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Abstract

Improving user experience of a dialogue sys-
tem often requires intensive developer effort
to read conversation logs, run statistical anal-
yses, and intuit the relative importance of sys-
tem shortcomings. This paper presents a novel
approach to automated analysis of conversa-
tion logs that learns the relationship between
user-system interactions and overall dialogue
quality. Unlike prior work on utterance-level
quality prediction, our approach learns the im-
pact of each interaction from the overall user
rating without utterance-level annotation, al-
lowing resultant model conclusions to be de-
rived on the basis of empirical evidence and
at low cost. Our model identifies interac-
tions that have a strong correlation with the
overall dialogue quality in a chatbot setting.
Experiments show that the automated analysis
from our model agrees with expert judgments,
making this work the first to show that such
weakly-supervised learning of utterance-level
quality prediction is highly achievable.

1 Introduction

A typical life cycle of a dialogue system involves
many iterative updates where developers improve
the system’s language understanding capabilities
and attempt to increase the overall user engagement.
One of the most challenging aspects of executing
these updates is to identify characteristics of the
dialogue system that are impacting user experi-
ence the most. Doing so often involves manually
crawling potentially thousands of system logs and
designing statistical analyses, both of which are
time consuming and unlikely to provide a holistic
view of a system’s shortcomings.

Inspired by this problem, the presented work
investigates the extent to which it is possible to au-
tomatically distinguish turns within chat-oriented
dialogues that have a negative effect on overall dia-
logue quality. The interpretation of dialogue quality
is especially difficult in the chat-oriented dialogue

setting due to its subjective and multi-faceted ob-
jectives. System misunderstandings and low user
engagement are factors of low quality that are rel-
atively easy to identify, but more subtle factors
such as boring responses, awkward topic switches,
and individual preferences can also have a sub-
stantial effect. Furthermore, the practical value of
any approach to estimate the quality of individual
dialogue turns is highly sensitive to the cost of col-
lecting relevant data. Chatbots, and the settings
they are placed in, can differ drastically in both
their topics of conversation and interaction styles.
And while conversation-level quality labels can be
obtained relatively quickly by asking users to pro-
vide a rating at the end of a conversation, collecting
data with turn-level labels that adequately charac-
terizes a new chatbot or chat setting is an expensive
process.

In this paper we present our dialogue analysis
approach, which addresses these challenges by pro-
ducing quality scores for each utterance in a given
conversation dataset using only conversation-level
quality ratings. Unlike other work that focuses
on utterance-level quality prediction using labeled
data, our approach involves training a neural model
to learn explicit relationships between utterance-
level features and conversation quality without the
need for costly utterance-level annotations. We
evaluate this approach on two conversation datasets
and show high agreement between our model and
experts for identifying problematic interactions. By
developing an empirical technique that models the
relationship between specific interactions and over-
all conversation quality, our work has the potential
to remove much of the human effort and guesswork
involved in dialogue system development.

2 Related Work

Related work has explored techniques for mod-
elling dialogue quality on both the conversation
and utterance level. Sandbank et al. (2018) present
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an approach for classifying low-quality conver-
sations in commercial conversational assistants.
Liang et al. (2020) argued against the feasability of
conversation-level quality prediction on a Likert-
scale and present a pairwise comparison model in-
stead using methods that compensated for the high
noise in user scores. Choi et al. (2019) presents
methods for both predicting user satisfaction and
detecting conversation breakdowns at the turn level.
Ghazarian et al. (2020)’s work is similar, predicting
utterance-level user engagement.

Ghazarian et al. (2020) and Choi et al. (2019)’s
work is similar to ours, as they build models tar-
geted towards utterance-level quality outcomes.
However, unlike our approach, these works are
reliant on costly turn-level annotations: given con-
versations annotated for quality on the utterance
level, their approach is to train a model that can
predict utterance quality on unseen conversations
within a similar conversation setting. This strategy
incurs a substantial cost whenever the training data
needs to be updated to fit a novel conversational
setting or chatbot.

To avoid the cost of collecting turn-level labels,
our approach is more in line with techniques such
as multiple regression analysis, where fitting a
model to a dataset is used to explain the relation-
ship between features and some outcome, rather
than to predict an outcome for unseen examples.
In our case, our model can be fit to any dataset
of conversations with conversation-level quality
labels in order to estimate the quality impact of
each utterance on the overall conversation qual-
ity. This approach has a couple advantages over
existing work. First, collecting utterance-level an-
notations in a supervised setting is not necessary
for our approach as it was for Choi et al. (2019) and
Ghazarian et al. (2020). Second, our model learns
empirically-derived relationships between the ut-
terance level and conversation quality, rather than
learning to mimic human judgements of utterance
level quality irrespective of conversation-level im-
pact. Given the unreliability of human judgements
on conversation quality noted in prior work (Liang
et al., 2020), it is possible that removing human
estimations of the relationship between turn-level
and conversation-level quality eliminates a source
of bias in the model’s training objective. To our
knowledge, no previous work has presented an ap-
proach for utterance-level quality estimation that
does not require data annotated on the turn level.

3 Aggregated Regression Analysis

We utilize a neural network model to accomplish
this task of utterance-level quality inference. It
learns to assign scores to utterances within a dia-
logue such that it maximizes its ability to produce
correct dialogue-level quality scores from aggrega-
tion of these utterance scores.

Our Aggregated Regression Analysis (ARA)
neural model takes as input the entire sequence
of utterances for a single dialogue and outputs the
predicted dialogue quality q on a continuous scale.
Each utterance is first embedded into a continu-
ous space vector representation, producing a se-
quence of embeddings (u1, ..., uN ). The rating ri
and weight wi of each utterance embedding are
then assigned through learned linear transforma-
tions of the embedding. The linear transformations
are learned independently for the ratings and the
weights:

ri = uiv
T
r + br (1)

wi = σ(uiv
T
w + bw) (2)

where parameters vr, br and vw, bw are learned
weights and biases for the rating and weight calcu-
lations, respectively.

The final dialogue quality prediction q is then
calculated as the weighted sum of the utterance
ratings as follows, where N is the total number of
utterances in a given dialogue:

q =

N∑
i=0

riwi

N∑
i=0

wi

(3)

We also extend this approach to capture inter-
utterance interactions by including an utterance
contextualization step. The original utterance em-
beddings (u1, ..., uN ) are passed through a con-
textualization layer to generate a contextualized
utterance embedding for each utterance i as hi.
The resultant rating and weight calculations follow
Equations 1 and 2 with ui replaced by hi. This
final architecture is shown in Figure 1.
Although our task is to quantify the relationship
between individual utterances and conversation
quality, our model is formulated as a conversation-
level quality predictor in order to fit to datasets
where conversation quality labels are available.
Since the top layers of our architecture enforce
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Figure 1: Model architecture for predicting dialogue
quality by aggregating predicted utterance ratings and
weights with contextualization.

this conversation-level prediction to be constructed
from individual ratings and weights of each utter-
ance in the conversation, this conversation quality
prediction architecture can be applied to the model
analysis task that is the focus of this paper. Af-
ter fitting this model to a conversation dataset with
quality labels, utterance-level effects on quality can
be inferred by extracting the ratings and weights
of each utterance from the model’s intermediate
output. The final inferred impact score si of each
utterance ui on the conversation quality is then
simply given as a product of the rating and weight:

si = ri ∗ wi (4)

4 Experiment

4.1 Data

Our task requires dialogue datasets that contain
dialogue-level quality ratings. However, to mea-
sure the success of inferring utterance-level impacts
from these dialogue-level quality ratings, we need
to evaluate any approach on this task against di-
alogues that also contain utterance-level ratings.
To our knowledge, there are two publically avail-
able datasets that provide both dialogue-level and
utterance-level quality ratings: Amazon’s Topical-

Chat (Gopalakrishnan et al., 2019) and the First
Conversational Intelligence Challenge (ConvAI)
(Burtsev et al., 2018).

Although Topical-Chat obtained human anno-
tations on utterance quality, there are several lim-
itations to these annotations that make them un-
suitable as an evaluation dataset for our task. For
one, the quality of the utterance-level annotations is
questionable. Through a preliminary analysis of the
dataset, we observed many cases where we could
not justify the human annotator’s ratings. In fact,
99% of the utterance-level annotations received a
rating of 4 or 5, and annotators seemed likely to
give such a rating with no regard to the coherence
of the utterance in its context. Additionally, even if
the annotation reliability was not in question, this
dramatic bias towards a small subset of the rating
classes also leads to the dataset containing a sub-
stantial lack of variety in utterance quality, which
would make this dataset uninteresting as an eval-
uation method. For these reasons, we choose to
exclude Topical-Chat from our evaluation.

On the other hand, ConvAI contains more dis-
tributed utterance-level ratings that did not raise
the same quality concerns upon our preliminary
analysis. As a result, we include ConvAI in the
evaluation of this task. In addition, we augmented
a subset of the dialogues collected through our par-
ticipation in the 2019 Alexa Prize with utterance-
level annotations. We use this augmented dataset
for evaluation as well. More details on these in-
cluded datasets are provided next.

ConvAI ConvAI was held as a Competition
Workshop at NIPS 2017, where 10 teams submitted
bots that were able to hold conversations with hu-
mans on short text news articles. During evaluation
of the bots, humans provided a dialogue quality
rating at the conclusion of their conversation, and
also had the option of rating each of their conver-
sational partner’s turns using an online good/bad
indicator. We heldout 200 conversations from the
overall dataset as development and test splits. Table
1 shows statistics of the remaining ConvAI conver-
sations (N=2,459) used for training and utterance-
level evaluation.

AP19 AP19 consists of dialogues that we col-
lected during the 2019 Amazon Alexa Prize Com-
petition (Gabriel et al., 2020). These dialogues
occurred between Amazon Alexa users and one so-
cialbot from the 2019 competition. This socialbot
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Rating 1 2 3 4 5
Dialogues 1100 537 345 308 169

Proportion 44.7 21.8 14.0 12.5 6.9
Avg. Turns 5.99 12.06 12.98 12.38 13.05

Good Turns 406 726 720 1262 783
Bad Turns 1371 1168 623 320 111

Table 1: Statistics for the ConvAI dataset.

was developed to hold in-depth chat-oriented con-
versations on a wide variety of topics with users,
including sports, pets, work, and family. Dialogues
were rated by the user at the conclusion of the dia-
logue on a voluntary basis by providing a numeric
score between one and five in response to the ques-
tion of how much they would want to talk to this
socialbot again.

The AP19 dataset was collected between March
and July of 2020. Dialogues with less than 5 ut-
terances were excluded because we observed that
such dialogues frequently occurred due to unin-
tentional invocation of the Alexa Prize skill. We
heldout 4873 conversations as development and
test splits each. Table 2 shows statistics of the re-
maining AP19 conversations (N=38,693) used for
training and utterance-level evaluation.

Rating 1 2 3 4 5
Dialogues 4785 4534 5965 8385 15024

Proportion 12.4 11.7 15.4 21.7 38.8
Avg. Turns 26.04 30.22 32.80 36.57 34.98

Table 2: Statistics for the AP19 dataset.

4.2 Models

We trained 3 variants of the ARA model presented
in Section 3, including both the non-contextualized
base version and two extensions using different
contextualization methods:

Non-Contextualized This is the base ARA
model from Section 3 that does not utilize con-
textualization of the utterance embeddings.

Order Driven Contextualization ARA-O ex-
tends the base model by using a bidirectional
LSTM layer in order to target the importance of
utterance order when determining utterance quality.

Attention Based Contextualization ARA-A ex-
tends the base model by using a self-attention layer
to incorporate long-range cross-utterance relation-
ships when determining utterance quality.

We also include an additional baseline model:

Non-Aggregated Regression Analysis NARA
is trained on the task of directly predicting utter-
ance scores, instead of a final dialogue score. It
employs a heuristic for obtaining target scores for
utterances, where each utterance score is equal to
the dialogue score in which it occurs. This problem
is treated as a sequence regression task, where the
model takes as input a sequence of utterances for
a given conversation and the utterances are first
contextualized using a bidirectional LSTM layer
before being passed through a fully connected layer
to output the predicted score for each.

4.3 Model Configurations
Utterances are embedded using the DistilBERT ver-
sion of Sentence-BERT (SBERT) by Reimers and
Gurevych (2019). SBERT is a sentence encoder
utilizing a siamese neural network architecture and
BERT-based embeddings that has been shown to
outperform other methods of encoding sentences
on a variety of downstream NLP tasks.

For all ARA-derivative models, hyperparame-
ters were chosen such that they yielded the best-
performing models at predicting conversation qual-
ity according to Pearson’s correlation on a develop-
ment set of the data. For NARA, the decision was
based on performance on utterance-level quality
prediction instead. Details on the final configura-
tions are provided in Appendix A.

4.4 Dialogue Quality Regression Results
Table 3 shows the performance of our models on
predicting overall dialogue quality. Previous works
have shown the difficulty of this task, the noisiness
of user ratings, and the low agreement between
independent human annotators on the same conver-
sations (Liang et al., 2020; Finch and Choi, 2020).
As noted in Section 4.3, we used the development
performance for hyperparameter tuning only.

AP19 ConvAI
Model Dev Test Dev Test

ARA 0.34 0.33 0.29 0.27
ARA-O 0.37 0.36 0.44 0.39
ARA-A 0.36 0.35 0.34 0.25
NARA 0.36 0.35 0.40 0.20

Table 3: Pearson’s r correlations achieved by each
model on the dev/test data.

5 Evaluation

Evaluating our model is challenging because it re-
quires human judgements about the magnitude and
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direction of effect of each utterance on the qual-
ity of the conversation it is a part of. Annotating
quality on an utterance level is already a difficult
task with much subjectivity involved (Higashinaka
et al., 2016). Furthermore, asking humans to an-
notate quality using real numbered values results
in arbitrary judgements of magnitude, further com-
plicating a direct evaluation of our task. Neverthe-
less, a model that appropriately assigns utterance
scores in a way that explains each utterance’s rela-
tive impact to the conversation quality should agree
substantially with judgements of human experts.

We address these challenges by presenting two
evaluation procedures that approximate the ground
truth of our task formulation while framing all hu-
man judgements as non-arbitrary decisions with
high inter-annotator agreement. These evaluations
focus especially on utterances that have a substan-
tial negative effect on conversation quality, since
this case is most in line with the main motivations
of our work to automatically identify problematic
interactions.

5.1 Human-Led Evaluation
Our first evaluation is motivated by the idea that
a good model should score interactions with well-
known issues lower than most other interactions.
To measure this, human annotators provide binary
judgements on the quality of each utterance. Given
these human annotations, we evaluate our model
by treating the binary utterance-level annotations
as a partial ordering of the impact of each utterance
on the conversation rating against which we can
measure the agreement of the model’s full ranking
of utterances composed of their assigned scores.
This agreement is represented by the C-Index as
used by Steck et al. (2008), which measures the
extent to which pairs of items in a predicted ranking
agree with some ground-truth partial ranking.

ConvAI The ConvAI dataset was released with
utterance-level ratings by human annotators. Hu-
man users provided a binary rating to utterances
indicating whether it was good or bad on a volun-
tary basis. Thus, we use these ratings provided by
the human users for the automatic evaluation of our
proposed approach on the ConvAI dataset.

AP19 Although AP19 contains dialogue-level
quality ratings from human users, it does not con-
tain such ratings for utterances. To this end, we
construct an evaluation dataset by asking experts to
pick out issues within each dialogue that are likely

to cause a lower user rating. We specifically investi-
gate two types of issues: system misunderstandings
and user dissatisfaction. These two issue types are
prevalent in our AP19 data and are a frequent cause
of conversation quality degradation.

Two of the authors annotated issues in these
two categories on 100 randomly sampled dialogues
from our AP19 dataset. Sampling was restricted
to only select dialogues with less than a 5 quality
rating, since high-rated conversations often have
no major problems. The following guidelines were
used to annotate each dialogue:

1. Out of the system utterances that signaled a
misunderstanding, mark the one that was most
likely to negatively impact the user rating.

2. Out of the user utterances that signaled dis-
satisfaction, mark the one that most strongly
indicated that the user was dissatisfied.

3. If the severity of two or more system mis-
understandings or user dissatisfaction signals
cannot be discriminated, mark all of them.

All conversations in the sample were doubly anno-
tated, with an interannotator agreement (Cohen’s
kappa) of 0.674 For evaluation purposes, we ignore
utterances that the annotators did not agree on, with
the final evaluation containing 158 issue utterances
and 3020 non-issue utterances.

5.1.1 Human-Led Evaluation Results

Model AP19 ConvAI
NARA 0.760 0.739

ARA 0.712 0.574
ARA-O 0.807 0.728
ARA-A 0.638 0.599

Table 4: Average model performance (C-Index) on
ranking utterances with respect to human annotations.

Table 4 shows the performance of our proposed ap-
proach in predicting the correct quality ranking of
utterances. These results are based on the average
performance across three independent iterations
of each model fitted on the datasets. Across all
versions of the evaluation, our proposed approach
using the order-driven contextualization (ARA-O)
displays strong performance, achieving a C-Index
of 0.807 on AP19 and 0.728 on ConvAI. For Con-
vAI, however, ARA-O is slightly outperformed by
the NARA baseline. For AP19, the attention-based
contextualization (ARA-A) configuration performs
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much worse, producing performance that is lower
than either of the baselines, although it outperforms
the base ARA for ConvAI. We observe that ARA-
A is prone to significant overfitting which may ac-
count for this poor performance.

We also investigated the transferability of the
best-performing model trained on one dataset
(AP19) to another (ConvAI) shown in Table 5. On
its own, the model performs poorly on the out-of-
domain dialogues which we expected. When fine-
tuned on ConvAI, its performance is comparable
to a model trained only on the ConvAI dataset.

ConvAI
AP19 ARA-O 0.506

+ Finetune 0.724

Table 5: Performance of model trained on AP19 when
applied to ConvAI.

We include the C-Index scores of the annotators
against each other (Table 6) in order to provide
a strong comparison for our models. Although
the difference between our best model and human
performance is not too great, there is still a small
gap in performance.

Annot. 1 Annot. 2
Annot. 1 - 0.823
Annot. 2 0.853 -

Table 6: Human annotator’s agreement (C-Index) on
utterance-level issue scores for AP19.

5.2 Model-Led Evaluation

A major limitation of our human-led evaluation is
the restriction to only two kinds of issues. Although
humans seem capable of judging when well-known
problems like misunderstandings and dissatisfac-
tion impact the dialogue quality, there are a num-
ber of non-obvious factors that contribute to the
user’s experience as well. Data-driven models have
a greater potential than humans to uncover these
factors, since they can make inferences based on
information aggregated across thousands of conver-
sations rather than on biased intuition. However,
given that such a model outputs some estimation of
an utterance’s impact on conversation quality, that
output should be verifiable by a human and agree
substantially with expert judgement.

To account for a broader spectrum of factors
that may affect conversation quality, we conducted
an additional evaluation that asks experts to judge

pairs of interactions, where one interaction was
assigned a low score by the model and one was as-
signed a high score. We choose the 5th percentile
as a cutoff to distinguish issues (low-scored) from
non-issues (high-scored), and randomly sample one
utterance from each side of the distribution to con-
struct pairs. Sampling is not done at uniform ran-
dom, since we observed in a pilot evaluation that
this results in many similar samples that are of-
ten paraphrases of one another. Instead, we run
k-means clustering on the pretrained SBERT em-
beddings of the bottom 5%-scored utterances and
restrict our sampling to the k utterances closest
to the centroid of each cluster. We chose k to be
1% of the total number of issue utterances being
clustered, k = 683. This procedure ensures a high
degree of variety among chosen samples, increas-
ing the robustness of the evaluation.

Each sampled issue from the clustering proce-
dure is paired with a non-issue drawn uniform-
randomly from the upper 95%-scored utterances.
Each pair of utterances is then presented to the
human judge with random intra-pair order, so the
judge is blind to which utterance was scored lower
by the model. We allow judges to see two preced-
ing utterances and one following utterances from
the full conversation when viewing each example.
Providing a context window of this size was done
in order to focus the judgement on a specific inter-
action of the dialogue, while still providing suffi-
cient background to interpret the sampled utterance
correctly. Given expert judgements on these pairs,
model accuracy is calculated as the proportion of
times expert judgements agreed with model score
assignments. We retrieve 300 pairs for evaluation
from our AP19 dataset and two of the authors per-
formed the evaluation.

5.2.1 Model-Led Evaluation Results
We conducted the Model-Led Evaluation on ARA-
O for our AP19 dataset, since it outperformed all
other models in the initial Human-Led Evaluation.
Table 7 presents the model’s ability to discriminate
quality ratings between utterances. Our model is
able to achieve an accuracy of 0.775 on average.

6 Error Analysis

We conducted an error analysis to determine the
frequently occurring mistakes of the proposed ap-
proach. To do this, we manually reviewed the 70
utterance pairs and their contexts that resulted in
disagreement between the system and at least one
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Accuracy
Annot. 1 0.77
Annot. 2 0.78
Average 0.775

Table 7: Model accuracy at identifying low-quality ut-
terances. Annot # is relative to individual annotators’
selections. Average takes the average of the annotators’
accuracy results.

Mistake Type Frequency Percentage
Both Issues 37 53%

Both Non-issues 24 34%
Flipped Assignment 9 13%

Table 8: Distribution of the three mistake types.

annotator in the System-Led Evaluation. We cre-
ated 3 categories that captured the underlying prob-
lems that caused the disagreement. Both Issues
contains cases where the non-issue selection was
as problematic as its issue selection. Both Non-
issues represents cases where the issue selection
was not interpretable as a problematic conversation
exchange. Flipped Assignment captures the cases
where the non-issue selection was more problem-
atic than the issue selection. Table 8 illustrates the
distribution of identified mistake categories across
the 70 pairs, with examples shown in Table 10.

Dialogue Pattern Issue Prop. Nonissue Prop.
Stop Request 20% 7%

Irrelevant Topic 16% 6%
Topic Switch Request 13% 3%
Unengaging Handoff 11% 3%

Table 9: Distribution of the dialogue patterns within
system-selected issue contexts and nonissue contexts.

Upon closer analysis of these disagreed pairs, we
observed some dialogue patterns that had high cor-
relation with the system assigning a low score to
an utterance as shown in Table 9. Using a context
window of size 2 around the selected issue, we
observed the following patterns:

Stop Request the selected issue was within one
turn of the user requesting the conversation to be
over.

Irrelevant Topic the selected issue occurred near
the user sharing that they did not have a particular
trait (e.g. not in school, no job, no pets, etc.).

Topic Switch Request the selected issue was
within one turn of the user requesting a new topic.

Unengaging Handoff the selected issue was
within one turn of the system transitioning out of
one topic using one of three unengaging statements,
such as Ok well I find it inspiring that we have so
many different types of music to listen to.

The frequency of these dialogue patterns is shown
in Table 9 and examples illustrating these dialogue
patterns can be found in Table 10.

These dialogue patterns were present in many of
the pairs in the Both Non-issues class. In isolation,
the instances of these dialogue patterns do not seem
indicative of a problematic conversational interac-
tion; however, when taken as an emergent pattern,
they begin to illuminate types of interactions that
may be subtly indicative of poor user experience.
For instance, there would be no reason to request a
new topic or to end the conversation if the user was
enjoying themselves, thus these actions are a good
indication of the user being dissatisfied. Similarly,
our socialbot was better equipped to talk about cer-
tain life traits, such as being in school or having
a pet, and the analogous conversation for those
users who did not fit those categories were not as
strong. It could be the case that the model’s selec-
tion of such utterances was not incorrect and rather
it was reaching appropriate conclusions based on a
large volume of information it was working with,
whereas the human annotators were unaware of
this, although it is impossible to verify this through
our evaluation procedure.

On the other hand, for the Stop Request category,
it could also be the case that the model is over-
relying on the stop utterances as a negative signal.
Knowing the end of the conversation provides the
model with the opportunity to make any last-second
corrections to achieve the dialogue quality it needs
to assign for the current conversation.

7 Discussion

By achieving a C-Index score of 0.80 and 0.72 on
the AP19 and ConvAI datasets respectively, our
approach demonstrates the feasability of inferring
utterance-level quality information from aggrega-
tion over a dataset of rated conversations. Since C-
Index is a generalization of the AUC curve, random
decision-making would result in a performance of
0.5, thus we obtain improvements of over 20%
against random.

The success of our proposed approach on two
datasets also demonstrates its applicability across
different dialogue settings. A key difference be-
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Example of system-chosen issue utterance:

System: Oh, that is unfortunate, you should definitely try it sometime, V R is slowly becoming the future of gaming.
Another emerging area is augmented reality, or A R . what do you think of augmented reality?
User: i don’t know what that is
System: You don’t have any ideas? That is ok. It is still a relatively new thing, so it may be hard to form an opinion. If
you were to play a mobile game using A R, what would make it the most fun, do you think?
User: what is a r.

Example of system-chosen issue utterance with Topic Switch Request:

System: Yeah. You know I hear the grocery stores in affected areas have lots of empty shelves right now. I’m not sure
how necessary it is, but have you been stocking up on supplies?
User: yeah
System: I guess you can never be too prepared. You know, sometimes I think, if everyone just stayed home and avoided
public areas for a couple weeks, the whole thing could just blow over. But realistically, I think slowing the virus down so
that everyone doesn’t get sick at once is the best we can hope for.
User: let’s talk about the drivers

Example of system-chosen non-issue utterance to which annotators disagreed:

System: Yeah, that is true. There are probably many difficult pieces in the puzzle of teleportation, but we can leave that
up to the scientists. I cannot seem to remember any movies that involve teleportation, can you?
User: i don’t know
System: Good one. I will have to remember that. Ok. tell me, what was the last movie you liked?
User: i like joker

Table 10: Examples illustrating highlights and shortcomings of the proposed approach, where the utterances as-
signed a low quality are indicated by italics. These examples are similar to interactions seen in the Alexa Prize
logs (conversations have been modified to protect customer privacy).

tween the AP19 and ConvAI datasets is their rat-
ing distributions: ConvAI was more right-skewed
whereas AP19 was more left-skewed. In addition,
the ConvAI dataset employs a text-based inter-
face, includes both human-machine and human-
human dialogues, and the dialogues were less
socially-oriented. This suggests that our approach
to utterance-level explainability is not constrained
to only one dialogue system configuration.

It is worth noting that the NARA baseline
slightly outperforms the presented approach on the
ConvAI dataset. This suggests that parsing through
all of the variability present in noisy quality ratings
across users to determine utterance-level correla-
tions is potentially challenging when given a small
dataset. It may be more suitable to use the conversa-
tion rating as a heuristic utterance-level score target
in these cases. However, the difference between
the proposed approach and this baseline is not too
great, so it is difficult to make a strong conclusion.

8 Conclusion

Our approach and evaluation results demonstrate
the feasibility of an automatic approach for dia-
logue quality analysis. By training a model to learn
the relationship between utterance-level features
and conversation-level outcomes, it is possible to
obtain an empirically-derived ranking of interac-
tions based on whether they relate to positive or

negative conversation quality. This work has obvi-
ous applications in dialogue system development,
mitigating the high developer effort involved in
manual analysis and human bias in determining the
relative importance of system issues.
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A Data Preprocessing and Model
Hyperparameters
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a single response.

All models were trained with the Adam opti-
mizer with a learning rate of 0.00001 and Mean
Squared Error loss function. All models had a
dropout layer applied to the utterance embeddings
(ARA: 0.2, Others: 0.1). The ARA-O and NARA
models had a hidden dimension of 200. The ARA-A
had 1 layer with 1 head, hidden dimension 100, and
dropout of 0.1 in the Transformer layer.
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