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Abstract

Intent Classification (IC) and Slot Labeling
(SL) models, which form the basis of dialogue
systems, often encounter noisy data in real-
word environments. In this work, we inves-
tigate how robust IC/SL models are to noisy
data. We collect and publicly release a test-
suite for seven common noise types found
in production human-to-bot conversations (ab-
breviations, casing, misspellings, morphologi-
cal variants, paraphrases, punctuation and syn-
onyms). On this test-suite, we show that com-
mon noise types substantially degrade the IC
accuracy and SL F1 performance of state-of-
the-art BERT-based IC/SL models. By lever-
aging cross-noise robustness transfer – train-
ing on one noise type to improve robustness
on another noise type – we design aggregate
data-augmentation approaches that increase
the model performance across all seven noise
types by +10.8% for IC accuracy and +15
points for SL F1 on average. To the best of
our knowledge, this is the first work to present
a single IC/SL model that is robust to a wide
range of noise phenomena.

1 Introduction

Intent classification (IC) and slot labeling (SL)
tasks (shown in Table 1) form the backbone of
goal-oriented dialog systems. In recent times, deep-
learning models have achieved impressive perfor-
mance, reporting accuracies above 95% (Chen
et al., 2019) on public IC/SL benchmarks such as
ATIS (Hemphill et al., 1990) and SNIPS (Coucke
et al., 2018). These datasets, commonly used in
the academia, are clean while real-world data is
often noisy. Extensive prior work on robustness
has focused on identifying noise-types that affect
NLP systems and suggesting methods to improve
robustness to individual noise types. However, two
key questions remain – (1) what noise types are
seen in real-world goal-oriented dialog systems,

? Equal Contribution.

Input Utterance Play a song by Bob Dylan

Slot Labels (SL) O O O O artist artist
Intent Class (IC) PlayMusic

Table 1: Example input and outputs for IC & SL tasks.

and (2) how can we construct a single model robust
to all real-world noise variants?

In this work, we identify and evaluate the impact
of seven noise types frequently observed in a pro-
duction – casing variation, misspellings, synonyms,
paraphrases, punctuation, abbreviations, and mor-
phological variants – on IC and SL performance.
In this regard, we collect a suite of realistic ATIS
and SNIPS test data for these phenomena. We find
that noise reduces the IC/SL performance of state-
of-the-art BERT based IC/SL models by an average
of −13.5% for IC accuracy and −18.9 points for
SL F1. We show that strategic augmentation and
regularization approaches can offset these losses,
improving performance on noisy benchmarks by
+10.8% for IC and +15 points for SL F1 on aver-
age by leveraging cross-noise robustness transfer
while minimally effecting accuracy on the original
test-data. We emphasize that these improvements
are for a single IC/SL model that is robust to all
noise types. This is a substantial improvement in
generalization over existing methods, which train
separate models for each noise type.

To summarize our contributions:

(1) We publicly release a bench-marking suit
of IC/SL test data for seven noise types seen in
real-world goal oriented dialog systems. 1

(2) We show that training data augmentation with
one noise type (eg. synonyms) can improve ro-
bustness to unseen noise types (eg. paraphrases)
substantially (eg. ATIS IC: +12.6); we call this
cross-noise robustness transfer.

1Dataset: github.com/amazon-research/real-world-noisy-
benchmarks-for-natural-language-understanding W

https://github.com/amazon-research/real-world-noisy-benchmarks-for-natural-language-understanding
https://github.com/amazon-research/real-world-noisy-benchmarks-for-natural-language-understanding
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Phenomena Train Generation Test Generation Examples

Abbreviations Rule Based Human book a flight from San Jose 2 NYC
Casing Rule Based Rule Based BOOK A FLIGHT FROM SAN JOSE TO NYC
Misspellings (Hasan et al., 2015) Public DB book a flite from San Jose to NYC
Morph. Internal DB + LM Human start booking a flight from San Jose to NYC
Paraphrasing Back Translation Human can you book me a flight from San Jose to NYC
Punctuation (Tilk and Alumäe, 2016) Human book a flight from San Jose to NYC.
Synonyms WordNet + LM Human reserve a flight from San Jose to NYC

Table 2: Summary of methods to generate noisy data for training and testing purposes. As an example, we provide
a noised version of the sentence (in ATIS) ‘book a flight from San Jose to NYC’ for each category.

(3) We present a single IC/SL model that
improves robustness to all seven noise types
that we study by an average of +10.5% for IC
accuracy and +15 points for SL F1.

2 Related Work

Prior works demonstrate the brittleness of neural
systems in NLP to different noise types. Adversar-
ial NLP focuses on construction of examples that
impair a model’s performance (Jia and Liang, 2017;
Ribeiro et al., 2018; Ebrahimi et al., 2017; Cheng
et al., 2019). A parallel thread of research inves-
tigates the behavior of models towards real-word
noise types. Machine Translation (MT) systems
perform poorly in the presence of synthetic and nat-
ural character-level changes (eg. character swaps,
typographical errors, misspellings) (Belinkov and
Bisk, 2018; Karpukhin et al., 2019); similar con-
clusions hold for casing noise (Niu et al., 2020).
Other works investigate robustness of NLP mod-
els to paraphrases (Einolghozati et al., 2019), mis-
spellings (Pruthi et al., 2019), and morphological
variants (Tan et al., 2020a). The most common ap-
proach to improving model robustness is data aug-
mentation, either at pre-training or training time.
For example, in (Tan et al., 2020a), augmentation
with adversarial examples and a single epoch of pre-
training can improve robustness of the model for
Question Answering (QA) and MT tasks; a compre-
hensive summary of DA techniques can be found
in (Feng et al., 2021). Recent works present frame-
works for comprehensive model-agnostic testing
of NLP systems to grammatical and noise variants
(Ribeiro et al., 2020; Goel et al., 2021). All of these
prior works focus on either (1) improving robust-
ness to individual noise types or (2) simply evaluat-
ing model performance on synthetically-generated
noise variants. In contrast, we construct a single
model that is robust to all seven noise types seen in

Dataset Phenom. #Utt #IC #SL #SV BLEU

ATIS

Original 893 20 69 288 1.00
Abbrev. 99 13 44 135 0.66
Case. 893 20 69 288 0.00
Misspl. 893 20 69 350 0.80
Morph. 115 15 45 154 0.59
Para. 217 18 56 185 0.42
Punc. 243 14 49 212 0.68
Syn. 225 18 57 191 0.64

Snips

Original 700 7 39 1571 1.00
Abbrev. 98 6 35 334 0.63
Case. 700 7 39 1474 0.00
Misspl. 700 7 39 1623 0.83
Morph. 101 6 36 335 0.65
Para. 197 6 36 585 0.54
Syn. 201 6 36 592 0.73

Table 3: Statistics on utterance (Utt), intent (IC), slot
label (SL), and slot value (SV) counts as well as the
average BLEU score between the original and noised
utterances for ATIS and SNIPS.

real-world systems.
Beyond training-data augmentation, pre-training

robust word-embeddings is a popular defense
against adversarial examples (Zhu et al., 2020),
misspellings (Piktus et al., 2019), and character or-
dering (Malykh et al., 2018). In (Kudo, 2018),
authors investigate the impact of different sub-
word tokenization techniques on model robustness.
Effective regularization has also been shown to
improve the robustness of IC/SL models to para-
phrases (Einolghozati et al., 2019). Yet many of the
techniques to improve robustness are not compara-
ble due to evaluation on different test sets. Hence,
we provide high-quality noisy test data to serve as
a common test bed.

3 Noise Categories

We consider seven types of noise that are prevalent
in the traffic of a task oriented dialogue service
– namely, misspellings, casing, synonyms, para-
phrases, punctuation, morphological variants, and
abbreviations (see Table 2). With the exception of



70

misspellings and casing, we employ trained data as-
sociates to collect test sets that are representative of
naturally occurring noise. For the misspelling and
casing phenomena, we automatically generate our
test sets because (1) high-quality generation is pos-
sible for English and (2) purposeful introduction of
misspellings is not a natural task. Generating noisy
data using human experts is expensive. Therefore,
it is not suitable for the purpose of training aug-
mentation. Thus, all of our training augmentation
experiments rely upon automatically generated phe-
nomena. In this section, we provide details about
the manual data collection process and describe the
automatic generation procedure leveraged for train-
ing data augmentation. In Table 3, we showcase
statistics for ATIS and SNIPS noisy test sets.

3.1 Manual Test Data Collection
We employ trained data associates to introduce syn-
onyms, paraphrases, morphological variants, and
abbreviations in ATIS and SNIPS. We also use data
associates to punctuate ATIS. ATIS requires spe-
cial treatment for punctuation as it is unpunctuated,
while SNIPS is punctuated and does not require
manual collection for the punctuation noise type.
Due to cost constraints, we noise a subset of ap-
proximately 200 utterances for each dataset. We
instruct the data associates to introduce the given
phenomena into the carrier phrase portion of each
utterance (i.e. the spans that do not correspond to
slot values). In instances where the associates are
unable to come up with a viable modification to an
utterance, the utterance is excluded from the eval-
uation set. For this reason, our test sets for some
phenomena, namely abbreviations and morphologi-
cal variants, contain fewer than 200 utterances. We
perform quality assurance on the collected data, us-
ing internal data specialist that ensure at least 95%
of the examples in a sample containing 25% of
each noisy test set are realistic and representative
of the given noise type.

3.2 Synthetic Data Generation
Casing Casing variation is common in text
modality human-to-bot conversations. Consider
for example, the responses “john” vs. “John” vs.
“JOHN” to a bot prompt “Can I have your first
name?”. Given that the training data is mostly
small-cased (for ATIS) and true-cased (for SNIPS),
we evaluate the impact of capitalizing all charac-
ters in the test set; we simply capitalize all test
utterances. For training augmentation, we inject

all-caps noise into 50% of training tokens.

Misspellings Misspelling test sets contain 15%
misspelled words, sourced from a collection of pub-
lic, human misspelling-correction pairs2. Using hu-
man misspelling pairs produces a more natural test
set, but it does not generalize well to new languages
or domains. Thus, for augmentation, we utilize a
probabilistic approach to generate synthetic mis-
spellings put forward in (Hasan et al., 2015). This
method introduces errors based on induction proba-
bilities mined from natural data and bases character
level edits on the QWERTY keyboard layout.

Synonyms We augment the training data with
synonyms using a two step approach. First, we
obtain a list of candidate synonyms via word net.
Second, we introduce the synonym candidate that
results in the lowest perplexity, as measured by
DistilGPT2 (Sanh et al., 2020), into the utterance.
This perplexity filter ensures greater fluency.

Paraphrases For training data augmentation, we
considered using paraphrased generated using
back-translation, from English to Chinese and
back (Mallinson et al., 2017; Einolghozati et al.,
2019). For preserving slot-labels, we annotate the
slot values in the back-translated text if they match
the slot values in the original text, ignoring casing
differences. In contrast to other noise types that
are injected at the token-level, this is injected at the
utterance level.

Punctuation For ATIS, we augment the training
data by using a bi-directional recurrent neural net-
work with attention proposed in (Tilk and Alumäe,
2016). We note that the punctuation added to ATIS
test sets are clearly noise or irrelevant punctuation
(Ek et al., 2020) as the absence of these in the orig-
inal test-sets does not impact intent or slot value
classification. While some punctuation can be con-
sidered for complex scenarios in NLU (eg. use
of comma to separate consecutive slot values), the
idea of relevant punctuation is currently not well
explored in the context of NLU systems. We do
not experiment with the punctuation phenomena
on the Snips dataset, since snips already contains
punctuation in both the training and test splits.

Morphological Variants We generate morpho-
logical variants for training data augmentation in
a similar manner to synonyms. Namely, we first

2www.dcs.bbk.ac.uk/ ROGER/corpora.html W

https://www.dcs.bbk.ac.uk/~ROGER/corpora.html
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produce a list of candidate morphological variants,
using an internal curated database of 120,000 mor-
phological variant pairs sourced by human experts
and then select the candidate with the lowest per-
plexity. While this is similar to the MORPHEUS
approach described in (Tan et al., 2020b), it has
two major differences. First, the list of morphed
candidates in our case are chosen based on an in-
ternal curated database as opposed to the LemmIn-
flect package3. Second, our approach is a model-
agnostic approach that can work regardless of how
the model is trained, whereas (Tan et al., 2020b)
uses a model-in-the-loop approach to generate mor-
phed inputs that are adversarial in nature (i.e. flip
the model’s prediction).

Abbreviations To synthetically construct abbre-
viations for augmenting the training data, we con-
sider first a knowledge base of common abbrevia-
tions (Beal, 2021) and follow certain rule-based ap-
proaches to drop vowels from tokens (eg. ‘people‘
→ ‘ppl’) or include common abbreviation map-
pings between numerals and words which share
phonetics (e.g., "2" and "to").

4 Approach

In this section, we highlight the various approaches
we consider to construct a single model robust to
various noise types seen in live traffic.

4.1 Model Setup

We evaluate the robustness of a BERT based joint
intent classification and slot labeling model, which
is currently SOTA on the Snips and ATIS bench-
marks (Chen et al., 2019). Similar to (Chen et al.,
2019), we add an additional feed forward layers on
top of the [CLS] and sub-token hidden representa-
tions to predict the IC and SL tags, respectively.4

We use the cased BERT checkpoint pre-trained on
the Books and Wikipedia corpora.

4.2 Data Augmentation

Training Data Augmentation (DA) For each
noise type, we consider augmenting the training
data with noised versions of utterances in the origi-
nal training set along-with the same intent and sim-
ilar slot labels. For this purpose, we leverage the
synthetic approaches described in subsection 3.2.

3github.com/bjascob/LemmInflect W
4Implemented using the gluon tutorial:

nlp.gluon.ai/model_zoo/intent_cls_slot_labeling/index.html

Aggregate Data Augmentation (A-DA) We ex-
plore two augmentation strategies that consider all
noise types: Uniform (Uni) Aggregation and Best
Proportion (BP) Aggregation. Uni augments the
training set with 10% for each noise type (i.e. 10%
abbreviation, 10% casing, 10% synonyms, etc.).
BP tunes the training augmentation proportions
based on the best performance observed on a val-
idation set (15% abbreviation, 50% casing, 10%
synonyms, etc.).

4.3 Regularization
BERT-based Sub-word Regularization (B-SR)
There exists multiple options when splitting word
tokens into sub-words. In (Kudo, 2018), authors
propose stochastic sub-word tokenization and show
that this can improve the robustness of a Machine
Translation system. Given we use a pre-trained
BERT model with a fixed vocabulary, we consider
an adaptation of this method– we first consider an
index-based split of each word followed by BERT-
based tokenization of each split. Then, we sample
each such token with 1

4 -th the probability of the
original word tokenization. We call this method
BERT-based Sub-word Tokenization (B-ST). For
example, consider the word ‘fly’, the subwords and
the sampling probabilities are as follows.

Manual Splits BERT sub-word(s) Sampling Pr

None ‘fly’ 0.666
‘f’,‘ly’ ‘f’, ‘ly’ 0.167 (0.666/4)
‘fl’,‘y’ ‘f’, ‘l‘, ‘y’ 0.167 (0.666/4)

Adversarial Logit Pairing (ALP) In (Einol-
ghozati et al., 2019), authors proposed the use
of data augmentation (data generated via back-
translation) along with regularization terms that
penalize (via L2 distance) the model for outputting
different intent and slot labeling logits for a train-
ing sample and its noise-augmented version. We
adapt this approach for our setting, where the A-DA
training set is augmented with multiple noise types.
For each mini-batch with KI pairs of samples de-
rived from an input utterance x and KS pairs of
slot values, the loss function looks as follows,

L= 1
KI

∑KI
i=0 ||I(x)−I(x̃)||+

1
KS

∑KS
i=0 ||S(x)−S(x̃)||

where I and S represents the intent and slot label-
ing logits respectively.

5 Experiments

We first evaluate the trade-off between use of data
augmentation during pre-training vs. fine-tuning

https://github.com/bjascob/LemmInflect
https://nlp.gluon.ai/model_zoo/intent_cls_slot_labeling/index.html
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ATIS Snips

Model IC Acc. SL F1 IC Acc. SL F1
Orig. Noisy Orig. Noisy Orig. Noisy Orig. Noisy

BERT 98.8 97.3 95.6 86.5 99.0 98.7 96.3 91.2

+MLM Aug.5% 98.7 97.4 95.6 86.8 98.8 98.4 96.6 91.9
+Train Aug.20% 98.7 97.8 95.5 94.6 99.1 98.8 96.4 95.3
+MLM & Train Aug. 98.6 97.6 95.5 94.5 99.0 98.8 96.0 95.1

Table 4: Robustness of BERT with and without augmentation (Aug.) of misspellings at pre-training time (MLM)
and IC/SL training time (Train.) to misspelling phenomena in the ATIS and Snips datasets measured by intent
classification accuracy (IC Acc.) and slot labeling F1 (SL F1) scores.

time. We focus the majority of our analysis on
fine-tuning time augmentation as we show it out-
performs pre-training augmentation.

5.1 Pre-training vs. Fine-tuning DA for
Synthetic Misspellings

We pre-train BERT on the Wikipedia and Books
corpus augmented with synthetic misspellings at
a rate of 5% for an additional 9, 500 steps using
the standard MLM objective. Our results, shown
in Table 4, empirically demonstrate that noisy pre-
training does not perform better than training aug-
mentation (esp. on the noisy data). While noisy
pre-training generates marginal improvements on
SL F1 (avg. +0.3), training time augmentation
produces substantially larger gains (+6.1 on SL F1
and +0.5% on IC acc). Due to this finding, we
only consider data augmentation at the fine-tuning
stage in the experiments that follow.

5.2 Results

Table 5 highlights the performance of the various
methods (represented by the different rows) for IC
accuracy and SL F1 on the original test set (av-
eraged over the control sets for each noise type),
treatment sets for the individual noise types, and
an average gain over the control and treatment sets
of each approach over the BERT IC-SL baseline.
Figures in bold indicate the best performance for
each column.

The diagonal cells under the data augmentation
(DA) section, highlighted in yellow, represent the
effect of augmentation with a particular noise type
and testing on it. While this idea of Noise-Aligned
Data Augmentation (NADA) has been extensively
explored in prior work, we observe that only 5 of
the yellow cells (namely, punc. IC, casing SL for
ATIS and casing IC, abbrev. SL, misspell SL for
Snips) result in the best performing models (out of
26 metrics on noised-test sets). This indicates that

augmentation with other noise types (cross-noise)
has beneficial (side-)effects on the robustness to a
particular noise type; we term this phenomena as
Cross-noise Robustness Transfer.

We discuss the results of our experiments in
three sections. First, we summarize the perfor-
mance gains of the different models across all the
test sets. Then we analyze the performance on orig-
inal test sets. Lastly, we analyze performance on
the noisy test data.

5.2.1 Overall Performance
Data-augmentation approaches (DA) We find
that A-DA with BP aggregation outperforms all
the approaches on ATIS (IC:+8.4%, SL:+14.4)
and SNIPS (IC:+13.1%, SL:+15.6). NADA ap-
proaches, while often successful for a particu-
lar noise type, do not perform well against all
noise types and hence, aggregate DA methods are
deemed necessary. Further, we observe that in-
jecting a particular noise in training data provides
robustness against other noise types. Thus, we at-
tribute the success of the A-DA BP approach to
this cross-noise robustness transfer. We find that
uniform sampling of noise types for aggregate data-
augmentation (A-DA Uni) is always worse than
best-proportion aggregation (A-DA BP), whether
used by itself or in conjunction with the regular-
ization approaches. Thus, we only showcase the
results of using A-DA BP with regularization ap-
proaches in Table 5.

BERT-based Sub-word Regularization (B-SR)
B-SR, by itself, provides marginal gains for ATIS
(IC:+2.7%, SL:+2.3) and degrades the perfor-
mance of the baseline on SNIPS (IC:−0.8%,
SL:−3.3). For ATIS, the gains stem from minor
improvements seen on paraphrase and synonym
test-data; for SNIPS, we see a consistent degrada-
tion in performance for both the original data and
all noise types. In contrary, when coupled with A-
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ATIS

Model IC Accuracy SL F1
orig.E abv. case spl. mor. para. punc. syn. gainE orig.E abv. case spl. mor. para. punc. syn. gainE

BERT IC/SL 97.9 85.5 72.2 97.4 97.4 77.8 98.9 76.8 0.0 94.5 78.0 22.7 86.5 94.7 89.8 87.8 91.0 0.0

+B-SR 95.7 84.8 74.7 97.6 96.2 87.2 98.5 87.8 +2.6 92.8 83.6 38.5 92.7 93.1 87.7 84.1 88.4 +2.3

+DA
abbrev. (15%) 97.8 88.2 72.7 97.3 97.1 78.1 99.2 78.1 +0.7 94.1 90.8 36.2 90.0 94.7 89.9 85.7 91.6 +4.0
casing (50%) 97.2 84.5 98.2 97.0 95.4 83.6 99.2 82.3 +4.8 93.4 81.1 94.9 88.4 92.9 88.5 85.8 89.8 +9.9
misspl. (20%) 97.4 86.2 75.4 97.6 96.5 84.1 99.2 81.7 +2.0 94.5 87.8 50.1 94.6 94.9 89.4 87.1 90.7 +6.3
morph. (10%) 97.6 85.5 72.2 97.2 96.2 77.5 99.2 75.7 -0.4 94.6 77.9 18.6 86.9 94.8 89.5 89.1 91.0 -0.4
para. (15%) 97.3 85.2 70.8 97.1 96.5 91.4 98.1 91.8 +3.5 93.2 75.6 27.3 85.9 93.9 88.8 93.1 90.1 +0.4
punc. (15%) 97.8 86.9 67.9 96.8 96.8 87.5 99.2 85.6 +2.0 93.1 77.2 14.3 85.4 93.8 88.2 93.5 89.8 -1.4
syn. (10%) 97.9 88.2 72.4 97.0 96.5 91.0 98.9 90.5 +4.1 94.8 78.3 24.2 87.7 94.8 90.4 89.5 91.1 +0.8

+A-DA
Uniform (Uni) 97.3 87.5 89.5 97.5 95.9 89.8 99.2 90.2 +6.1 94.5 90.6 85.3 93.3 95.0 89.6 93.9 90.8 +12.6
Best Proportion (BP) 97.5 89.2 98.3 98.0 97.1 91.4 99.2 91.7 +8.3 94.5 92.0 94.9 95.0 95.0 89.4 94.4 90.5 +14.4

+A-DA + ALP 97.0 86.5 89.2 97.2 95.1 91.0 98.9 90.2 +5.9 94.2 88.0 84.2 92.8 94.7 89.2 93.3 91.5 +11.9

+A-DA + B-SR 97.3 91.6 97.9 97.5 96.5 89.3 99.2 88.4 +7.7 93.8 90.9 94.5 94.6 93.8 89.4 94.0 89.7 +13.7

+A-DA + ALP + B-SR 96.8 89.2 97.7 97.3 95.9 89.9 98.9 89.3 +7.3 93.5 90.4 94.3 94.4 93.5 89.3 94.0 88.8 +13.3

SNIPS

orig.E abv. case spl. mor. para. punc. syn. gainE orig.E abv. case spl. mor. para. punc. syn. gainE

BERT IC/SL 98.3 97.6 23.3 98.7 98.0 98.5 − 98.5 0.0 97.0 88.1 5.0 91.2 96.5 94.9 − 96.3 0.0

+B-SR 98.2 98.3 20.2 98.4 98.0 96.8 98.3 -0.8 93.9 84.6 3.0 92.2 91.6 91.1 92.5 -3.3

+DA
abbrev. (15%) 98.3 98.3 24.7 98.1 98.3 98.1 − 98.3 +0.2 96.8 96.0 3.0 92.7 97.4 95.2 − 96.1 +1.4
casing (50%) 98.6 98.0 98.7 98.2 98.3 98.3 − 98.0 +12.5 96.1 89.6 90.2 91.5 97.2 93.8 − 94.3 +14.0
misspl. (20%) 98.7 97.3 24.6 98.9 98.3 98.8 − 98.7 +0.4 96.6 91.3 +5.1 94.9 97.0 95.0 − 95.9 +1.1
morph. (10%) 98.3 98.3 19.4 98.4 98.0 98.3 − 98.7 +2.7 96.8 85.6 1.4 91.3 96.8 95.1 − 96.0 -2.7
para. (15%) 98.6 97.6 29.1 98.3 98.0 98.5 − 98.2 +0.9 94.3 84.6 9.2 88.1 96.0 92.5 − 93.5 -1.8
syn. (10%) 98.3 98.0 21.1 98.5 98.3 98.1 − 98.8 -0.3 96.7 87.5 5.5 91.2 97.2 94.2 − 95.5 -0.2

+A-DA
Uniform (Uni) 98.6 97.6 91.2 99.0 98.3 98.8 − 98.3 +11.5 96.4 94.3 67.1 93.9 96.7 94.7 − 95.3 +11.6
Best Proportion (BP) 98.8 98.6 98.6 98.9 98.7 99.2 − 98.8 +13.1 95.8 95.7 90.4 94.6 96.6 94.8 − 95.0 +15.6

+A-DA + ALP 98.9 98.6 98.6 98.7 98.7 99.0 − 99.2 +13.1 95.8 94.8 86.5 94.6 96.6 94.8 − 94.9 +14.8

+A-DA + B-SR 99.2 99.0 98.5 98.9 98.0 99.2 − 99.3 +13.2 95.2 94.3 89.5 94.0 94.7 93.7 − 94.5 +14.5

+A-DA + ALP + B-SR 98.8 98.6 98.5 99.0 98.3 99.0 − 99.3 +13.1 95.0 93.5 87.9 94.1 94.5 92.9 − 94.1 +13.8

Table 5: Intent Classification (IC) and Slot Labeling (SL) metrics for the different approaches on ATIS and SNIPS
averaged over 3 seed runs. The column with the Orig.E header reports average accuracy over the different phenom-
ena control sets, the red-highlighted columns showcase results on the noised-sets and the GainE shows the average
gain over the BERT IC/SL baseline across all datasets. The percentage of augmented data for the (DA) methods is
shown in brackets. Yellow cells highlight performance of Noise-Aligned Data Augmentation (NADA) approaches.
As SNIPS lacks a punctuation noised-set, the results are omitted for this condition.

DA BP approach, it produces the best performing
model on SNIPS IC (+13.2%) marginally edging
out A-DA’s gain (+13.1%) and a fraction behind
the best performing models in other categories.

Adversarial Logit Pairing (ALP) While ALP
coupled with A-DA BP boosts performance when
compared to the (BERT IC-SL) baseline model
on ATIS (IC:+5.9%, SL:+11.9) and SNIPS

(IC:+13.1%, SL:+14.8) data, it does not yield the
best-performing model robust to all noise types.

An amalgamation of the approaches, although
better than the baseline on ATIS (IC:+7.3%,
SL:+13.3) and SNIPS (IC:+13.1%, SL:+13.8)
data, lacks behind the best-performing models.
This indicates that the approaches A-DA, ALP, and
B-SR don’t provide complimentary benefits and
thus, cannot simply be combined to construct a
more robust model.

5.2.2 Performance on the Original Test Sets
Owing to the lack of linguistic diversity in the orig-
inal test-sets, we do not observe models trained on
grammatically-correct noise data (eg. paraphrase,

morphological variance, synonyms) clearly outper-
form the joint-BERT baseline. Yet, synonym-based
DA results in the best performing model on both
IC and SL performance for ATIS. A key reason for
this is that ATIS has domain-specific vocabulary–
eg. training data maps utterances with the word
‘flight’ to atis_flight and ‘plane’ to atis_aircraft
even though the two words can be used inter-
changeably in test utterances. Synonym-based DA
helps the model to generalize better by allowing the
model to avoid this spurious co-relations between
words and intents and consider the larger context
of the sentence/utterance. For SNIPS, which has
a more diverse vocabulary, well distributed over
the test and training set compared to ATIS, the
original BERT IC-SL performs the best on SL F1,
whereas the model A-DA (BP) + B-SR performs
the best on IC accuracy. The diverse tokenization
of words, caused by both A-DA and B-SR, ensures
that words in movie/book/song names, which may
often be indistinguishable, does not impact the
model’s IC capabilities and the model pays more
attention to the carrier phrases.
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5.2.3 Performance on Noised Test Sets
For each noise type, we design a control set that
contains only the clean version of the noised ut-
terances in the treatment set. While we only list
average performance on the original/control test
sets in Table 5, our discussion below often ana-
lyzes the model performance on the treatment set
and compares it to the corresponding control test
set (an opposed to only drawing inference based on
the average metrics).

Abbreviations Abbreviation degrades IC
(−12.34% for ATIS, −0.7% for SNIPS) and SL
performance (−16.47 for ATIS, −8.87 for SNIPS).
Note that the degradation on ATIS is of higher
magnitude than on SNIPS. Upon investigation, we
observe that ATIS abbreviations are often specific
to the travel domain (e.g., “tix" vs. “tickets"),
whereas abbreviations for SNIPS are more general
(e.g., “@" vs. “at"). We hypothesize that BERT
is more likely to have been trained on the abbre-
viations present seen in the SNIPS noised set than
for ATIS, and therefore more robust on SNIPS.

Augmentation with only abbreviation data
boosts performance on SL-F1 but provides small
gains on IC accuracy. We find that the coverage of
test abbreviations (injected manually) in the aug-
mented training data (injected synthetically) is far
lower for ATIS than for SNIPS (40% vs. 74%) and
this results in a higher disparity between IC per-
formance on clean (97.86%) vs. noised (88.22%)
test-set for ATIS even after augmentation. Fur-
ther, we observe that augmentation with synonyms
also provides a boost in IC accuracy for abbrevi-
ation injected test-data for both ATIS and SNIPS.
This cross-noise robustness transfer further boosts
the accuracy when the model is trained with BP
A-DA (that contains 15% abbreviation and 10%
synonym data). When further coupled with B-SR,
the best performing model achieves an IC accu-
racy of 91.58% for ATIS (+5.06%) and 99.25%
(+0.93%) for SNIPS. For SL, BP performs the best
for ATIS while training data augmentation with
abbreviation performs the best for SNIPS.

Casing IC and SL performances drop substan-
tially on the noised test set because the Bert tok-
enizer fails to identify fully capitalized words in
the vocabulary and instead breaks them down to
often match character-level sub-word tokens (eg.
‘would’ → {‘W’, ‘O’, ‘U’, ‘LD’}). Without the
use of augmentation, where half-of-the training
data is injected with capitalized form of words, the

classifier is not able to associate these sub-token
representations to the correct intent classes or the
slot-labels. Unfortunately, casing noise is orthogo-
nal to all the other noise types (as injection other
noise types does not improve model performance
on casing test-set) and thus, does not benefit from
cross noise-robustness transfer. While the best per-
forming model for ATIS (IC: 98.28%, SL: 94.88)
and SNIPS SL (90.37) is the BP A-DA, it is only
marginally better (< 0.2) than the training data aug-
mentation approach, which is a better for SNIPS IC.
Note that as the BP A-DA approach considers aug-
mented data will all the noise types, it significantly
increases the training time per epoch (see appendix
for run-times of the various approaches). Hence,
if one desires a model to only be robust to casing
noise, we suggest using training data augmentation
with capitalized words.

Misspelling Test-time misspellings do not im-
pact IC accuracy more than 0.2% points; a
misspelled word in the utterances changes the
sub-token breakdown of that word (‘what’ vs.
{‘wa’,‘t’}) that, in turn, does not change the in-
tent of the sentence. While majority of the noise
in the test set is in the carrier phrase tokens (as
opposed to the tokens representing slot values), we
notice a large drop in SL F1 (ATIS: −8.6, SNIPS:
−5.1). For ATIS, we noted that slot values for slot
labels such at period of day (eg. ‘night’ vs. ‘nite’)
are more prone to mis-classification when injected
with misspelled noise in comparison to slot values
such as day names (‘sunday’ vs. ‘suntday’). Aug-
mentation of training data with 20% misspellings
increases SL F1 (ATIS: +8, SNIPS: +3) making
it within 1.2 points of performance on the control
set. As the sub-tokens of misspelled words are now
better recognized as slot values. This result demon-
strates training on synthetic misspellings (Hasan
et al., 2015) can improve generalization to natural
misspelling noise seen at test time. Further, we
observe that other noise types such as abbrevia-
tion, which also increases the model’s familiarity
to sub-word tokens, also boosts the model’s ac-
curacy to test-time misspelling; this cross-noise
robustness transfer makes BP A-DA the best per-
forming model for ATIS. Given tokenization is a
key issue for the performance drop, we observe
B-SR provides a boost in model performance, but
comparatively less than A-DA approaches. Also,
coupling A-DA + B-SR doesn’t necessarily boost
the accuracy further.



75

Morphological Variants In contrast to the lack
of robustness seen on various NLP tasks in the
presence of morphological noise (Tan et al., 2020b),
IC and SL models evaluated on ATIS and SNIPS

data are pretty robust to morphological variation at
test-time, deviating from test-time performance on
clean data by at most −1.1 points. We notice that
synonyms and paraphrase noise injected at training
time helps in improving the models robustness to
morphological variance at test time. Upon using A-
DA BP, we observe that this cross-noise robustness
transfer boosts the model’s performance beyond the
baseline model’s performance on the clean data.

Synonyms Synonyms decrease the model’s per-
formance on ATIS (IC: −19.8%, SL:−2.8), while
the impact on SNIPS IC/SL is negligible. We note
that the model picks up word to intent correlations
(‘fare’→ ‘atis_airfare’, ‘flight(s)’→ ‘atis_flight’,
‘plane(s)’→ ‘atis_aircraft’) and when these words
are replaced with a synonym in the test data, the
model misclassfies the intent. For example, chang-
ing the word ‘flight(s)’ to the word ‘plane(s)’ where
they can be used as synonyms, the model’s intent
prediction flips from ‘atis_flight’ to ‘atis_aircraft’.
We conjecture that this difference in effect size is
the result of over-fitting on less diverse ATIS car-
rier phrases. This lack of diversity is evidenced by
the fact that ATIS contains roughly half as many
unique carrier phrase tokens as Snips (430 vs. 842),
despite having longer utterances on average (11.3
vs. 9.1 words). While introducing synonyms into
the ATIS training data boosts IC (+13.7%) and
SL (+0.7) performance, the best performing mod-
els are the ones augmented with paraphrase data
(for ATIS IC) and abbreviation data (for ATIS SL).
In this setting, the benefit of cross-noise robust-
ness transfer is more pronounced where other noise
types can boost the accuracy more than the particu-
lar noise type observed at test time. This is also due
to the fact that data augmentation with synonyms
generated via word-net + language models does not
align as well with human-injected synonym noise
seen at test time.

Paraphrase Paraphrases lead to a significant
drop in ATIS performance (IC: −18.6%, SL:3.0)
and a marginal drop for SNIPS (IC:−0.2, SL:−1.9).
Similar to the cases of synonyms, we posit that
ATIS is impacted due to (1) the lack of diverse
carrier phrases in the training set and (2) a greater
degree of dis-similarity between the original
and the paraphrased test-sets (evident from the

0.12 lower BLEU score compared to SNIPS).
While, training augmentation with back-translated
paraphrases yields comparable scores to the
baseline system, ALP (Einolghozati et al., 2019)
coupled with Uni A-DA yields the best IC accuracy
for both ATIS and SNIPS. For SL, cross-noise
robustness transfer with synonyms (for ATIS)
and abbreviation (for SNIPS) aids the model in
achieving the best performance.

Punctuation As mentioned earlier, SNIPS train-
ing data already has (is naturally augmented with)
punctuation tokens for a sub-set of utterances, we
do not consider punctuation as a noise and hence,
do not create a test set for SNIPS. BERT makes
models robust to punctuation-based noise on IC
accuracy, but we observe a 8.6 point difference
on SL F1. This happens due to either the (1)
over-prediction of punctuation tokens after a slot
value as a slot-value (eg. in an uttearnce ‘. . . to
Pittsburgh .’ both ‘Pittsburgh’ and ‘.’ are identified
as city names) or (2) missing out slot values when a
punctuation is present around it (eg. in an utterance
‘. . . from Columbus, Ohio to . . . ’, the model fails
to recognize Columbus and Ohio as slot values).
While augmenting with punctuation data boosts
model performance, we also noticed a similar
boost in SL F1 when augmenting training data with
back-translated paraphrase data because machine
translation often automatically introduced punc-
tuation tokens. Hence, when coupled together in
the A-DA approaches, we observe the best model
performance with BP A-DA on ATIS’ SL F1.

6 Conclusion

In this paper, we show that SOTA BERT based
IC/SL models are not robust to many real world
noise types found in production. We further demon-
strate that cross-noise robustness transfer – training
on one noise type to improve model robustness
on another noise type – yields gains for a num-
ber of noise type pairs. Through Aggregate Data
Augmentation (A-DA), we leverage cross-noise ro-
bustness transfer to improve the model’s average
performance by +10.8% on IC and +15 points on
SL F1. Despite the gains we obtain, our benchmark
provides substantial headroom to improve model
performance on the abbreviation, synonym, and
paraphrase noise types. We hope that our bench-
mark will support future research in this direction
and enable the design of robust IC/SL models for
goal-oriented dialogue systems.
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A Appendix

A.1 Hyper Parameter Settings

We fine-tune BERT for up to 40 epochs with a batch
size of 32. To prevent over fitting, we use early
stopping on the validation loss. We optimize BERT
parameters using gluonnlp’s bertadam optimizer
with a learning rate of 5e-5 and no weight decay.
These are the default hyper-parameters provided in
the gluon tutorial for intent classification and slot
labeling. 5

A.2 Hyper Parameter Tuning

We use the default BERT joint IC/SL hyper-
parameters mentioned above in all experiments,
for both the baseline or training augmentation
approaches. Using these fixed hyper-parameters,
we tune the noise rate used for IC/SL training
data augmentation. We tune the training data
augmentation noise rate in the ranges listed below
for each noise type. We select the noise rate that
provides the best trade-off between performance
on the control and treatment sets. The noise rates
used in our final results are shown in the results
table as a superscript.

Noise Rate Search Range by Noise Type:

• Casing: {15%, 25%, 50%, 100%}

• Misspellings: {10%, 15%, 20%, 25%, 30% }

• Abbreviations: {10%, 15%, 20%, 25%}

• Morphological Variants: {10%, 20%, 25%,
30% 50%}

• Synonyms: {10%, 20%, 25%, 30%, 50%}

• Paraphrases: {5%, 10%, 15%, 20%}

A.3 Compute Environment

We run all experiments on p3.2xlarge GPU in-
stances using the AWS Deep Learning AMI
(Ubuntu 16.04).

A.4 Packages Used in Experimentation

We utilize the following packages to train and eval-
uate our models as well as generate synthetic noise
for training augmentation:

5https://nlp.gluon.ai/model_zoo/
intent_cls_slot_labeling/index.html

Dataset Model Type ≈Time Taken

ATIS

BERT IC-SL 13m
+ B-SR 17m
+ Uni A-DA 22m
+ Uni A-DA + B-SR 27m
+ Uni A-DA + ALP 37m
+ Uni A-DA + ALP + B-SR 58m
+ BP A-DA 57m
+ BP A-DA + B-SR 65m
+ BP A-DA + ALP 125m
+ BP A-DA + ALP + B-SR 207m

SNIPS

BERT IC-SL 23m
+ B-SR 29m
+ Uni A-DA 37m
+ Uni A-DA + B-SR 42m
+ Uni A-DA + ALP 59m
+ Uni A-DA + ALP + B-SR 70m
+ BP A-DA 102m
+ BP A-DA + B-SR 110m
+ BP A-DA + ALP 186m
+ BP A-DA + ALP + B-SR 227m

Table 6: Table showing the time taken to run 30 epochs
of a model training + inference on test data. As the test
data size varies based on the noise type (since different
treatment sets have different number of utterances), all
numbers are shown for the abbreviation control set.

1 n l t k ==3.3
2 g l u o n n l p = = 0 . 8 . 1
3 mxnet = = 1 . 3 . 0
4 numpy = = 1 . 1 4 . 3
5 s c i k i t − l e a r n = = 0 . 2 3 . 1
6 s c i p y = = 1 . 1 . 0
7 t o r c h = = 1 . 7 . 1
8 t r a n s f o r m e r s = = 4 . 2 . 2
9 s e q e v a l = = 0 . 0 . 1 2

Listing 1: requirements.txt

A.5 Evaluation Metrics

We compute slot labeling F1 score using
the seqeval library (https://github.com/
chakki-works/seqeval). We utilize the
evaluation function provided in the gluonnlp
intent classification and slot labeling tuto-
rial to compute intent classification accuracy
(https://nlp.gluon.ai/model_zoo/intent_
cls_slot_labeling/index.html).

A.6 Model Training and Inference Times

Training for 40 epochs plus inference on the test set
takes approximately 13 minutes on the ATIS data-
set and 23 minutes for the SNIPS data-set for both
the baseline and training augmentation approaches.
The time taken significantly increased for the other

https://nlp.gluon.ai/model_zoo/intent_cls_slot_labeling/index.html
https://nlp.gluon.ai/model_zoo/intent_cls_slot_labeling/index.html
 https://github.com/chakki-works/seqeval
 https://github.com/chakki-works/seqeval
https://nlp.gluon.ai/model_zoo/intent_cls_slot_labeling/index.html
https://nlp.gluon.ai/model_zoo/intent_cls_slot_labeling/index.html
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Noise Type Probability Example Char. Edit
Original 1.0 - p list flights from las vegas to phoenix N/A
Insertion p ∗ 0.33 list fljights from las vegas to phoenix +j
Deletion p ∗ 0.18 list flghts from las vegas to phoenix −i
Substitution p ∗ 0.43 list flithts from las vegas to phoenix g→ t
Transposition p ∗ 0.06 list filghts from las vegas to phoenix l −→←− i

Table 7: Instances of insertion, deletion, substitution, and transposition noise types for the example utterance
(Original), “list flights from las vegas to phoenix". We sample each noise type with the given probability to
construct noisy pre-training and IC/SL training datasets, where p is the noise rate. We inject noise into the token

“flights" in each example and provide the character level edit (Char. Edit) that transforms the original token to the
noised token.

model types and are listed in Table 6.

A.7 Synthetic Misspelling Generation
We build on prior work by (Hasan et al., 2015) to
generate synthetic misspellings that are representa-
tive of natural misspellings. Hasan et al. present a
taxonomy of misspelling types and induction prob-
abilities mined from natural noise. This taxonomy
consists of four noise types, substitution, insertion,
deletion, and transposition.

Character choice in substitution and insertion
operations is based on the QWERTY keyboard lay-
out. Given a character c (e.g., "d"), we substitute
or insert a character the appears next to c on the
QWERTY keyboard (e.g. "f", "s", "e", "c"). We
provide examples of each noise type and list the
probability with which we introduce these types of
noise in Table 7.


