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Abstract

We introduce CONTEST, a benchmark for
NLP-based unit test completion, the task of
predicting a test’s assert statements given its
setup and focal method, i.e. the method to
be tested. CONTEST is large-scale (with 365k
datapoints). Besides the test code and tested
code, it also features context code called by ei-
ther. We found context to be crucial for ac-
curately predicting assertions. We also intro-
duce baselines based on transformer encoder-
decoders, and study the effects of includ-
ing syntactic information and context. Over-
all, our models achieve a BLEU score of
38.2, while only generating unparsable code in
1.92% of cases.

1 Introduction

Testing is commonly considered an important part
of software development, but it tends to be ne-
glected in practice, as developers find it rather time-
consuming and tedious. This has motivated auto-
mated testing: Approaches such as EvoSuite (Cam-
pos et al., 2019) and Randoop (Pacheco and Ernst,
2007) can bootstrap tests with decent code cov-
erage using static code analysis and evolutionary
search. However, recent studies (Almasi et al.,
2017; Shamshiri, 2015) have found the readability
of those generated tests to be subpar, and have
– more importantly – found that the above ap-
proaches struggle with producing ”meaningful”
checks that truly assert the code to behave as ex-
pected.

Therefore, recent approaches have tackled AI-
based test completion as a research challenge for
NLP-based programming, using encoder-decoder
models with bidirectional recurrent networks (Wat-
son et al., 2020) or pre-trained transformers (Tu-
fano et al., 2020b). These models take the test’s
setup code, together with the targeted method call

(focal method) as input and predict the test’s as-
sertion. Since this assertion is arguably the test’s
part which requires the most understanding of the
target method, it is also the part where heuristic
approaches struggle the most. Here, an AI-based
approach can fill this gap and provide the most
valuable addition to existing solutions.

We extend this line of research by introducing
CONTEST, a new contextual benchmark for au-
tomated test completion. CONTEST is based on
Github data. Each of its datapoints features a test
method, linked with the tested focal method using a
fuzzy name matching. Additionally, the test is split
into segments using heuristics and static code anal-
ysis: We provide the focal method, test setup code
executed before the assertions, context methods
called within the setup code, and context methods
called within the focal method. A manual inspec-
tion of samples estimates its ground truth’s accu-
racy of matching the correct focal method at 94%,
but we even found the falsely matched methods to
be relevant to the test. Summarizing, CONTEST

offers the following benefits1:

• Context: CONTEST includes not only the test
code and focal method, but also context code
called by either of them, including the test
setup and recursively called methods from the
test file or tested file. Arguably, this context is
crucial for fully comprehending a test. Corre-
spondingly, we found it to strongly improve
accuracy.

• Scale: With 365k high-quality datapoints for
test completion, CONTEST is, to the best of
our knowledge, the largest test completion
dataset to date.

• Rigorous evaluation: When building CON-
1The dataset is available at https://github.com/lavis-

nlp/ConTest

https://github.com/lavis-nlp/ConTest
https://github.com/lavis-nlp/ConTest
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TEST, we have carefully avoided bias towards
simple cases. Besides common metrics such
as BLEU and ROUGE, CONTEST also esti-
mates a code’s unparsable rate in an accompa-
nied evaluation package. Finally, we also pro-
vide a project-based split, which enforces test
completion models to generalize to projects
unseen in training, a setup which we found to
be particularly challenging.

• Strong baselines: We provide Transformer-
based baseline experiments. These include
(1) enriching the input source code using Ab-
stract Syntax Trees (AST), which we found
to yield improvements by 4.1 BLEU points,
and (2) adding context methods called by ei-
ther test code or tested code (improvements
by 10.1 BLEU points). Our experiments also
show that the model struggles to generalize
knowledge it has gathered from tests within
the same project to tests in other projects (−21
BLEU). Nonetheless, our results indicate that
automated test completion is an interesting
direction for future research.

2 Related Work

Our work targets the fields of automated software
testing and natural language processing. Auto-
mated software testing can be divided into test
generation approaches, aiming to generate the com-
plete test (Tufano et al., 2020a) and test completion
approaches, aiming to generate meaningful assert
statements (Watson et al., 2020). Test completion
has been tackled by rule based approaches such as
Agitar (Belhumeur et al., 2004), Randoop (Pacheco
and Ernst, 2007), and EvoSuite (Campos et al.,
2019), which can bootstrap tests with decent code
coverage using static code analysis and evolution-
ary search. However, recent studies (Almasi et al.,
2017) have found that these approaches struggle
with producing ”meaningful” checks that truly as-
sert the code to behave as expected. Furthermore
these approaches require handcrafted rules in order
to generate assert statements.

Recently, the focus has shifted to approach auto-
matic software testing using natural language pro-
cessing (NLP) methods. White and Krinke (2018)
employ a RNN-based neural machine translation
system to generate complete tests, while more re-
cent work (Tufano et al., 2020a) adapts pre-trained
transformer models such as BART (Lewis et al.,
2019). This and most recent work builds on trans-

formers (Vaswani et al., 2017), which have be-
come ubiquitous in natural language processing
for sequence-to-sequence tasks. However, the au-
thors report that the model often had difficulties
to correctly initialize the object under test, as it
was lacking the context information to do so. Our
benchmark CONTEST includes such context infor-
mation.

Recently, test completion has been tackled with
machine translation methods by Watson et al.
(2020). The authors propose an RNN-based ap-
proach to assert generation called ATLAS, along
with a dataset of the same name. The ATLAS

dataset consists of 158, 096 tests paired with single
line assert statements and is, to the best of the au-
thors knowledge, the only available dataset for test
completion available. Note that the ATLAS dataset
is less than half the size of CONTEST, does not
contain any context information, does not provide
a project-wise split and in contrast to CONTEST

contains only single line assertions. ATLAS has
been used in recent studies of Tufano et al. (2020b),
where the authors pre-train the transformer-based
BART model on a large set of English texts and
code artifacts and subsequently fine-tune it to gen-
erate assert statements. Applying their model on
our dataset is an interesting direction for future
research.

3 Dataset

Java has been the most used programming language
in 2020, and its unit test framework JUnit has be-
come a widely adopted industry standard (Poirier,
2018). Driven by the vast amount of open-source
projects available on GitHub that employ JUnit as a
testing framework, we chose to build CONTEST by
scraping JUnit projects from GitHub. By limiting
the projects to only one testing framework the test
structure will stay more consistent throughout the
dataset. Furthermore, as JUnit requires annotating
tests with @Test, such methods can be located
easily.

3.1 Data collection

We utilize the publicly available Github BigQuery
Dataset (Hoffa, 2016), containing a snapshot with
more than 3TB data of 2.8 million open source
GitHub repositories2. Using BigQuery (Fernandes
and Bernardino, 2015), we filter relevant projects

2We found using the GitHub API to be infeasible due to
its rate limited of 5,000 requests per hour.
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public class Counter {
  public int count = 0;
  
  public void setCount(int c) {
    count = inRange(c) ? c : 255;
  }  
  
  boolean inRange(int c) {
    return c <= 255;
  }
  
  public void inc() {
    setCount(count + 1);
  }
  
  public void reset() {
    count = 0;
  }
}

public class CounterTest {
  Counter counter;
  
  Counter initCounter() {
    return new Counter();
  }

  @Before
  public void before() {
    counter = initCounter();
  }
  
  @Test
  public void testInc() {
    int expected = 1;
    counter.inc();
    assertEquals(
      counter.count, 
      expected);
  }
}

Figure 1: Components of CONTEST and steps taken to build the dataset. The task is to generate assertions (red
box) given the partial test and its context. For each test we extract up to four parts: (1) the setup code of the
test (green) and also include global JUnit setup code (i.e. the initialization of the counter), (2) code of the focal
method (orange) matched using fuzzy string matching, and the source code of all additional methods that are called
(recursively) in any of the two files (3) in the test setup context (purple, i.e. initCounter) or (4) in the focal
method (blue, i.e. setCount, inRange).

by ensuring there is at least one .java file that
contains the substring org.junit, an indication
of an import from the JUnit package. Even though
GitHub stores large amounts of code, duplicates
are a major part of it (Lopes et al., 2017). We
therefore exclude forks from the dataset to prevent
duplicates, unless they have more than 20 GitHub
stars, indicating them being different enough from
the original repository to be relevant. We employ
additional per sample deduplication in a later stage
to further reduce duplicates. Finally, test methods
are identified by matching the @Test annotation.

3.2 Identifying and locating focal methods

For each test method, we need to identify the test
method’s so-called focal method, i.e. the method
that will be tested. Commonly, this method’s name
(e.g., inc()) is similar to the test method’s name
(e.g., testInc()). Therefore, we identify the
focal method by ranking method calls within the
body of the test method (referred to as candidates)
by their token similarity to the test’s method name
or the test’s class name3: We tokenize the name of
the test, the name of the test class and the candidate
method’s names (from which we exclude JUnit as-

3When matching the test name with all candidates fails,
we compare the candidates with the test’s class name,
as sometimes tests are named by a test scenario (e.g.
testMultipleCalls could be a test method of class
TestInc).

sertions) by splitting them on camel and snake case
into sets of tokens. We then lowercase the tokens
and remove the token test. This way identifiers
like createAllUsers, create all users,
CREATE ALL USERS, and test createAll-
Users all result in the tokens create, all and
users. We compute the following similarity
based on two sets of tokens:

sim(T,C) :=
|T ∩ C|
|T |

(1)

with T,C being sets of tokens. Let Tname, Tclass
be the set of tokens in the test‘s name/class and Ci

the set of tokens in a candidate i’s method name.
Every unique candidate is first ranked by comput-
ing sim(Tname, Ci) and the highest ranked candi-
date with a score greater than a threshold δ=0.1
chosen as the focal method. If there are multiple
candidates with the same score or the score is below
δ, we repeat the ranking process with Tclass. If this
process fails we consider the test as unresolvable
and drop it from the dataset.

Knowing the name of the focal method, its dec-
laration is located using JavaParser’s TypeSolver
feature (van Bruggen et al., 2020), which infers the
type of a given AST node by analyzing surrounding
nodes and the ASTs of imported modules.

In a manual evaluation on 100 randomly selected
samples of our dataset we found that 94% were
correctly matched and that the false positives were
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also relevant to the test.

3.3 Identifying setup and assertion code

Next, we split the test method into setup vs. as-
sertion code (green vs. red in Figure 1). Con-
trary to ATLAS (Watson et al., 2020), we do not
only consider calls to JUnit assertion methods
(like assertEquals) assertion code, but also
the code leading up to it. This code could for exam-
ple contain variable initialization or a surrounding
for-loop, which is often essential to the assertion
logic. To achieve this, all lines of code following
the last focal method call (there can be multiple
calls) are considered assertion code, while the pre-
ceding code lines are considered setup code.

The code line containing the last focal
method call itself is considered part of the
setup code (see Figure 1), unless the call
happens inside a JUnit assert method (e.g.,
assertEquals(counter.inc(),17)). In
this case, it is considered part of the assertion code.

In JUnit the @Before or @BeforeEach an-
notation (depending on the JUnit version) declares
that code inside this methods should be executed
before every single test in that class, or with
@BeforeClass/@BeforeAll to be executed
only once before all tests. Therefore, methods an-
notated as such are also considered part of the setup
code in CONTEST.

3.4 Resolving contexts

The most notable novelty CONTEST provides is
the addition of the setup context (purple in Figure
1) and focal method context (blue). We consider a
method as part of such a context and thereby rel-
evant to the task, if it is called during setup or in
the focal method and belongs to any of the two
java classes. Additionally, we consider methods
called within the context methods as part of the
context, thereby defining it recursively. We resolve
those context methods using JavaParser’s previ-
ously mentioned TypeSolver feature.

Since crucial parts of a focal method’s logic may
be outsourced to its context, we argue that adding
the context of the setup code and focal method
to the input of a test completion model is crucial
to improve complex focal method understanding.
This assumption is also backed by previous work
reporting failed predictions due to missing context
information (Tufano et al., 2020a).

3.5 Dataset size

Using the approach described in the previous
sections 99,015 repositories were downloaded,
with a total compressed size of 535GB. In these
repositories 6,040,446 test methods in 1,127,415
test classes were found. Of those test methods
2,182,225 have successfully been mapped to their
target method in one of 430,934 target classes.
On the other hand, 3,858,221 tests could not be
mapped, as no target method was found using the
heuristics and resolving described in Section 3.2.
Of the successfully mapped tests the setup and as-
sertion code was identified for 1,336,360.

Another important distinction in the data is made
by the location of the focal method calls. As hav-
ing focal methods calls within the assertion code
would require a model trained to generate asser-
tion to also predict focal method calls, we limit
CONTEST to tests were focal method calls only
occur within the setup code, thereby limiting it to
845,497 datapoints4. After removing duplicates
and datapoints with excessively large contexts, the
final dataset contains 365,450 samples.

Following common practice (Watson et al., 2020;
Tufano et al., 2020a; White and Krinke, 2018),
we release CONTEST alongside the data split we
used to randomly distribute the dataset into train-
ing (80%), validation (10%) and test (10%) data.
However, when randomly distributing datapoints
into splits, the training and test split are likely to
contain tests from the same project, possibly even
testing the same class or method. Therefore, we
believe it must be carefully investigated whether
models trained using these splits exploit informa-
tion encountered during training, without generaliz-
ing beyond projects. To do so, CONTEST contains
another project-based split alongside the regular
split, where no project has tests in more than one
split.

Split Samples

Random Project-based

Train 292, 360 290,190
Validation 36,545 38,098
Test 36,545 37,162

Total 365,450 365,450

Table 1: Sizes of the splits in CONTEST

4We offer to make the unfiltered version available upon
request.
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3.6 Evaluation Protocol
Alongside the dataset, we release an evaluation
package that can be used to evaluate new models.
The evaluation protocol includes tokenization of
the predictions using javalang. We consider only
parsable predictions to be valid. The parsed to-
ken sequence is then evaluated using BLEU and
ROUGE, whereas we adjust the score s ∈ [0, 1]
of each metric to take unparsable predictions into
account:

adj(s) := s · (1− rup) (2)

where rup ∈ [0, 1] is the unparsable rate. This
scales the metric by the ratio of parsable samples.
By scaling BLEU/ROUGE in this manner, a similar
effect is achieved to having an unparsable predic-
tion score of 0, i.e. scores are penalized if the
model is not able to consistently generate parsable
code.

4 Approach

Our approach towards test completion is illustrated
in Figure 2. Similar to prior successful work on
test completion and test generation (Tufano et al.,
2020a), our model utilizes a transformer encoder-
decoder architecture. Additionally, we utilize con-
text code that is called by either test method or
focus method as additional input. Also, we inves-
tigate two fundamental ways of encoding source
code: (1) in form of linearized abstract syntax trees
(ASTs), and (2) a tokenized version of the source
code.

Our model pipeline is illustrated in Figure 2: We
process two source files containing the test and
the tested code by parsing relevant code parts into
ASTs, which are combined to the so-called source
tree describing the whole test. This tree is fed into
an encoder-decoder transformer, which produces a
assertion’s linearized AST. This is compared to the
target AST using a the cross entropy loss function.

4.1 Preprocessing
Our model’s input consists of four different parts:
(1) the setup code of the test (green in Figure 2), (2)
code of the focal method which is tested (orange),
and the source code of all additional methods in
any of the two files that are called (3) in the test
setup context (purple) and (4) in the focal method
(blue). Note, that the context resolution works
recursively, so that a method which is called by a
context method will also be included in the context.

Parsing: To encode the syntactic structure of the
code, we parse the code snippets into abstract syn-
tax trees (AST)5. Every code fragment is repre-
sented by a small tree, which we subsequently
combine into a larger tree structure by adding a
root node. This new tree is referred to as the source
tree in the following. Note that context methods
(3 and 4) – of which multiple ones may exist – are
subsumed in separate subtrees beforehand.

Vocabulary: For the ASTs’ leaf nodes – which
represent identifiers occurring in code, like variable
names – we follow common NLP practice (Babii
et al., 2019) and tokenize them into fine-grain to-
kens using Byte Pair Encoding (BPE)6. For exam-
ple an identifier like getCount may be splitted
into get and Count. We replace each leaf node
with multiple leaf nodes with the same parent for
each token in resulting list.

Linearization: Finally, to use the source tree as
an input to the transformer, it is linearized in a form
from which it can be decoded back into java source
code: We encode each non-terminal node by an
opening token <[NodeType]> and a closing to-
ken <[/NodeType]>, and render its child nodes
recursively in between. Non-terminal nodes with-
out children are represented by a single self-closing
token <[NodeType]><[/]>, while value nodes
simply result in a token representing their value.
The target assertion’s AST is encoded using the
exact same preprocessing steps. In JavaParser each
AST node is represented as an object, for which
the corresponding source code can be retrieved by
calling its toString() method. This enables
reconstructing the source code of a linearized AST
sequence.

4.2 Model
We train a vanilla transformer encoder-decoder
model to perform test completion. For brevity we
omit details about the transformer architecture here
and refer the reader to Vaswani et al. (2017).

The linearized source trees input tokens form a
sequence x = (x1, x2, x3, . . . , xn), which is first
processed by a transformer encoder, resulting in a
sequence of continuous representations z(x), or
shorter z = (z1, . . . , zn). From this, the auto-
regressive transformer decoder generates an out-

5We parse ASTs using Javaparser (van Bruggen et al.,
2020).

6More specifically we train a sentencepiece unigram
model (Kudo, 2018)
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public class Counter {
  public int count = 0;
  
  public void setCount(int c) {
    count = inRange(c) ? c : 255;
  }  
  
  boolean inRange(int c) {
    return c <= 255;
  }
  
  public void inc() {
    setCount(count + 1);
  }
  
  public void reset() {
    count = 0;
  }
}
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public class CounterTest {
  Counter counter;
  
  Counter initCounter() {
    return new Counter();
  }

  @Before
  public void before() {
    counter = initCounter();
  }
  
  @Test
  public void testInc() {
    int expected = 1;
    counter.inc();
    assertEquals(
      counter.count, 
      expected);
  }
}

Figure 2: Visualization of our approach. We parse all four input parts into abstract syntax trees, which are then
combined into one large source tree, that is then linearized and fed into the transformer. With this as input the
transformer generates the linearized AST sequence of the target assertions (red). The generated AST is then
decoded back into source code.

put token sequence y = (y1, . . . , ym), i.e. the
remainder of the test x (red in Figure 2). When
generating token yi+1, the decoder attends to the
whole encoded sequence z as well as all previously
generated symbols y1, . . . , yi.

The sequence-to-sequence model is trained us-
ing teacher forcing (Williams and Zipser, 1989)
by maximizing the conditional probability of the
output sequence given the input, i.e. p(y|x) =∏m

i=1 p(yi|y≤i−1, z) with the cross entropy loss.

5 Experiments

We evaluate our transformer-based models on CON-
TEST to investigate the usefulness of contextual
information and compare our syntax-based AST
encoding with a token-only baseline. Finally, we in-
vestigate the effect of generalizing between training
and test projects using CONTEST’s project-level
split.

5.1 Hyperparameters and Setup

We use a standard transformer architecture consist-
ing of 6 transformer layers in both encoder and
decoder, with 8 attention heads, 2048-dimensional
feed-forward layers, d = 512 dimensional token

embeddings, and a dropout rate of 0.2. To reduce
the amount of parameters, we reuse the token em-
beddings of the transformer encoder as input and
output embedding matrices in the decoder. We train
our model using the Adam optimizer (Kingma and
Ba, 2014) and an inverse square root learning rate
scheduler with a linear warm-up.

Relevant training hyperparameters are optimized
using the Optuna framework (Akiba et al., 2019)
with the Tree-structured Parzen Estimator (Bergstra
et al., 2011) on the validation loss. We re-
port results for the model with the best valida-
tion loss. For the learning rate we investigate
the set {0.01, 0.005, 0.001, 0.0001, 0.00001}, for
warmup steps the set {500, 1000, 2000, 4000}, and
for the batch size the set of {64, 128, 256, 512} .
For our final evaluations, we generate sequences
with greedy sampling as we found this to outper-
form nucleus sampling (Holtzman et al., 2019) on
the validation set.

We train a Byte Pair Encoding with 16k sub-
words on the training set of the dataset and use the
same BPE-model throughout all experiments. We
implemented our model in PyTorch using existing
transformer modules and all experiments are exe-
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Model BLEU BLEU1 BLEU2 BLEU3 BLEU4
ROUGE-1
F-Measure

ROUGE-2
F-Measure

ROUGE-L
F-Measure

Unparsable
Rate (%)

Max length
exceeded (%)

Linearized Tree 38.19 56.31 42.35 32.85 27.15 73.00 56.43 70.64 1.92 9.06
Linearized Tree (adjusted) 37.34 55.04 41.40 32.12 26.54 70.58 55.16 69.06 1.92 9.06

Table 2: Results of our core model utilizing syntax in terms of linearized abstract syntax trees. Absolute metrics
(top) are compared with their adjusted version taking non-parsable outputs into account (bottom, see Equation (2)).

Model BLEU BLEU1 BLEU2 BLEU3 BLEU4
ROUGE-1
F-Measure

ROUGE-2
F-Measure

ROUGE-L
F-Measure

Unparsable
Rate (%)

Max length
exceeded (%)

(1)
Linearized Tree (LT) 37.05 55.55 41.22 31.70 25.98 70.24 54.39 68.64 1.91 9.41
Tokenized 32.97 49.63 36.67 28.16 23.06 68.97 53.58 67.49 1.07 3.79

(2)
Context (LT) 37.57 55.73 41.73 32.25 26.57 70.61 55.16 69.05 1.91 9.41
No Context (LT) 27.49 46.86 31.80 22.31 17.18 65.14 46.94 63.51 1.73 16.71

(3)
Random Split (LT) 36.46 54.88 40.58 31.14 25.47 69.31 53.46 67.72 1.91 9.41
Project-based Split (LT) 15.42 37.52 20.35 10.89 6.80 55.88 32.97 53.90 1.11 30.43

Table 3: We compare – in pairs of two – a transformer operating on a linearized tree (LT) with a variation of itself:
(1) one that operates on the actual tokens and not on the tree, (2) trained without contextual information, and (3)
trained and evaluated on a project-based split. Note, that the scores for (3) are not directly comparable, as the
dataset differs. All scores are adjusted.

cuted on a server using an Intel i9-10900X CPU,
128 GB of RAM and four NVIDIA GeForce 2080
Ti GPUs with 11 GB video memory each.

5.2 Results

We present the results of our experiments in Ta-
ble 2 and Table 3, where we report BLEU and
ROUGE scores. For BLEU we report the cu-
mulative BLEU4 (Papineni et al., 2002) score as
the main metric, as well as the single n-gram
scores (BLUE1−4), while for ROUGE we re-
port F-measures for ROUGE-1, ROUGE-2, and
ROUGE-L scores (Lin, 2004).

In Table 2 we report the scores of our core model
as described in Section 4. We evaluate once with
regular scores and once with the adjusted score
(compare Section 3.6) and find that the model
achieves a decent BLEU. In an ablation study in
Table 3 we analyze the parts of our dataset in which
we compare – in pairs of two – the best performing
model (transformer operating on linearized tree,
denoted by ”LT”) with a variation of itself: (1) a
”no-AST” baseline that only takes the actual tokens
as input, (2) trained without contextual information,
and (3) trained and evaluated on a project-based
split. Note, that the scores for (3) are not directly
comparable as the dataset differs. The models may
fail on different evaluation samples, therefore we
only report the adjusted metrics here (Equation
(2)) and compare only datapoints for which both
models were able to generate a parsable predic-
tion. Note that this causes the scores of the best
performing model to vary between experiments.

5.2.1 Syntax
We compare the transformer utilizing syntactical in-
formation by operating on a linearized tree against
a regular transformer trained on tokenized and
BPE’d source code. For the tokenized model we
tokenize the source code using javalang and
then apply the same BPE encoding as for the other
model. In the tree, each part of the input is repre-
sented by a subtree with a unique node label. For
the tokenized version we concatenate the sections
of the input sequence representing test code, tested
code and the respective contexts (compare Section
4.1), whereas each section is prepended by a spe-
cial marker token. We found that syntax is highly
beneficial when generating test assertions, as Table
3 (1) shows that the model utilizing syntax yields
an improvement of 4.1 in BLEU compared to the
tokenized approach. However, the tokenized ap-
proach is able to generate parsable code more often.
Due to the shorter sequence length it is also able to
generate longer output sequences. Recall that input
and output of the AST model is longer because of
the tree linearization format (compare Section 4.1).

5.2.2 Context
To evaluate the effect the context information has
on the model’s performance, another ablation ex-
periment is conducted. We train a variation of
the model with inputs in which context parts of
the input have been removed. We drop the test
setup context (Figure 1, purple) and focal method
context (blue). Note that this setup is similar to
other test completion datasets (i.e. ATLAS (Tu-
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fano et al., 2020a)) as those offer only parts of the
test before the assertions (1) and the focal method
(2) as input to the model. It is also worth not-
ing that the model trained with context benefits
from the additional information and is able to ap-
ply this knowledge to improve the quality of its
predictions by 10.1 BLEU. This feels natural, as
even for a developer it is often hard to understand
the functionality of a method without investigat-
ing methods called within. Consider the exam-
ple in Figure 1, in which there is no way of un-
derstanding the functionality of setCount(int
c) that increments until 255 without having access
to the method inRange(int c) called inside
setCount which implements this check.

5.2.3 Project-level Splits
The code style within a software project mostly fol-
lows certain paradigms, and tests inside the same
repository may employ the same coding style. This
could be exploited by the model, which then does
not need to learn the actual semantics of the code.
In a last – and maybe most important – experiment
we investigate how well the model is able to gen-
eralize to unseen repositories. We argue that this
is the most realistic use case, as most code models
will be applied to unseen repositories.

We therefore create a different version of our
dataset, in which it is split by software projects and
train the same model again on the resulting dataset
(see Section 3.5). From Table 3 (3) we can see
that the model trained on the project-based split
fails to generalize across projects. This results in
a BLEU score of 15.4, around half of what the
model on the random split achieves. We consider
this an open challenge and are looking forward
to future findings indicating whether pre-trained
language models on code can improve generaliza-
tion. Following previous research we would like
to emphasize that project-level splits should be the
golden standard if one creates a dataset for machine
learning on source code (Alon et al., 2019). How-
ever, as most code datasets are build upon GitHub
data one should consider test leakage when evalu-
ating large-scale pre-trained language models for
code.

6 Conclusion

We have proposed a large-scale benchmark for au-
tomatic test completion coined CONTEST. In addi-
tion to pairs of test and focal methods, our bench-
mark uniquely contains context and setup code,

offers multiline targets, and defines project-level
splits. We have shown in an ablation study that con-
text information appears to be extremely relevant
to the task of test completion, and that a sequence-
to-sequence transformer baseline struggles with
generalizing across projects. Future research could
aim to improve cross-project generalization, for ex-
ample by fine-tune large scale pre-trained language
models for code (Feng et al., 2020; Roziere et al.,
2021) on CONTEST.
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