3 in
general outperform the NBoW and SelfAtt baselines
despite variations in effectiveness across program-
ming languages. The SelfAtt model only shows
sizeable improvement over BM25 on Python and a
modest improvement on PHP. This suggests that the
gap between natural language and programming
languages does not necessarily hinder traditional
IR methods in the code search task, and that dis-
tributed representations are not necessarily better
at addressing this gap.

Comparing the results of BM25 and BM25 +
RM3, we observe that adding RM3, which is gen-
erally considered more effective, does not improve
over BM25 on any of the language datasets. We
suspect the cause of this unanticipated result is that
most of the queries in CodeSearchNet only have a
single relevant document, which may not be suffi-
cient to quantify the benefits of pseudo relevance
feedback techniques. This hypothesis is supported
by a similar observation that adding RM3 degrades
effectiveness on the MS MARCO dataset (Bajaj
et al., 2018), where each query also has few rele-
vant documents (Lin et al., 2020).

The results from each pre-processing strategy
show the necessity of code tokenization, which
improves MRR overall. On the other hand, remov-
ing the reserved tokens does not improve effective-
ness. The possible reasons could be that (1) some
reserved tokens are in the English stopwords list
and would be removed anyway (e.g. for, if,
or, etc.), (2) some special reserved tokens rarely
appear in the query and thus contribute little to
the final score (e.g. elif, await, etc.), and
(3) frequently-appearing reserved words are given
small IDF weights in BM25, which minimizes their
effect (e.g. final, return, var).

6 Conclusion

In this paper we examined the effectiveness of tra-
ditional IR methods for semantic code search and
found that while these exact match methods are not
as effective as CodeBERT, they generally outper-
form pre-BERT neural models. We also compare
the effect of code-specific tokenization strategies,
showing that while splitting camel and snake case
is beneficial, removing reserved tokens does not
necessarily help keyword-based methods.

There are also aspects of semantic code search
that this paper does not cover. Sachdev et al. (2018)
mentioned the nuance between different code com-

ponents, such as how readability can differ for
function names and local variables. We leave for
future work an investigation of whether treating
such components differently improves effective-
ness. Nevertheless, the lesson from our work seems
clear: even with advances in neural approaches, we
shouldn’t neglect comparisons to and contributions
from strong keyword-based IR methods.
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