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Abstract

Decompiling binary executables to high-level
code is an important step in reverse engineer-
ing scenarios, such as malware analysis and
legacy code maintenance. However, the gen-
erated high-level code is difficult to under-
stand since the original variable names are
lost. In this paper, we leverage transformer
models to reconstruct the original variable
names from decompiled code. Inherent dif-
ferences between code and natural language
present certain challenges in applying conven-
tional transformer-based architectures to vari-
able name recovery. We propose DIRECT,
a novel transformer-based architecture cus-
tomized specifically for the task at hand. We
evaluate our model on a dataset of decompiled
functions and find that DIRECT outperforms
the previous state-of-the-art model by up to
20%. We also present ablation studies evalu-
ating the impact of each of our modifications.
We make the source code of DIRECT available
to encourage reproducible research.

1 Introduction

Proprietary software often comes in binary form,
making it difficult to comprehend its functionality,
as many high-level code abstractions (e.g., mean-
ingful variable names, code structures, etc.) are
lost when source code is compiled to binaries. To
extract meaningful information from binaries, soft-
ware analysts typically use reverse engineering that
converts binary executables into another form that
can be more easily comprehended (Ďurfina et al.,
2013). Reverse engineering is often applied in bi-
nary code inspection, legacy software maintenance,
malware analysis, and cyber forensics. For exam-
ple, reverse engineering uncovered the rebirth of
ZeUS malware variants during the coronavirus pan-
demic of 2020 (Osborne, 2020).

∗ Equal contribution

void __fastcall add_match(char *a1) {
// ... var declarations omitted ...
v1 = ( i n t)(a1 - 1);
whi le ( 1 ) {
v3 = *(unsigned __int8 *)(v1++ + 1);
v2 = v3;
i f ( !v3 ) break;
v4 = v2 > 0x7F;
i f ( v2 != 127 )
v4 = v2 > 0x1F;

i f ( !v4 ) {
free(a1);
re turn;

}
}
// ... some code omitted ...

}

Figure 1: Real world Hex-Rays decompilation. Recon-
structed source differs significantly from original, and
it is hard to deduce original developers’ intentions.

Traditionally, the primary reverse engineering
tools are disassemblers, which extract assembly
instructions from a binary executable. However,
in recent years, decompilers like Ghidra (Ghidra)
and Hex Rays (Hex-Rays) have become practical
and popular. They produce a source code-like ap-
proximation of the binary code as shown in Figure
1. While these tools can retrieve the approximate
code structure, they introduce variable names that
have no semantic meaning, drastically reducing
code readability and comprehensibility (Katz et al.,
2018; Hu et al., 2018; Hayati et al., 2018).

In recent years, Machine Learning-based mod-
els have shown promise in recovering lost variable
names from decompiled code using a frequency-
based model (He et al., 2018) or LSTMs (La-
comis et al., 2019). However, variables in source
code are not independent of each other and often
have hidden long-range dependencies. LSTMs and
frequency-based models are not well-suited to cap-
ture such dependencies. Since transformer-based
models can more effectively capture long-range
dependencies (Vaswani et al., 2017), in this work
we explore transformer-based models to recover
variable names from decompiled code.

mailto:vikram.nitin@columbia.edu
mailto:ant@cs.columbia.edu
mailto:rayb@cs.columbia.edu
mailto:kaiser@cs.columbia.edu


49

Transformers are popular in natural language
processing (Vaswani et al., 2017; Devlin et al.,
2019; Yang et al., 2019). However, code differs
from natural language in many significant ways
(Allamanis et al., 2018; Ding et al., 2020), hence
vanilla transformer architectures need modifica-
tions for practical application to the task of variable
recovery. Consider the following problems:

Unknown number of tokens to be predicted:
Transformers that capture bidirectional context usu-
ally predict a known number of tokens, but to make
the vocabulary size manageable, identifiers must
be split into subtokens. For example, an identifier
like my var could be split up as three subtokens -
“my”, “ ”, and “var”. Each identifier can be com-
prised of an arbitrary number of subtokens, and the
model needs to access the information contained
in the entire sequence while predicting the name
for an identifier. To deal with this problem, we use
an encoder-decoder transformer architecture as in
(Ahmad et al., 2021).

Syntactic constraints: Unlike natural language,
code’s strict syntax requires that a variable assigned
a name at one occurrence in the prediction must be
the same at all other occurrences. For example, if
a decompiled identifier name v1 appears on line
3 and line 100, the predicted name must be the
same on both lines. We propose a novel algorithm
that uses the joint probability over sequences to
predict variable name identifiers while still obeying
constraints imposed by the code syntax.

Token Non-uniformity: While training a
model for natural language, all tokens are usu-
ally given equal importance (Vaswani et al., 2017).
However, for semantic understanding of code the
identifier tokens are more important than those to-
kens that are built into the language syntax. For ex-
ample, a variable name like “click count” pro-
vides much more sematic information than a key-
word like ”while”. We propose a token weighting
scheme specially crafted for the variable name re-
covery problem.

Code sequences are long: Adaptations of NLP
techniques to code often consider functions analo-
gous to sentences. Traditional transformers limit
the maximum sequence size to a few hundred to-
kens. While this restriction rarely presents a prob-
lem dealing with sentences, many functions are
much longer. For example, the longest function in
our benchmark dataset (Section 4.1) is over 4000
tokens long. To handle longer functions we propose

a mechanism to break long sequences into smaller
pieces and recombine their individual predictions
while still obeying code’s syntactic constraints.

Putting all these together, we propose DIRECT
(Decompiled Identifier Renaming Engine using
Contextual Transformers), the first transformer-
based model built specially for variable recovery
from decompiled binaries. We compare DIRECT
to DIRE (Lacomis et al., 2019), the state of the art
in variable name recovery on a benchmark dataset
and show that DIRECT improves on the baseline
by 20%. We also evaluate the individual impact of
each of our specific adaptations by performing a
series of ablation studies. We provide the source
code for DIRECT 1 in the hope that it will prove to
be a useful tool for other researchers.

2 Related Work

Variable Name Recovery: DIRE (Lacomis et al.,
2019), compared to in the evaluation, performs the
same task as DIRECT but uses traditional LSTMs
combined with GGNNs. DIRECT uses DIRE’s to-
kenizer as is, our innovations replace DIRE’s bidi-
rectional LSTM with our task-specific transformer
architecture. Prior to DIRE, Debin (He et al., 2018)
represented the prior state of the art using decision
tree-based modeling.

Type Inference: Debin also attempted to re-
cover type information – which is a different prob-
lem. Typilus (Allamanis et al., 2020) is a new
GGNN-based approach for type inference.

Function Name Recovery: An orthogonal de-
compilation problem is function name recovery.
Function names are usually left in executables’
metadata, by default, but in malware these sym-
bols are probably stripped. Recent work by Ar-
tuso et al. (Artuso et al., 2020) has shown trans-
formers are highly applicable to this task and the
pre-training/fine-tuning paradigm has a place in
code analysis, but they limit their experiments
to function names. Other work like David et al.
(David et al., 2020) uses LSTM architectures to
encode API call sequences as function profiles and
learned the function names commonly associated
with those call sequences.

Transformers for Filling-in Blanks: Filling in
blanks in an input sequence necessitates a model
that can capture bidirectional context. BERT’s
pre-training objective (Devlin et al., 2019) solves

1https://github.com/DIRECT-team/
DIRECT-nlp4prog

https://github.com/DIRECT-team/DIRECT-nlp4prog
https://github.com/DIRECT-team/DIRECT-nlp4prog
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Figure 2: Our state-of-the-art variable renaming model, DIRECT. DIRECT breaks the function into pieces, passes
each piece through a BERT encoder and decoder, and combines the predictions of all the pieces. For simplicity,
we have omitted the advanced prediction algorithm (Algorithm 1; Figure 3) in this diagram. For more details, refer
to Section 3.2.

this problem by reconstructing random masked to-
kens. SpanBERT (Joshi et al., 2020) focuses on
contiguous spans of masked tokens with a modi-
fied pre-training objective. These methods require
the location and length of each blank to be known
in advance, but Insertion Transformers (Stern and
Uszkoreit, 2019) solve for variable-length blanks
without explicitly controlling insertion.

Blank Language Models (Shen et al., 2020) solve
for fixed blanks with variable length with a special
blank character that the model can predict and feed
back in a loop. Another architecture that solves the
same problem is BART (Lewis et al., 2020). Sim-
ilar to us, BART uses a BERT encoder and a left-
right decoder to perform arbitrary transformations
on the input. However both these approaches can-
not be directly applied to variable renaming without
modification to guarantee that multiple blanks have
the same prediction.

Decompilers: There are two decompilers used
in practice. One is Hex-Rays (Hex-Rays), from
which the training set was built, and the other is the
open-source Ghidra platform (Ghidra), which both
fail to make meaningful efforts at reconstructing
variable names without debugging information. A
research compiler DREAM++ (Yakdan et al., 2016)
function signature heuristics to generate meaning-
ful variable names, but does not apply ML models.

Adapting ML to SE tasks: Recent works like

(Rahman et al., 2019) and (Ding et al., 2020) have
also investigated the difficulties of applying ML
models from other disciplines directly to software
engineering tasks.

3 Design

Figure 2 provides an overview of DIRECT. In this
section we detail each of the problems we encoun-
tered and the design decision solutions.

3.1 Encoding/Decoding

Transformers are traditionally used to predict entire
sequences; however in our problem setting most
tokens are fixed. Therefore we need to adapt trans-
formers from predicting entire sequences to pre-
dicting individual tokens based on the fixed tokens.

While making a prediction on an occurrence of
a particular variable, the model should ideally have
access to the information contained in the entire
input sequence. The naive solution is to use a bidi-
rectional transformer that with a Masked Language
Model (MLM) training scheme, such as BERT.
However by design, an MLM is designed to predict
the same number of tokens as in the input sequence.
In our case, because of subtokenization, the pre-
dicted subsequences can be of unknown length.
Adapting an MLM transformer to solve this prob-
lem is non-trivial.

The next option is to use a transformer as a
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sequence-to-sequence language model to predict
the immediate next token given all the preceding
tokens. One could feed the entire sequence until a
variable is reached, start generating tokens one at
a time in an autoregressive manner, and stop when
a special end token is predicted. However such a
model cannot use bidirectional context while mak-
ing a prediction, and can only leverage the part of
the sequence that precedes each variable.

We propose to use an encoder-decoder setup,
as in (Vaswani et al., 2017). The transformer en-
coder embeds each input token, and the sequential
decoder attends over these encoder embeddings
while making predictions one token at a time. So
although we give the decoder only the portion of
the input sequence that precedes the variable of in-
terest, it also has access to the entire input sequence
through the encoder embeddings.

Of course, this still leaves open the question of
how to constrain multiple instances of the same
variable to have the same prediction. While we
will present a better solution to this problem in
Section 3.2, a good first approximation is to simply
use the prediction at the first occurrence of the
variable we are interested in. We hypothesize that
since the encoder-decoder model has access to the
entire sentence while making a prediction for each
occurrence, one cannot do drastically better than
this simple approximation.

3.2 Advanced Prediction Algorithm

Effective sequence modeling requires not only mak-
ing predictions, but also predictions that fit the
problem setting (Ding et al., 2020). Semantic pre-
serving identifier renaming mandates that once a
variable has been renamed it must have the same
value at each occurrence. This additional constraint
poses a challenge for vanilla transformers since
they predict each token independently in traditional
language modeling. Exhaustively searching the tar-
get vocabulary space is computationally intractable,
so we narrow the search space with a specialized
prediction algorithm that fits the problem setting.

At the variable’s first occurrence, we make m
predictions for its name, each of which leads to a
different sequence of variable name assignments.
Throughout our algorithm, we maintain the top k
sequences only. Thus at the first occurrence of a
variable, we generate m × k possible sequences,
and pick the top k. In practice, we use m = k.

At later occurrences of a variable, we update the

scores of the existing predictions, thus maintaining
the list of k sequences. This is where our algorithm
differs from standard beam search. Note that the
predictions made at the first occurrence of a vari-
able constrain its predictions at further occurrences,
but choosing a large k mitigates this problem.

This procedure, “Advanced prediction”, is
shown in Figure 3 for the case when k = 2. Algo-
rithm 1 describes it in detail. In our experiments,
we observed that choosing k = 5 was optimal.

Algorithm 1 Advanced Prediction
1: Input : A sequence of decompiler output to-

kens S, and a model M

2: Output : S with predicted names

3: gen← [[ ]], probs← [1]

4: for tok ∈ S do
5: if tok is not a variable then
6: for seq ∈ gen do
7: seq.append(tok)
8: continue
9: if tok has been seen before then

10: for j ∈ 1...len(gen) do
11: n← current pred of tok in gen[j]
12: p← prob assigned to n by M at

the current position

13: gen[j]← gen[j] + p
14: probs[j]← probs[j]× p

15: else
16: for j ∈ 1...len(gen) do
17: Using beam search over sub-

tokens with M, find the top k
possibilities for the name of tok

18: Let the names be n1, ..., nk and
their probabilities be p1, ..., pk

19: Replace gen[j] with
(gen[j] + n1), ..., (gen[j] + nk)

20: Replace probs[j] with
(probs[j] · p1), ..., (probs[j] · pk)

21: Sort gen and probs in desc. order of probs
22: gen← gen[1 : k]
23: probs← probs[1 : k]

24: return gen[1]
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int v1 ; char v2 ;* ++v1
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Figure 3: Advanced Prediction with k = 2. The de-
coder takes as input the portion of the sequence that
precedes the variable being predicted. Our algorithm
differs from standard beam search in the prediction of
the second occurrence of v1. Rather than generate mul-
tiple predictions for v1, the algorithm simply updates
the scores of the existing predictions in order to obey
the syntactic constraints of code.

3.3 Identifier Token Coefficient

A typical transformer treats all tokens identically
when computing the loss function during pre-
training and fine-tuning. Code differs from natural
language in the grammar requires the majority of
the tokens. The only opportunity for the program-
mer to inject semantic meaning into the source
code text is through identifiers, which makes this
problem compelling in the first place. The model
should therefore treat identifier tokens differently.

We implement this concept by training with a
custom loss function as shown in Figure 4. Tra-
ditional NLP architectures predict the entire se-
quence, and then train on a loss function by aver-
aging the error uniformly across all tokens. Our
custom weighting scheme places increased signif-
icance on prediction of identifiers, using a mask
which increases the loss 50-fold for identifiers as
compared to all other tokens. We expect that this
identifier token coefficient (ITC) hyper parameter
could be tuned in the future for better performance.

Predicting the identifiers and ignoring the rest
of the characters in the sequence would result in a
model that doesn’t learn the context surrounding
the identifier which informs the prediction.
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Figure 4: Identifier Token Coefficient loss function.
The Negative Log Likelihood (NLL) loss is computed
for each token, and a weighted sum taken to compute
the loss.

3.4 Splitting and Merging Mechanism

Another inherent difference between code and nat-
ural language when considering sequence to se-
quence modeling is the length of the sequence. Dis-
cussion of natural language modeling overlooks
this aspect since sentences rarely exceed 200 to-
kens. In code however functions are significantly
longer so the ML models must support sequences
of arbitrary length. In fact our benchmark dataset
contains a small number of sequences with length
greater than 2000. With respect to identifier re-
covery, longer sequences mean more variables to
recover, multiple usages per variable, and more
opportunity for errors. This poses a problem for
transformers as traditional transformer based archi-
tectures, like BERT, require a maximum sequence
length set in advance. Furthermore since attention
must be trained across all tokens, the memory us-
age increases quadratically with sequence length.

In order to use our model for arbitrary sequence
lengths, we developed a novel splitting and joint
prediction mechanism. As described in Figure 2
we divide the sequence into multiple chunks of
512 tokens upon which the model predicts. A sin-
gle variable can have a different prediction in each
chunk we combine these predictions using the pre-
diction at the first chunk in which a variable occurs.

We also tried using the chunk with the highest
confidence, but we found that this did not perform
as well. We suspect this is because the probabili-
ties are less than one, and multiplications with each
successive variable only decrease the probability of
the entire sequence. Hence smaller pieces with per-
haps just one or two occurrences of a variable will
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be more confident in their predictions despite hav-
ing less information. One could impose a penalty
for pieces with fewer variables, but we defer this
analysis to future work.

Other transformer variants can handle sequences
arbitrary lengths like XLNet (Yang et al., 2019),
and we expect these advanced models will handle
this issue as well as present new challenges. We
again leave these endeavors to future work.

3.5 DIRECT

Using the techniques from the previous sections,
we put it all together to get DIRECT, a state-of-
the-art variable renaming system. Given an input
sequence, DIRECT splits it into pieces of length
at most 512 each (default BERT architecture), and
puts each piece through a BERT encoder and a
BERT decoder with advanced prediction (Algo-
rithm 1). Different predictions across pieces for the
same variable are combined by taking the predic-
tion of the first piece in the sequence that contains
the variable. Figure 2 depicts the entire model.

4 Experimental Setup

4.1 Data

We use the dataset provided by DIRE (Lacomis
et al., 2019). It was generated using C binaries
from Github, which were then decompiled using
Ida’s Hex-Rays decompilation plugin (Hex-Rays).
The training data set consists of 1,011,049 func-
tions, with a median of 16 variables per function,
a median of 4 unique variables per function, and
a median sequence length of 150 subtokens. We
follow DIRE and use Sentencepiece (Kudo and
Richardson, 2018) to split the functions into subto-
kens.

We use only the “Body-not-in-train” subset for
the validation and test data. They consist of 23662
and 24862 examples, respectively.

4.2 Metrics

We define accuracy as an exact match between the
original variable name as determined by the debug
information mapping, and the name predicted by
DIRECT. We also examine the edit distance be-
tween predicted names and true names, and use the
edit distance per number of characters (the charac-
ter error rate) as our metric as in DIRE (Lacomis
et al., 2019) to capture success of partial matches.
We also measure the Jaccard similarity which is
the ratio of the number of overlapping n-grams

between two sequences to the total number of n-
grams contained in them. We use n=1, so that each
word is treated as a set of its constituent charac-
ters. There are some instances when decompiler
variables have no corresponding true name. These
are ignored from all metrics.

4.3 Pre-training Procedure

We pre-train one BERT model using the standard
MLM task on source sequences directly from the
decompiler output (with the dummy variable names
from the decompiler). We call this the BERT en-
coder. Similarly we pre-train another BERT model
using MLM on target sentences (with the true vari-
able names), and call this the BERT decoder. Both
models used 4 attention heads, 6 hidden layers,
and a hidden embedding size of 256. We trained
the encoder and decoder for 220k and 140k steps,
respectively, using a batch size of 128 sequences.
While masking tokens, we do not differentiate be-
tween variable and non-variable tokens since we
want the model to learn the complete structure of
the code sequences. We also used the standard op-
timization techniques employed by BERT (Devlin
et al., 2019), wherein an Adam optimizer is used
with a variable learning rate. The learning rate in-
creases linearly from 0 to 10−4 over the ”warm-up”
period of 40k iterations, and then decreases linearly
from 10−4 to 0 at the end of pre-training.

4.4 Fine-tuning Procedure

After reviewing our proof of concept experiments
we trained our best configuration for 85 epochs to
produce the DIRECT prototype. We follow the
same convention as DIRE (Lacomis et al., 2019),
whereby the number of sequences per batch is vari-
able, but the total number of tokens in the batch
is fixed to define the size of the batch. We used
a batch size of 4096 tokens per batch. We used a
learning rate of 1e-4 for the first 10 epochs, 0.3e-4
for the next 10, and 1e-5 thereafter.

5 Results

5.1 DIRECT Evaluation

In order to evaluate the effectiveness of DIRECT,
we compare its performance against that of DIRE
on our test dataset. The results are shown in Table
1. We observe that DIRECT achieves an increase
of 7.1 percentage points in accuracy over DIRE,
which is a relative increase of 19.9%. We obtained
all DIRE results by re-running the authors’ code on
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Model Accuracy (%) ↑ Top-5 Accuracy (%) ↑ CER ↓ Jaccard Dist ↓
DIRE 35.8 41.5 .664 .537

DIRECT 42.8 49.3 .663 .501
Improvement 20% 19% .2% 6.5%

Table 1: Test Accuracy, Top-5 Accuracy (computed by taking the top 5 predictions for each sequence and using
the predictions of variables contained in these sequences), Character Error Rate and Jaccard distance of DIRE vs
DIRECT. DIRECT outperforms DIRE on all four metrics. DIRE results are reproduced by re-running the authors’
code on our dataset.

Figure 5: A visualization of the attention weights of
the trained decoder while predicting variables. Darker
represents larger weights. The variable subtokens that
are being predicted are boxed . For more details, refer
to Section 5.

the dataset, rather than simply using the numbers
from their paper.

5.2 Qualitative Analysis

We also perform some qualitative inspection of
the attention weights of the trained model to un-
derstand what information it is using to make its
inferences. An example of this is shown in Figure
5 where the predicted identifier is outlined in black.
The attentions shown are the weights used while
predicting a name for the variable shown in a box,
averaged over all attention heads at the last layer
of the decoder.

We observe that when making a prediction on
the first occurrence of a variable, the decoder model
pays attention mainly to the function header, more
specifically the return type and function name.
However for later occurrences of the same vari-
able, although it does look at the function header
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Figure 6: Variation of Accuracy of DIRECT and DIRE
with length. The spike in DIRE’s performance for the
last two categories with very few examples is likely to
be an anomaly and not representative of its true perfor-
mance on sequences of those lengths. Note that this is
on the validation set.

to some extent, it relies chiefly on its predictions
for earlier instances of the same variable.

5.3 Performance on Long Sequences

The graph in Figure 6 shows the accuracy of DI-
RECT on sequences of various lengths. As we
cross the 500 token mark, and the splitting tech-
nique takes over, there is a steep drop in accuracy.
This problem is mirrored in DIRE’s accuracy al-
though not quite as steeply. Still for sequences of
length less than 512 tokens DIRECT has a improve-
ment of 10 percentage points over DIRE (48.9%
vs. 38.8%). DIRE has high accuracy in the longest
two sets of sequences, but this is likely an anomaly
caused by insufficient samples sizes.

Other transformer based variants address this
sequence issue such as XLNet (Yang et al., 2019),
and we expect these advanced models will handle
this issue as well as present new challenges. We
again leave these endeavors to future work.
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Model Accuracy (%) ↑ CER ↓
Uniform token weighting 30.0 .80
Weighting identifiers only 33.7 .76

ITC weighting scheme 34.4 .75

Table 2: Validation accuracy and Character Error Rate for various token weighting schemes. Prediction is done
using the “first prediction” strategy. All the models are trained for 15 epochs. Refer to Section 3.3 for more details.

Model Accuracy (%) ↑ CER ↓
First pred 34.4 .75

Advanced pred 34.6 .75

Table 3: Validation accuracy and Character Error Rate
for advanced prediction versus first prediction. Both
models are trained for 15 epochs. Refer to Section 3.2
for more details.

Model Accuracy (%) CER
Decoder Only 19.6 .97

Encoder-Decoder 34.4 .75

Table 4: Validation accuracy and Character Error Rate
for our encoder-decoder model versus a decoder-only
model. Both models are trained for 15 epochs. Refer
to Section 3.1 for more details.

5.4 Ablation Studies
In this section, we evaluate the impact of each of
our design choices. We train all the models for 15
epochs and evaluate them on the validation set.

5.4.1 Encoder-Decoder Architecture
Table 4 shows the performance of our encoder-
decoder model vs a decoder-only model (a single
transformer, operating as an autoregressive lan-
guage model) using the prediction at the first occur-
rence of each variable. As we can see, the decoder-
only model does significantly worse, which is ex-
pected since it has access only to a part of the func-
tion while making a prediction at the first instance
of a variable.

5.4.2 Advanced Prediction Algorithm
Table 3 compares the results of advanced prediction
with “first prediction”, i.e., taking the prediction at
the first occurrence of a variable. We observe that
advanced prediction improves the performance of
our encoder-decoder model by a small amount.

This could be explained by our observation in
Section 5.2 that the model seems to rely its earlier
predictions while predicting the name of a particu-
lar variable. Later predictions of a variable refer to
the value assigned at the first prediction, and so the

prediction of a variable seldom changes from what
was predicted at the first instance.

5.4.3 Identifier Token Coefficient
We compare the performance of three different
token weighting schemes in the loss function -
weighting all tokens uniformly, weighting accord-
ing to ITC (as described in Section 3.3), and weight-
ing the identifiers only while ignoring the rest of
the tokens.

As seen in Table 2, ITC shows a 4.4% increase in
accuracy relative to the uniform weighting scheme,
without hyperparameter tuning of the coefficient.
As expected the model that ignores the surrounding
tokens in the loss function performs worse. This
is because the model doesn’t effectively learn the
context surrounding the identifiers, resulting in a
decrease in accuracy by 0.7 percentage points.

6 Conclusion and Future Work

The problem of variable name reconstruction poses
certain challenges for traditional transformer-based
models. Specifically, the variable length of the
prediction target, the constraints imposed by code
syntax, architecture limitations that make long
sequences difficult, and the task specific non-
uniformity of token significance. In this work, we
developed a series of solutions to address these is-
sues, namely 1) an encoding/decoding scheme to
handle arbitrary sub-token length prediction, 2) a
specialized prediction algorithm, 3) a customized
identifier token coefficient weighting scheme, and
4) a splitting and combining algorithm for stan-
dard transformers to handle sequences of arbitrary
length. In addition to empirical studies evaluating
the effectiveness of each of these techniques, we
also combined them to create DIRECT, a practical
open-sourced identifier renaming engine. We eval-
uated DIRECT using a standard benchmark dataset
against the state of the art, DIRE (Lacomis et al.,
2019), and found that DIRECT provides a 20%
improvement. We hope that in addition to an open-
sourced tool, this work functions as a roadmap for
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other researchers trying to solve the types of prob-
lems we encountered when adapting transformer-
based models to code analysis tasks. Future work
could leverage the Abstract Syntax Tree (AST) of
each function, and employ new transformer archi-
tectures like XLNet (Yang et al., 2019) to avoid
splitting up the input while handling longer se-
quences. Our approach might also improve the
results of other code analysis tasks like type infer-
ence, function re-naming, docstring prediction, and
function boundary identification.
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