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Abstract

Fact Extraction and VERification (FEVER)
is a recently introduced task that consists of
the following subtasks (i) document retrieval,
(ii) sentence retrieval, and (iii) claim verifica-
tion. In this work, we focus on the subtask
of sentence retrieval. Specifically, we propose
an evidence-aware transformer-based model
that outperforms all other models in terms of
FEVER score by using a subset of training in-
stances. In addition, we conduct a large exper-
imental study to get a better understanding of
the problem, while we summarize our findings
by presenting future research challenges1

1 Introduction

Recently a lot of research in the NLP community
has been focused on the problem of automated fact
checking (Liu et al., 2020; Zhong et al., 2020). In
this work, we focus on the FEVER dataset that
is the largest fact checking dataset (Thorne et al.,
2018). The goal of the task is to identify the verac-
ity of a given claim based on Wikipedia documents.
The problem is traditionally approached as a series
of three subtasks, namely (i) document retrieval
(select the most relevant documents to the claim),
(ii) sentence retrieval (select the most relevant sen-
tences to the claim from the retrieved documents),
and (iii) claim verification (validate the veracity of
the claim based on the relevant sentences).

Several models have been proposed for the
FEVER dataset (Hanselowski et al., 2018; Nie
et al., 2019a; Soleimani et al., 2020). Most of the
existing literature (Liu et al., 2020; Zhong et al.,
2020) focuses on the task of claim verification,
while little work has been done on the tasks of doc-
ument retrieval and sentence retrieval. We suspect
that this is because it is more straightforward for
researchers to focus only on the improvement in
terms of performance of the last component (i.e.,

1https://github.com/bekou/evidence_
aware_nlp4if

claim verification) instead of experimenting with
the whole pipeline of the three subtasks. In addi-
tion, the performance in the first two components
is already quite high (i.e., >90% in terms of docu-
ment accuracy for the document retrieval step and
>87% in terms of sentence recall).

Unlike the aforementioned studies, in this work,
we focus on the task of sentence retrieval on the
FEVER dataset. Specifically, inspired by stud-
ies that investigate the impact of loss functions
and sampling on other domains (e.g., computer
vision (Wu et al., 2017; Wang et al., 2017), infor-
mation retrieval (Pobrotyn et al., 2020)), this paper
– to the best of our knowledge – is the first attempt
to shed some light on the sentence retrieval task by
performing the largest experimental study to date
and investigating the performance of a model that
is able to take into account the relations between all
potential evidences in a given list of evidences. The
contributions of our work are as follows: (i) we pro-
pose a simple yet effective evidence-aware trans-
former-based model that is able to outperform all
other models in terms of the FEVER score (i.e.,
metric of the claim verification subtask) and im-
prove a baseline model by 0.7% even by using a
small subset of training instances; (ii) we conduct
an extensive experimental study on various settings
(i.e., loss functions, sampling instances) showcas-
ing the effect in performance of each architectural
choice on the sentence retrieval and the claim veri-
fication subtasks; (iii) the results of our study point
researchers to certain directions in order to improve
the overall performance of the task.

2 Models

We frame the sentence selection subtask, where
the input is a claim sentence and a list of candi-
date evidence sentences (i.e., as retrieved from the
document retrieval step, for that we used the same
input as in the work of Liu et al. (2020)), as an NLI
problem. Specifically, the claim is the “hypothesis”
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Figure 1: The architectures used for the sentence re-
trieval subtask. The pointwise loss considers each po-
tential evidence independently. The pairwise loss con-
siders the potential evidences in pairs (positive, nega-
tive). The proposed evidence-aware selection model
uses self-attention to consider all the potential evi-
dences in the evidence set simultaneously.

sentence and the potential evidence sentence is a
“premise” sentence. In Fig. 1, we present the vari-
ous architectures that we used in our experiments.

2.1 Baseline

Pointwise: Our model is similar to the one de-
scribed in the work of Soleimani et al. (2020). We
use a BERT-based model (Devlin et al., 2019) to
obtain the representation of the input sentences.
For training, we use the cross-entropy loss and
the input to our model is the claim along with an
evidence sentence. The goal of the sentence re-
trieval component paired with the pointwise loss is
to predict whether a candidate evidence sentence
is an evidence or not for a given claim. Thus, the
problem of sentence retrieval is framed as a binary
classification task.

2.2 Distance-based

Pairwise: In our work, we also exploit the pair-
wise loss, where the goal is to maximize the margin
between the positive and the negative examples.
Specifically, we use the pairwise loss that is simi-
lar to the margin based loss presented in the work
of Wu et al. (2017). The pairwise loss is:

Lpairwise(p, n) = [−yij(f(xp)− f(xn)) +m]+
(1)

In Eq. (1), yij ∈ {−1, 1}, f(x) is the representa-
tion that we obtain from the BERT-based model,
m is the margin and the indices p and n indicate

a pair of a positive and a negative example. In or-
der to obtain a claim aware representation of the
(positive-negative) instances, we concatenate the
claim with the corresponding evidence.

Triplet: Unlike the pairwise loss that consid-
ers only pairs of positive and negative examples,
the triplet loss (Wu et al., 2017) uses triplets of
training instances. Specifically, given an anchor
sample a (i.e., claim), the goal is the distance
Dij = ‖f(xi) − f(xj)‖2 to be greater between
the anchor and a negative example than the dis-
tance between the anchor and a positive example.
The triplet loss is depicted in:

Ltriplet(a, p, n) = [D2
ap −D2

an +m]+ (2)

Similar to the previous equation, in Eq. (2), m
is the margin and the indices a, p and n indicate
the triplet of the anchor, a positive and a negative
example. As anchor we use the claim, while similar
to the pairwise loss, we concatenate the claim with
the corresponding evidence for the positive and the
negative examples.

Cosine: We have also experimented with the co-
sine loss. Specifically, we exploit positive and neg-
ative samples using the following formula:

Lcos(p, n) = yij(1− cos(f(xp), f(xn)))+

(1− yij)[(cos(f(xp), f(xn))−m)]+ (3)

In Eq. (3), yij ∈ {0, 1} and cos indicates the co-
sine distance between the positive and the negative
samples.

Angular: The angular loss (Wang et al., 2017)
uses triplets of instances (i.e., similar to the triplet
loss) while imposing angular constraints between
the examples of the triplet. The formula is given
by:

Lang(a, p, n) = [D2
ap − 4 tan2 rD2

nc]+ (4)

In Eq. (4), f(xc) = (f(xa)− f(xp))/2 and r is a
fixed margin (angle).

2.3 Evidence-Aware Selection
Unlike the aforementioned loss functions, the pro-
posed model relies on a transformer-based model,
similar to the retrieval model proposed in the work
of Pobrotyn et al. (2020). This model exploits the
use of self-attention over the potential evidence sen-
tences in the evidence set. Unlike (i) the pointwise
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# Negative # Max Dev Test
Loss Examples Instances P@5 R@5 F1@5 LA FEVER P@5 R@5 F1@5 LA FEVER

Angular 3 3 26.90 93.93 41.82 77.22 74.81 24.36 86.14 37.98 72.30 68.30
Cosine 3 3 27.02 93.85 41.96 77.50 75.10 24.83 86.73 38.61 72.49 68.81
Triplet 3 3 26.99 94.24 41.96 77.51 75.32 24.74 86.86 38.51 72.76 69.31

Pairwise

3 3 26.88 93.90 41.79 78.05 75.61 24.44 86.17 38.08 72.92 69.34
5 3 26.76 93.23 41.58 77.21 74.74 24.53 85.90 38.17 72.05 68.22
10 3 26.77 92.99 41.57 77.58 75.04 24.62 86.15 38.29 72.65 68.93
5 20 27.11 94.13 42.10 77.53 75.37 24.75 86.67 38.51 72.87 69.25
10 20 27.09 94.40 42.10 78.05 75.79 24.74 86.84 38.51 73.02 69.38

Pointwise
3 3 25.77 91.96 40.26 77.94 75.12 22.28 82.61 35.01 71.63 67.63
5 3 27.74 95.93 43.04 78.43 76.71 23.99 85.67 37.48 72.54 68.71
5 20 27.39 95.25 42.54 78.49 76.58 23.79 85.24 37.19 72.55 68.64

Evidence-
Aware

5 20 28.52 97.16 44.09 78.67 77.38 24.70 86.81 38.46 72.93 69.40
10 20 28.50 96.82 44.04 78.26 76.78 24.76 86.83 38.53 72.70 68.46

Table 1: Results of the (i) sentence retrieval task in terms of Precision (P), Recall (R), and F1 scores and (ii) claim
verification task in terms of the label accuracy (LA) and the FEVER score evaluation metrics in the dev and the
test sets. The best performing models per column are highlighted in bold font. For more details, see Section 3.3.

loss that does not take into account the relations
between the evidence sentences, and (ii) the dis-
tance-based losses (e.g., triplet) that considers only
pairs of sentences, the transformer model considers
subsets of evidence sentences simultaneously at the
training phase. Specifically, the input to the trans-
former is a list of BERT-based representations of
the evidence sentences. Despite its simplicity, the
model is able to reason and rank the evidence sen-
tences by taking into account all the other evidence
sentences in the list. On top of the transformer, we
exploit a binary cross-entropy loss similar to the
one presented in the case of the pointwise loss.

3 Experimental Study

3.1 Setup

For the conducted experiments in the sentence re-
trieval task, in all the loss functions except for the
evidence-aware one, we present results using all the
potential evidence sentences (retrieved from docu-
ment retrieval). For the evidence-aware model, we
conduct experiments using either 5 or 10 negative
examples per positive instance during training. In
addition, the overall (positive and negative) maxi-
mum number of instances that are kept is 20. This
is because unlike the other models that the evi-
dences are considered individually or in pairs, in
the evidence-aware model, we cannot consider all
the evidences simultaneously. We experiment also
with a limited number of instances in the other set-
tings to have a fair comparison among the different
setups. Note that for the distance-based losses, we
conduct additional experiments only in the best

performing model when all instances are included
(i.e., pairwise). We also present results on the claim
verification task with all of the examined architec-
tures. For the claim verification step, we use the
model of Liu et al. (2020). We evaluate the perfor-
mance of our models using the official evaluation
metrics for sentence retrieval (precision, recall and
F1 using the 5 highly ranked evidence sentences)
and claim verification (label accuracy and FEVER
score) in the dev and test sets.

3.2 Evaluation Metrics
We use the official evaluation metrics of the
FEVER task for the sentence retrieval and the claim
verification subtasks.

Sentence Retrieval: The organizers of the
shared task suggested the precision to count the
number of the correct evidences retrieved by the
sentence retrieval component with respect to the
number of the predicted evidences. The recall has
also been exploited. Note that a claim is consid-
ered correct in the case that at least a complete
evidence group is identified. Finally, the F1 score
is calculated based on the aforementioned metrics.

Claim Verification: The evaluation of the claim
verification subtask is based on the label accuracy
and the FEVER score metrics. The label accuracy
measures the accuracy of the label predictions with-
out taking the retrieved evidences into account. On
the other hand, the FEVER score counts a claim
as correct if a complete evidence group has been
correctly identified as well as the corresponding
label. Thus, the FEVER score is considered as a
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strict evaluation metric and it was the primary met-
ric for ranking the systems on the leaderboard of
the shared task.

3.3 Results
In Table 1, we present our results on the sentence
retrieval and claim verification tasks. The “# Neg-
ative Examples” column indicates the number of
negative evidences that are randomly sampled for
each positive instance during training, while the
“# Max Instances” column indicates the maximum
number of instances that we keep for each claim.
The 3 symbol denotes that we keep all the in-
stances from this category (i.e., “# Negative Ex-
amples” or “# Max Instances”). Note that for the
number of maximum instances, we keep as many
as possible from the positive samples, and then we
randomly sample from the negative instances.

Benefit of Evidence-Aware Model: The
evidence-aware model (see the setting with 5
negative examples and 20 maximum instances
denoted as (5, 20)) is the best performing one
both in dev and test set in terms of FEVER score.
The pairwise loss performs best in terms of label
accuracy on the test set. However, the most impor-
tant evaluation metric is the FEVER score, since
it takes into account both the label accuracy and
the predicted evidence sentences. The pointwise
loss is the worst performing one when using all the
evidence sentences. This is because in the case that
we use all the potential evidences, the number of
negative samples is too large and we have a highly
imbalance problem leading to low recall and
FEVER score in both the dev and test set. Note that
the evidence-aware model relies on the pointwise
loss (i.e., the worst performing one). However,
a benefit of the evidence-aware model (0.7% in
terms of FEVER score) is reported (see pointwise
(5, 20)). This showcases the important effect
of ranking potential evidences simultaneously
using self-attention. From the distance-based loss
functions (e.g., triplet) except for the pairwise, we
observe that the angular and the cosine loss have
worst performance compared to the pairwise and
the triplet loss when using all the instances. We
hypothesize that this is because the norm-based
distance measures fit best for scoring pairs using
the BERT-based representations.

Performance Gain: Most recent research works
(e.g., Zhao et al. (2020); Liu et al. (2020)) focus

on creating complex models for claim verification.
We conducted a small scale experiment (that
is not present in Table 1), where we replaced
our model for claim verification (recall that we
rely on the method of Liu et al. (2020)) with a
BERT-based classifier. We observed that when
using the model of the Liu et al. (2020) instead
of the BERT-classifier (in our early experiments
on the dev set), the benefit for the pointwise
loss was 0.2 percentage points, a benefit of 0.1
percentage points for the triplet loss and a drop of
1 percentage point in the performance of the cosine
loss. Therefore, the seemingly small performance
increase in our model (i.e., a benefit of 0.7%
in terms of FEVER score) is in line with the
performance benefit of complex architectures for
the claim verification task. In our paper, we do
not claim state-of-the-art performance on the task,
but rather showcase the benefit of our proposed
methodology over a strong baseline model that
relies on BERTbase.

Number of Samples Matters: The evidence-
aware model is the best performing one (5,
20), while using only a small fraction of the
overall training instances. This is because the
evidence-aware model is able to take into account
all possible combinations of the sampled evidences
while computing attention weights. However, the
same model in the (10, 20) setting showcases a
reduced performance. This is due to the fact that
the pointwise loss affects the model in a similar
way as in the pointwise setting leading to a lower
performance (due to class imbalance). For the
pairwise loss, we observe that the performance of
the model when sampling constrained evidence
sentences (see (5, 20), (10, 20) settings) is similar
to the performance of the model when we do
not sample evidence sentences. In addition, it
seems that when one constrains the number of
negative samples should also constrain the overall
number of instances in order to achieve the same
performance as in the non-sampling setting. We
hypothesize that this is due to that fact that when
we have a limited number of instances it is better
to have a more balanced version of the dataset.

Outcome: Therefore, we conclude that the
evidence-aware model achieves high performance
by using few examples, and thus it can be used even
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in the case that we have a small amount of training
instances. In the case of the pairwise loss is im-
portant to sample instances, otherwise it becomes
computationally intensive when we take all the pos-
sible combinations between the positive and nega-
tive training instances into account. In addition, it
is crucial to sample negative sentences to control:
(i) the computational complexity in the case of the
distance-based loss functions, (ii) the memory con-
straints in the case of the evidence-aware model
and (iii) the imbalance issue in the case of the point-
wise loss. However, more sophisticated techniques
than random sampling should be investigated to
select examples that are more informative. Finally,
as indicated by our performance gain, we motivate
future researchers to work also on the sentence re-
trieval subtask, as the improvement in this subtask
leads to similar improvements with architectures
proposed for the claim verification subtask.

4 Related Work

An extensive review on the task of fact extrac-
tion and verification can be found in Bekoulis
et al. (2020). For the sentence retrieval task, sev-
eral pipeline methods (Chernyavskiy and Ilvovsky,
2019; Portelli et al., 2020) rely on the sentence
retrieval component of Thorne et al. (2018) that
use TF-IDF representations. An important line
of research (Hanselowski et al., 2018; Nie et al.,
2019a; Zhou et al., 2019) includes the use of ESIM-
based models (Chen et al. (2017). Those works
formulate the sentence selection subtask as an NLI
problem where the claim is the “premise” sentence
and the potential evidence sentence is a “hypothe-
sis” sentence. Similar to the ESIM-based methods,
language model based methods (Nie et al., 2019b;
Zhong et al., 2020; Soleimani et al., 2020; Liu et al.,
2020; Zhao et al., 2020) transform the sentence re-
trieval task to an NLI problem using pre-trained
language models. For the language model based
sentence retrieval two types of losses have been ex-
ploited (i) pointwise loss, and (ii) pairwise loss, as
presented also in Section 2. Unlike the aforemen-
tioned studies that rely only on losses of type (i)
and (ii), we conduct the largest experimental study
to date by using various functions on the sentence
retrieval subtask of the FEVER task. In addition,
we propose a new evidence-aware model that is
able to outperform all other methods using a lim-
ited number of training instances.

5 Conclusion

In this paper, we focus on the subtask of sentence
retrieval of the FEVER task. In particular, we pro-
pose a simple and effective evidence-aware model
that outperforms all other models in which each
potential evidence takes into account information
about other potential evidences. The model uses
only a few training instances and improves a simple
pointwise loss by 0.7% percentage points in terms
of FEVER score. In addition, we conduct a large
experimental study, compare the pros and cons of
the studied architectures and discuss the results in
a comprehensive way, while pointing researchers
to future research directions.
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