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Abstract
Social media has changed the way we engage
in social activities. On Twitter, users can par-
ticipate in social movements using hashtags
such as #MeToo; this is known as hashtag ac-
tivism. However, while these hashtags can
help reshape social norms, they can also be
used maliciously by spammers or troll com-
munities for other purposes, such as signal
boosting unrelated content, making a dent in
a movement, or sharing hate speech. We
present a Tweet-level hashtag hijacking detec-
tion framework focusing on hashtag activism.
Our weakly-supervised framework uses boot-
strapping to update itself as new Tweets are
posted. Our experiments show that the system
adapts to new topics in a social movement, as
well as new hijacking strategies, maintaining
strong performance over time.

1 Introduction

Social media has changed the way we live, trade,
share news, and engage in social activities. Twitter
is one of the most popular social networks, where
users post short textual messages called “Tweets.”
A hashtag (#) before a particular keyword or phrase
in a Tweet is used to categorize the Tweet, helping
users find topics that are of interest to them.

One of the achievements of social media is re-
shaping and re-scaling engagement in social move-
ments via hashtag activism. Yang (2016) defines
hashtag activism as large numbers of social media
posts using a common hashtagged phrase with a
social or political claim. Some popular hashtag ac-
tivism movements include “#MeToo,” a movement
against sexual harassment and assault, and “#Black-
LivesMatter,” which campaigns against violence
and systemic racism towards African Americans.
These hashtags help engage people in social move-
ments by raising awareness on a larger scale and by
giving opportunities for those with access limita-
tions, like the physically challenged, to participate.

Unfortunately, hashtag activism is also a good
target for spammers. Hashtag hijacking occurs
when users “[use] a trending hashtag to promote
topics that are substantially different from its re-
cent context” (VanDam and Tan, 2016) or “to pro-
mote one’s own social media agenda” (Darius and
Stephany, 2019). While the detection of spam
Tweets in general is an important issue, the de-
tection of spam related to social movements is of
even greater importance because it targets excluded
or marginalized groups.

We present a weakly-supervised, bootstrapping
framework to detect Tweet-level hashtag hijacking
targeting specific social movements, using a com-
bination of features based on the Tweet text, use of
other hashtags, replies, and user profile. Our exper-
iments focus on #MeToo, but our methodology can
be applied to any hashtag. Prior work on hashtag
hijacking has focused on general trending hashtags
like #job or #android and could not adapt over time
to attacker strategies; these approaches were un-
able to account for changes in hashtag use over
time. Ours is the first self-updating approach to
be developed for detecting hashtag hijacking at the
Tweet level. Our main contributions are as follows:

• A new dataset of #MeToo Tweets from Octo-
ber 2017 through May 20201.

• A bootstrapping framework to detect hashtag
hijacking that can adapt over time to hijackers’
changing strategies.

2 Related Work

Hashtag hijacking is a relatively new problem,
and there is little prior work on the task.

Previous studies have analyzed cases of political
hashtag activism spamming (“hacktivism”), which

1https://github.com/poonehmousavi/Detecting-Hashtag-
Hijacking-for-Hashtag-Activism
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often involves cyberbullying (Taylor, 2005; Hamp-
son, 2012; Deseriis, 2017; Solomon, 2017), empha-
sizing the destructive role of spamming on political
movements and protests and how it can change the
direction and goals of the targeted movement. Lind-
gren (2019) identifies noise and trolling as the main
challenges facing hashtag activism movements, and
Kalbitzer et al. (2014) discusses on the harmful ef-
fects of excessive unwanted information on social
media, which can even affect the physical condition
of vulnerable users. Bode et al. (2015) evaluate
the composition of political networks on Twitter;
they find that hashtag “hashjacking (encroaching
on opposition’s keywords to inject contrary per-
spectives into a discourse stream)” to be one of the
main types of strategic political communication on
Twitter.

Few studies have investigated computation
pipelines to detect hashtag hijacking. Prior work
focuses exclusively on general trending hashtags
and cannot adapt over time to attacker strategies.

Jain, Agarwal, and Pruthi (2015) proposed an un-
supervised framework for detecting hashtag hijack-
ing. They argued that hijacked Tweets use different
words than do the more common relevant Tweets.
Jain et al. grouped trending hashtags into general
categories, such as technology, entertainment, and
politics, and calculated words’ TF-IDF scores at the
category level. They then predicted whether or not
a Tweet using a given hashtag was hijacked based
on its word overlap with its category’s word list. By
using categories, rather than individual hashtags,
Jain et al. were able to increase the amount of data
for calculating their scores, and also to determine
which categories of hashtags were more likely to
be hijacked. In contrast, our goal is to focus on a
specific hashtag associated with social activism.

Van Dam and Tan (2016) applied topic learning
and time series analysis to the hijacking task for
trending hashtags. They analyzed each hashtag’s
distribution of topics over time: if a hashtag’s topic
distribution in a one-day window differed signifi-
cantly from its previous distribution, the hashtag
was considered hijacked. Van Dam and Tan’s ap-
proach operates at the level of hashtags and does
not attempt to predict whether or not a specific
Tweet is hijacked. Like Jain et al., they assume that
a hashtag’s topic distribution is constant over time,
and that changes in topic indicate hijacking; in con-
trast, our work assumes that the topics associated
with a social activism hashtag can shift over time.

Figure 1: Hijacked #MeToo Tweets. Usernames are
masked to protect the privacy of the users.

Virnami et al. (2017) trained a fully supervised
neural network to detect hashtag hijacking. They
extracted Tweet-level features, such as the related-
ness among hashtags used and information about
the user account that posted the Tweet, and trained
a feed-forward network to classify Tweets as hi-
jacked or not. Like Jain et al. and Van Dam and
Tan, Virnami et al. focused on trending hashtags;
they used a manually-labeled dataset of ten thou-
sand Tweets corresponding to the top ten trending
hashtags. Like Jain et al., Virnami et al. treat
hijacking as a general problem unrelated to any
specific hashtag; their features are independent of
the hashtags used in a Tweet, allowing them to train
a single neural model on a much larger dataset than
would be available for any individual hashtag.

Twitter spam detection is a related area of
work. Rather than detecting unrelated Tweets that
hijack a given hashtag, spam detection is a more
general task: determine whether or not a Tweet
is spam, regardless of the hashtags it uses. Most
existing techniques for spam detection can be cat-
egorized into approaches that focus on user-level
features to identify spammers (Wang, 2010; Yardi
et al., 2010; Lee et al., 2010), those focus on Tweet-
level features to identify spam Tweets ((Gao et al.,
2012)), and hybrid approaches that use a combi-
nation of features based on both Tweet and user
(Sedhai and Sun, 2018; Hu et al., 2014, 2013).

A related line of research is the relationship
between spam Tweets and the hashtags they use;
Sedhai and Sun (2017) analyzed hashtags in spam
Tweets based on their frequency, position, orthog-
raphy, and co-occurrence counts. It is important
to emphasize the difference between hijacked and
spam Tweets. Tweets are hijacked in terms of a spe-
cific hashtag; not all hijacked Tweets are spam. Fig-
ure 1 shows examples of hijacked #MeToo Tweets
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Figure 2: Tweet distribution over spam categories.

that are not spam in the general sense.

3 Data

We use data from #MeToo, a movement used by
women to share their experiences with sexual ha-
rassment. The online #MeToo movement started in
October 2017 with actress Alyssa Milano’s Tweet
about sexual abuse allegations against Harvey We-
instein. #MeToo has since become widespread and
a target for hijackers to increase their own visibility
and promote their products.

3.1 Data Collection
There is an enormous and continuously growing
number of #MeToo Tweets, most of which are not
hijacked. Thus, the first challenge addressed in our
work is to collect enough hijacked Tweets for our
seed set, before the Tweets are even labeled. We
use the Twitter spam analysis of Sedhai and Sun
(2017) to create a list of hashtags that are likely to
occur in spam Tweets (Table 1). Using the Twit-
ter API, we find Tweets containing both #Metoo
and at least one of these spammy hashtags. After
removing duplicates (Tweets containing multiple
spammy hashtags), we are left with 1370 Tweets
that are likely to be hijacked. Figure 2 shows the
distribution of these Tweets over spam categories.

Note that, while a Tweet may hijack a hashtag
without being spam — hijacking occurs when the
hashtag is used to boost visibility for any unrelated
topic, not just spam topics — a spam Tweet that
uses the #MeToo hashtag is almost certainly hi-
jacked. Thus, our collected spammy Tweets are
likely to be cases of #MeToo hijacking, although
they are not necessarily a representative sample of
all hijacked #MeToo Tweets. From the 1370 col-
lected Tweets, we randomly sample 100 for test set
and use the rest for training and validation.

For non-hijacked Tweets, we collect 500

#MeToo Tweets from each month between Oc-
tober 2017, when the online #MeToo movement
started, and November 2019. We remove retweets
and replies, for a total of 12,892 Tweets. Since
non-hijacked Tweets are much more common than
hijacked Tweets, we expect most of this collec-
tion to be genuine #MeToo Tweets that capture the
hashtag’s use over the course of its lifespan. We
randomly sample 1500 and 100 of these Tweets,
evenly distributed over the 25 months, merge them
with the potentially hijacked Tweets described
above, and remove any duplicates, for a seed set of
2770 #MeToo Tweets for training and validation
and 200 Tweets for testing; we expect roughly half
of these seed Tweets to be hijacked.

3.2 Data Annotation

We use crowdsourcing on Amazon Mechanical
Turk (AMT) to label our collected Tweets. #metoo
was a popular tag before the movement and had a
different meaning, but since the #MeToo movement
has had such a large impact on popular culture, we
assume in this work that anyone using the #MeToo
hashtag after October 2017 would be aware of its
new meaning. We consider anything related to the
#MeToo, including criticism, to be non-hijacked;
we ask workers to label Tweets as “related” (not
hijacked) if they are relevant to the #MeToo move-
ment, “unrelated” (hijacked) if they are irrelevant to
#MeToo, or “hard to tell” if it is difficult to decide;
details of the task are in Appendix A.

For each Tweet, we obtain labels from 7 AMT
workers and take the majority vote among them;
we break ties by randomly selecting one worker
as the tie breaker. Ties happen when there are
equal numbers of ‘valid’ and ‘hijacked’ votes, eg.
3 ‘hijacked,’ 3 ‘valid,’ and 1 ‘hard to tell.’ Table 2
shows statistics for the distribution of data over
the three labels, hijacked, non-hijacked (which we
henceforth call valid for clarity), and hard to tell, as
well as the inter-annotator agreement on the task.

3.3 Noisy Labels

On examining the AMT statistics in Table 2, we
find that interannotator agreement is low: Fleiss’s
κ of 0.212 and 0.168 on the training and test sets,
respectively. One possible cause for low agreement
is that our AMT task asks workers to read and
judge a single Tweet. Because the task takes very
little time to do, workers may be tempted to answer
randomly, without putting much effort into the task.
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Category Hashtags
TFB #TFB, #TeamFollowBack, #FollowGain
Food #food, #foodporn
Follow #follow4follow, #followforfollow, #likeforlike, #like4like
Apple #apple, #iphone
IPad #ipad, #ipadgames
Game #PS4live, #Gamer, #Gaming, #games, #GameNight, #VideoGames

Table 1: Spammy hashtags for collecting hijacked Tweets.

Dataset Total Valid Hijacked Hard to Tell Agreement

AMT Training 2770 1867 830 73 0.212
Snorkel Training 2770 1603 1158 9 -

AMT Test 200 144 51 5 0.168
Expert Test 200 104 85 11 0.389

Expert Validation 200 117 74 9 0.450

Expert Live Samples 380 212 149 19 0.340

Table 2: Data annotation statistics. AMT Training and Test are produced by seven workers on Amazon Mechanical
Turk. Snorkel Training is the final training data that we use to train our model; Expert Test, Validation, and Live
Samples are produced using two expert annotators (Section 3.3). The Agreement column shows Fleiss’s κ for
AMT and Cohen’s κ for Expert.

To address the issue of low agreement and ques-
tionable annotator trustworthiness, we turn to ex-
pert annotations. We train six expert annotators,
graduate students from our university’s computer
science department. For the relatively small test
and validation sets, we relabel the entire set using
these expert annotators. We assign two annotators
to each Tweet; for ties, we ask a third annotator
to label the Tweet and break the tie. As shown in
Table 2, the expert annotators achieve higher inter-
annotator agreement, and the relabeled test set is
more balanced between hijacked and valid.

As the training set is much larger, using expert
annotators to label the whole dataset would be time-
consuming and expensive. Therefore, we need an
approach to reduce the noise or lessen its effect
on the existing AMT-labeled data, rather than re-
annotating it entirely. We use Snorkel (Ratner et al.,
2017), a framework for building and managing
training datasets. The Snorkel framework takes
user-defined labeling functions, learns weights for
each of these functions, and generates the final
label using a weighted vote among the functions.
We use three different types of labeling functions:
a keyword-based function, a model-based function,
and crowdworker-based functions.

• Keyword-based. Labels Tweets containing
any hashtag from Table 1 as hijacked.

• Model-based. We use feature-based submod-
ular optimization Wei et al. (2014) to choose
a subset of 200 Tweets that we annotate using
the expert annotators and use to train a logis-
tic regression model. The general form of a
feature-based submodular function is

f(X) =
D∑

d=1

φ

(
N∑
i=1

Xi,d

)

where f is an objective function that uses the
concave submodular function φ and is oper-
ating on a data subset X that has N exam-
ples and D feature dimensions. Maximizing
f encourages diversity and coverage of the
features within the chosen subset.

We assign one feature for each AMT worker
and use the Apricot submodular data selection
framework (Schreiber et al., 2019) to solve.
Tweet selection is greedy: in each iteration,
we choose the Tweet with the most gain. After
selecting 200 Tweets, we achieve full cover-
age of the entire feature space, and these 200
Tweets form the validation set, which we label
with the expert annotators and use to train a
logistic regression model. The features are
the worker IDs of the AMT workers, and the
model learns weights for each worker based
on how well they agree with the experts.
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• Crowdworker-based. We consider each
AMT worker as a single labeling function that
returns the label submitted by that worker for
a given Tweet, or abstains if that worker did
not submit a label for that Tweet.

From Table 2, we see that the Snorkel method
increases the number of hijacked Tweets in the
training set, balancing it similarly to how the expert
annotations balanced the test set.

4 Methodology

To detect hashtag hijacking, we present a weakly-
supervised, continuously updating approach in-
spired by the work of Sedhai and Sun (2018) for
detecting Twitter spam. The system consists of two
alternating components, a Tweet hijacking classi-
fication module and an update module. Our hi-
jacking classification module is an ensemble of
classifiers initially fit to our seed training set of
2770 Snorkel-labeled #MeToo Tweets. As new
#MeToo Tweets are posted, we collect them using
the Twitter streaming API, label them using the
classification module, and re-fit the classifiers in
the update module. We describe the two modules
in detail in the rest of this section.

4.1 Hijacked Tweet Classification Module

The ensemble consists of five classifiers, each of
which assigns a score between 0 (valid) and 1 (hi-
jacked); the final predicted label is a weighted sum
of these scores. We consider any Tweet with score
greater than 0.8 to be confidently hijacked and any
Tweet with score less than 0.3 to be confidently
valid; these thresholds were tuned to maximize
performance on the expert-labeled validation set.

4.1.1 Known Users Classifier
This classifier keeps two lists of users: a blacklist
of known hijackers and a whitelist of trusted users.
If a user has posted many hijacked Tweets, it is
likely that they will do so again in the future; if
a user has posted many genuine #MeToo Tweets,
they are likely to continue doing so.

We use the same blacklist and whitelist defini-
tions as Sedhai and Sun (2018): the blacklist con-
sists of known hijackers who have posted more than
5 hijacked Tweets; the whitelist consists of trusted
users who have never posted a hijacked Tweet and
have posted at least eight valid Tweets. The lists
are initially populated using our seed training set.

If a Tweet is posted by a user on the known hi-
jackers blacklist, this classifier returns 1 (hijacked).
It returns 0 (valid) if the user is on the trusted users
whitelist and the Tweet does not contain any words
from a hijacked word list; this condition prevents
adversarial attacks by spammers who pretend to be
legitimate users at first and post hijacked Tweets
after achieving a spot on the whitelist (Yang et al.,
2013). Finally, if a user is on neither blacklist nor
whitelist, the classifier returns 0.5.

To generate the hijacked word list, we maintain
two dictionaries: a hijacked dictionary and valid
dictionary, where we store the counts of how often
each word appears in hijacked and valid Tweets in
our training data. We set a cutoff on the number
of unique Tweets in which a word needs to appear
to be included in these dictionaries: 5 and 8 for
hijacked and valid, respectively. For each word
w, we estimate the probability of w appearing in
hijacked and valid Tweets:

Cb
hijack(w) = countbhijack(w) + γCb−1

hijack(w)

Cb
valid(w) = countbvalid(w) + γCb−1

valid(w)

pbh(w) =
Cb

hijack(w)

Cb
hijack(w) + Cb

valid(w)

pbv(w) =
Cb

valid(w)

Cb
hijack(w) + Cb

valid(w)

γ ∈ [0, 1] is a decay term that comes into effect
during the batch update stage of our system (Sec-
tion 4.2). When updating the hijacked word list for
batch b, decay is applied to the accumulated counts
C from batch b− 1. If pbh(w) > pbv(w), we add w
to the hijacked word list; if pbh(w) <= pbv(w), we
remove w from the list, if necessary.

One concern that may arise with this classifier
is that a user might be put on the blacklist and not
be able to get off, even if their posting behavior
changes later. While we did not find many exam-
ples of users so affected in our experiments, this
issue could be addressed by adding some criteria
for users to get off the blacklist. For example, if
blacklisted user posts more than a certain number
of Tweets that are classified as valid by the ensem-
ble, they should be removed from the blacklist.

4.1.2 Tweet Text Classifier
This classifier uses TF-IDF features from the Tweet
text. As a prepossessing step, we remove punctua-
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tion, URLs, emojis, and stop words, and we lower-
case and lemmatize the remaining words. We also
replace some of the most commonly used abbre-
viations with full phrases (for example, replacing
“ASAP” with “as soon as possible”). After prepro-
cessing, we convert each Tweet into a vector of
TF-IDF scores and fit a logistic regression model
to label them. This is the only classifier in our
ensemble that focuses on the Tweet text itself.

4.1.3 Social Classifier
This classifier focuses on how a Tweet and its user
interact with other Tweets and users. We train a
random forest model using features based on the
Twitter spam analysis of Sedhai and Sun (2017):

• Number of users who follow the posting user.

• Number of users that the posting user follows.

• Whether or not the posting user is verified.

• Number of times the Tweet is retweeted.

• Number of times the Tweet is liked.

• Number of hashtags used in the Tweet.

This classifier uses the number of retweets and
likes, which can vary greatly depending on how
recently a Tweet was posted; a very new Tweet
will have substantially lower values than the older
Tweets in the seed training dataset. To address this
issue, the number of likes and retweets are fetched
again each time the update module runs.

4.1.4 User Profile Classifier
Sedhai and Sun (2017) argue that legitimate users
are more likely to provide Twitter profile descrip-
tions than spammers. Further, we hypothesize that,
if a user is an active member of a hashtag activism
movement, his or her profile description is more
likely to be related to the movement. The user pro-
file classifier labels Tweets that are posted by users
with non-empty profile descriptions using a simple
bag-of-words logistic regression model; for users
without a profile description, this classifier simply
labels the Tweet as hijacked.

4.1.5 Ensemble Voting
If a Tweet is labeled by the known users classifier,
we consider it to be confidently labeled. Otherwise,
we label it with the remaining classifiers, experi-
menting with three voting strategies:

• Simple Average returns the label correspond-
ing to the average of the classifiers’ scores.

• Majority Vote converts each classifier score
into a binary label, hijacked or valid, and re-
turns the majority label.

• Stacking Meta-Learner uses a gradient
boosting meta-learner to weight the classifiers.
If the weighted score is greater that 0.5, the
Tweet is hijacked, and valid otherwise.

4.2 Batch Update Module
Since hijackers may adapt their strategies over time
to fool the hijacking classification module, our sys-
tem must adapt over time to correctly detect new
hijacking cases. In the batch update module, we
first select confident labels from among the sys-
tem’s predictions since the last batch update and
add them to the training data. We then update the
known users lists and retrain the Tweet text, social,
and user profile classifiers, as well as the Stack-
ing Meta-Learner. In the experiments below, we
compare different sampling strategies for adding
Tweets to the training data:

• No Update does not perform any updates and
continues to use the seed-trained model.

• Update All adds all confidently labeled
Tweets from the previous batch.

• Update Equal preserves class balance in the
training set. If there are n hijacked and m
valid Tweets, this strategy adds min(n,m) of
each, selecting the most confident labels (ie.
closer to 1 or 0) first.

5 Seed Model Results and Analysis

We report the results of our initial seed-trained
model on the Expert Test set. While there aren’t
existing systems (Section 2) that are directly com-
parable with our framework, we use the closest,
Jain et al. (2015), as a baseline; Van Dam and
Tan (2016) focused on predicting whether a given
trending hashtag was being hijacked, rather than de-
tecting individual hijacked Tweets, and Virnami et
al. (2017) required much larger amounts of hand-
labeled training data than we have available, as
well as non-generalizable domain knowledge, like
dictionaries of related hashtags and URLs.

Jain et al. detected hijacking for general hash-
tags using an unsupervised approach. They used
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Figure 3: Comparison of ensemble voting strategies.

TF-IDF scores to create a dictionary of common
words for each category of related hashtags, argu-
ing that since hijacked Tweets are rare, they can be
identified as having fewer words in common with
their category. To use Jain et al.’s approach as a
baseline, we use all 14,262 #MeToo Tweets that we
collected, which we treat as a single category, and
we collect an additional 500 Tweets for each month
between October 2017 and November 2019 from
each of Jain et al.’s categories (Table 3), totaling
13,000 Tweets per category.

We compare the performance of our seed-trained
model with Jain et al. (2015), as well as random,
majority, and minority baselines in Table 4. For the
Stacking Meta-Learner, we report average scores
across 100 runs. We see that our framework beats
all baselines on all scores. The Stacking Meta-
Learner outperforms each individual classifier on
recall, while preserving relatively high precision,
showing the importance of taking into account dif-
ferent aspects of a Tweet. Although the Tweet
text classifier alone works well, the other classifiers
boost the ensemble’s performance on all metrics ex-
cept precision, where it scores slightly lower. The
Jain et al. baseline performs exactly the same as the
minority baseline, labeling all Tweets as hijacked.
This is likely due to hashtag activism Tweets using
a more diverse vocabulary than general trending
hashtags, resulting in Jain et al.’s TF-IDF dictionar-
ies being less reliable for the #MeToo tweets.

5.1 Ensemble Voting Strategies

Figure 3 shows the performance of the three vot-
ing strategies using ROC-AUC score, precision,
recall and F-measure as evaluation metrics. Both
Simple Average and Stacking outperform Majority
Vote. Simple Average and Stacking are very close,
but we use Stacking in the rest of our experiments
because it can adapt to changes in classifier perfor-
mance over time by re-fitting the meta-learner at

each batch update (Section 6).

5.2 Challenging Tweets

Figure 4 shows some Tweets that demonstrate why
hijacking can be difficult to identify, even for hu-
man judges. Figure 4a could be considered spam,
since they are promoting a product, but the product
is related to #MeToo. Is “#MeToo merch” relevant
to the social movement, or just taking advantage
of it? This Tweet was labeled “hard to tell” by our
expert annotators and omitted from the training set.

Figure 4b is an example of non-spam hijacking.
This Tweet is about a different social movement
targeting hunger in Sudan, and it hijacks several
hashtags, including #MeToo. The Tweet uses lan-
guage similar to that of social movement Tweets in
general and was labeled valid by our system.

Figure 4c shows a joke Tweet from a user that
exclusively posts off-color jokes and was added
to the known hijackers blacklist during seed set
training. However, this particular Tweet is arguably
related to #MeToo, showing that even blacklisted
users can occasionally post non-hijacked Tweets.

Finally, Figure 4d quotes a #MeToo-related
Tweet, illustrating why we filter out Tweets that
are replies to other Tweets. While this Tweet was
correctly labeled as valid by our system, it would
be impossible to tell that it is relevant without the
quoted content; if it had been a reply instead of a
quote, the required context would be missing.

6 Batch Update Results and Analysis

To evaluate how our framework performs over time,
we collect all #MeToo Tweets posted from Febru-
rary to May 2020, totaling 122,792 Live Tweets,
and use the batch update module to update the sys-
tem every 24 hours: we use the previous model
to label all Tweets posted in the next 24-hour win-
dow, update the training set with any new confi-
dently labeled Tweets, and retrain the model. For
evaluation, we sample 120 Live Tweets from each
month2, evenly split between predicted hijacked
and predicted valid Tweets, and we use our expert
annotators to obtain gold labels (Table 2).

Table 5 shows the performance of our ensem-
ble using two different voting strategies, Stacking
Meta-Learner and Simple Average, as well as the
Tweet text classifier alone. We see that while the
seed-trained Stacking Meta-Learner (top section)

2We sample only 20 Tweets from April, as some days are
missing due to an interruption in our collection script.
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Category Hashtags
Technology #Android, #Apple, #Smartphone,#ios,#dell
Entertainment #CSKvsMI, #Filmfare ,#MissWorld,#Maroon5,#Justin
Politics #namo, #congress, #AAP, #BJP,# namobirthday
Brands #puma, #adidas,#Samsung,#Lakme
Others #happy, #Birthday, #Rain, #Sunny, #KillMe

Table 3: Hashtag categories used in the Jain et al. (2015).

Model ROC-AUC Precision Recall F-measure

Known User Classifier-BL 0.562 0.812 0.153 0.257
Known User Classifier-WL 0.519 1.000 0.038 0.074
Text Classifier 0.839 0.858 0.782 0.818
Social Classifiers 0.722 0.769 0.588 0.667
User Profile Classifier 0.666 0.760 0.447 0.563

Stacking Meta-Learner 0.896 0.847 0.784 0.814

Jain et al. 0.500 0.450 1.000 0.620
Random Baseline 0.514 0.463 0.518 0.489
Majority Baseline 0.500 0.000 0.000 0.000
Minority Baseline 0.500 0.450 1.000 0.620

Table 4: Experimental results for the seed-trained models. The top section shows the performance of individual
classifiers, the middle shows the ensemble using the Stacking Meta-Learner, and the bottom shows baselines.

(a) (b)

(c) (d)

Figure 4: Examples of challenging Tweets. Coarse lan-
guage used in Tweet (c) is omitted.

and Simple Average (middle section) perform sim-
ilarly on the Expert Test set (Figure 3), the updated
Stacking Meta-Learner significantly outperforms
updated Simple Average on the Expert Live Sample
set. The bootstrapping approach used by the batch
update module risks adding incorrect, noisy labels
to the training set; the Stacking Meta-Learner has

the advantage of being able to lower the weights of
classifiers badly affected by such noise.

The seed-trained Tweet text classifier performs
similarly to the seed Stacking Meta-Learner en-
semble (Table 4). However, with the No Update
strategy, the Tweet text classifier loses about 0.16
F-measure on the Expert Live Samples set com-
pared to on the Expert Test set, while the Stack-
ing Meta-Learner ensemble loses less than 0.1 F-
measure, suggesting that the lexical features of the
Tweet text classifier are more strongly affected by
changes over time, while the other classifiers in the
ensemble help mitigate this effect.

The Update All strategy also affects the Tweet
text classifier much worse than it does the Stack-
ing Meta-Learner. The seed training set is con-
structed to be balanced between hijacked and valid
Tweets. However, hijacked Tweets are much rarer
than valid Tweets “in the wild,” and as the batch
update module adds new Tweets to the training
data, the valid Tweets quickly outnumber the hi-
jacked Tweets. With this unbalanced training set,
the Update All strategy results in very high preci-
sion and abysmally low recall for the Tweet text
classifier. Again, the Stacking Meta-Learner en-
semble is more robust; while its performance using
the Update All strategy is worse than with No Up-
date or Update Equal, it is not affected as strongly;
it is able to lower the weights of classifiers, like
Tweet text, that become less reliable as the training
data grows imbalanced. Overall, the Update Equal
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Model ROC-AUC Precision Recall F-measure

Stacking Meta-Learner with No Update 0.764 0.767 0.675 0.718
Stacking Meta-Learner with Update All 0.664 0.589 0.656 0.621
Stacking Meta-Learner with Update Equal 0.751 0.658 0.801 0.722

Simple Average with No Update 0.673 0.732 0.470 0.573
Simple Average with Update All 0.621 0.750 0.318 0.447
Simple Average with Update Equal 0.723 0.629 0.775 0.694

Text Classifier with No Update 0.727 0.806 0.550 0.654
Text Classifier with Update All 0.638 0.885 0.305 0.453
Text Classifier with Update Equal 0.759 0.856 0.589 0.698

Table 5: Experimental results using three different update strategies. The top section shows the performance of
the ensemble using the Stacking Meta-Learner, the middle shows the ensemble using Simple Average voting, and
the bottom section shows the Tweet text classifier trained alone, without the other classifiers.

strategy performs the best, adding an equal number
of hijacked and valid Tweets at each batch update
to preserve class balance in the training set.

Figure 5 shows Tweets that are labeled correctly
by our Live Update system, but incorrectly by the
seed-trained system. Figure 5a is correctly labeled
as hijacked after Live Updates, while the seed sys-
tem is mislead by the political hashtags. Figure
5b is correctly labeled as valid by the Live Update
system, while the seed system labels it as hijacked,
likely because of hashtags referring to actor Johnny
Depp, coupled with the word “media.”

(a)

(b)

Figure 5: Examples of Tweets labeled correctly by our
Live Update system but not by the seed systems.

7 Conclusion

We have presented a weakly-supervised, bootstrap-
ping framework to detect Tweet-level hashtag hi-
jacking targeting social movements, using a com-
bination of features based on the Tweet text, user
profile, and other Tweet properties. We focus on
the #MeToo movement, but our methodology can
be applied to any movement or hashtag. Our ap-
proach is not limited to specific contexts and takes

into account the changing characteristics of hash-
tag use over time. To best of our knowledge, this is
the first time that a semi-supervised method is used
to detect hashtag hijacking at the Tweet level.

Avenues for future work include addressing the
class imbalance and error propagation that results
in lower system performance over time, as well
as exploring other types of classifiers. A potential
solution to the error propagation problem may be
to use active learning to obtain human-labeled sam-
ples at regular intervals to regulate our system. To
reduce the expense of such annotation, submodular
data subset selection can again be used to choose
the most informative examples to label. Additional
classifiers, such as one that scrapes linked web-
pages, or one that handles embedded images, could
boost the overall performance of the ensemble.

We hope that this work encourages others to
address the task of detecting Tweet-level hashtag
hijacking and to develop other weakly-supervised
approaches for Twitter data.
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Figure 6: Our AMT task interface and instructions.


