
Natural Legal Language Processing Workshop 2021, pages 180–189
November 10, 2021. ©2021 Association for Computational Linguistics

180

Summarization of German Court Rulings

Ingo Glaser∗ and Sebastian Moser∗ and Florian Matthes
Technical University of Munich
ingo.glaser@tum.de

sebastian.moser@in.tum.de
matthes@in.tum.de

Abstract
Historically speaking, the German legal lan-
guage is widely neglected in NLP research,
especially in summarization systems, as most
of them are based on English newspaper ar-
ticles. In this paper, we propose the task of
automatic summarization of German court rul-
ings. Due to their complexity and length, it
is of critical importance that legal practition-
ers can quickly identify the content of a ver-
dict and thus be able to decide on the rele-
vance for a given legal case. To tackle this
problem, we introduce a new dataset consist-
ing of 100k German judgments with short sum-
maries. Our dataset has the highest compres-
sion ratio among the most common summa-
rization datasets. German court rulings con-
tain much structural information, so we cre-
ate a pre-processing pipeline tailored explic-
itly to the German legal domain. Additionally,
we implement multiple extractive as well as
abstractive summarization systems and build
a wide variety of baseline models. Our best
model achieves a ROUGE-1 score of 30.50.
Therefore with this work, we are laying the
crucial groundwork for further research on
German summarization systems.

1 Introduction

Most modern summarization systems are built
around a handful of datasets predominantly col-
lected from newspapers. In recent years many
researchers saw the need to introduce differ-
ent datasets to the summarization domain such
as ArXiv/PubMed (Cohan et al., 2018), XSum
(Narayan et al., 2018), or datasets from the legal
domain like BigPatent (Sharma et al., 2019) and
BillSum (Kornilova and Eidelman, 2019). As the
performance of data-driven systems is highly im-
pacted by the quality and size of the dataset used,
we introduce a new dataset for the German legal
domain, more specifically a collection of court rul-
ings.

∗Equal contribution

Court rulings are long documents clarifying le-
gal interpretations in a matter of dispute. Due to
their complexity and length, it is of critical impor-
tance that legal practitioners can quickly identify
the content of the verdict and thus decide on the
relevance for their legal case.

German court rulings have three basic parts.
First, the tenor denotes the explicit decision a judge
has made. Second, the main body of a judgment is
divided into the facts and the reasoning, explaining
why the judge came to their conclusion given the
specific preconditions. Third, the rubrum contains
meta-information, i.e. previous instances, the most
important legal texts referenced, and the guiding
principle. The guiding principle shortly summa-
rizes why the specific decision was made and there-
fore is extremely useful for legal practitioners. This
high-level summarization allows them to quickly
assess whether the court ruling is important for
them or not.

Not all of those pieces of information are found
in all verdicts. Especially the guiding principle is
only added by the judge or a legal publisher if the
judgment contains an important legal decision. A
lot of expert knowledge and time is necessary to
create this summarization, which is why we want
to automate this task. Therefore, with this paper
our contributions are the following:

1. A large scale collection of German court rul-
ings for summarization with 100k verdicts

2. A pre-processing pipeline specifically tailored
to German court rulings

3. Multiple extractive as well as abstractive sum-
marization models tailored to our dataset

All models described here are implemented in
PyTorch. All code for this paper is openly available
on GitHub1.

1at github.com/sebimo/LegalSum

github.com/sebimo/LegalSum
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2 Related Work

The literature differentiates two base approaches
to text summarization: (1) extractive and (2) ab-
stractive summarization. In the extractive case,
sentences or tokens are copied and extracted from
the given text and form a summarization. Contrary,
the abstractive summarization system is creating a
summary word by word, thus it is not dependent on
the words and information used in the verdict. This
is why abstractive summarization is often referred
to as natural language generation (NLG).

Most commonly, extractive summarization sys-
tems use a hierarchical document representation,
i.e. words are combined into sentences, sentences
are aggregated into documents. Various different
architectures with convolutional neural networks
(CNN), recurrent neural networks (RNN), and at-
tention mechanisms (Nallapati et al., 2017; Cheng
and Lapata, 2016; Jadhav and Rajan, 2018) are
used to extract the most important sentences. More
recent approaches focus on transformer architec-
tures (Liu and Lapata, 2019; Zhang et al., 2019;
Xu et al., 2020; Zhou et al., 2020) and investigate
the level of extraction (Xu et al., 2020; Zhou et al.,
2020; Jadhav and Rajan, 2018) by selecting words
or n-grams instead of whole sentences.

The most common way to tackle abstractive sum-
marization is to use an encoder-decoder structure.
Hereby the encoder is aggregating the information
from the text and the decoder is a conditional lan-
guage model producing the words in the summary.
Hierarchical document representations are again
important and similar modeling approaches are
used (Nallapati et al., 2016; Gehrmann et al., 2018;
Li et al., 2018; Chopra et al., 2016). In abstrac-
tive summarization, there is also a shift towards
transformers in recent years (Liu and Lapata, 2019;
Dong et al., 2019; Qi et al., 2020; Lewis et al.,
2020; Raffel et al., 2020; Zhang et al., 2020).

Many different techniques were found to be use-
ful for summarization. Pointer Networks (Vinyals
et al., 2015) allow the selection of words from the
input text and are used in extractive (Jadhav and
Rajan, 2018) as well as abstractive summarization
(See et al., 2017). Some papers use templates or
salient sentences in the word generation process
(Cao et al., 2018; Bae et al., 2019; Chen and Bansal,
2018). Others try to discourage the system from
repeating certain phrases by introducing special
loss function such as coverage (See et al., 2017) or
novelty (Kryściński et al., 2018).

Especially long documents are challenging and
thus multiple approaches try to tackle this problem
e.g. by introducing multiple encoders to find a
hierarchical representation of the text (Celikyilmaz
et al., 2018) or introducing the discourse structure
into a hierarchical attention model (Cohan et al.,
2018).

3 Dataset

3.1 Dataset acquisition

The dataset consists of verdicts from the Dr. Otto
Schmidt publisher and judgments which were
scraped from gesetze-bayern.de and justiz.nrw.de.
All those verdicts were then automatically trans-
lated to a unified JSON format. It contains the meta-
information about the verdict: id (unique identifier),
date, court, normchain (the most important legal
texts referenced), all the referenced norms, the pre-
vious instances, mentioned keywords, and verdict
title. All the referenced norms are stored with a
unique placeholder (__normxyz__), which is used
in the text body of the verdict to quickly identify a
norm during training. Norms and their placeholder
are stored with the verdict and the norm can be rein-
troduced later on. Additionally, the text segments
of the verdict (tenor, facts, reasoning, guiding prin-
ciple) are stored sentence by sentence, as the sen-
tence segmentation is non-trivial for German legal
documents as identified by Glaser et al. (2021).
We used their model to automatically segment the
verdicts into sentences.

Not every piece of information was directly ac-
cessible in the original data formats. For example,
the HMTL format of justiz.nrw.de does not con-
tain any annotations regarding referenced norms
in the texts, thus it was necessary to extract them.
In other cases, the main body of the text was not
segmented into facts and reasoning. It was then seg-
mented based on enumeration symbols, headlines,
and similar heuristics.

To ensure high data quality, each such process-
ing step was thoroughly tested via unit tests, and
the dataset was manually examined by the authors
through a graphical user interface. Incorrectly pro-
cessed verdicts were then corrected. After filtering
verdicts that did not have a guiding principle or a
text body, we collected a dataset of 100.018 dif-
ferent verdicts with summarizations. Finally, we
divided the datasets into a train (80%), validation
(10%), and test set (10%).
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3.2 Dataset statistics

We collected all data from German court rulings,
such that it can be used in other research such as ar-
gument mining, prediction of judgments, etc. The
oldest verdict is from 1955, the newest from the
end of 2020, but the majority of verdicts were is-
sued between 2010 and 2020. 64% of the verdicts
are based on at least one previous court ruling, i.e.
they might be based on text which is not directly
available to us and some details might be omitted
or only referenced to. It is possible to infer informa-
tion about the most common legal areas by looking
at the norms from the normchain. The verdicts
most commonly deal with civil cases (BGB, ZPO),
administrative jurisdiction (VwGO), financial ju-
risdiction with mostly income tax law (EStG), or
social jurisdiction with mostly asylum law (AsylG,
AufenthG).

In comparison to other summarization datasets
(see Table 1), our dataset contains documents that
are on average 3-4 times longer than the most com-
mon summarization datasets CNN, Daily Mail, and
NYT. It is comparable with the PubMed and ArXic
datasets considering the length of the documents
but has the highest compression ratio of all datasets
listed. The compression ratio is defined as the docu-
ment length divided by the summary length. Based
on this compression ratio, our dataset is compara-
ble to the BigPatent dataset, another legal dataset
for the English language. The datasets’ average
number of 110 sentences is compressed down to
on average 2,9 summary sentences.

To denote the overlap between the summary and
the text body novelty (See et al., 2017) quantifies
the percentage of n-grams from the guiding prin-
ciple not found in the text. 13.1% of the guiding
principles share all their 1-grams with the text body,
whereas 20.4% of the summaries have a 5-grams
novelty of 100%. This is an indicator that the sum-
maries have some level of abstraction and are not
directly copied from the text body. Abstractive or
extractive approaches that select words might thus
have an advantage on our dataset.

4 Pre-processing

Given the JSON format described above, we build
a pre-processing pipeline specifically tailored to
the summarization of German verdicts. Sentences
from the guiding principle, facts, and reasoning are
first split into tokens on spaces and dots. To reduce
the overall complexity, each token is then converted

to lower case in order to decrease the number of
unique tokens. This is mainly to remove possible
mixed-cased words at the beginning of sentences
as the meaning of a word is in our case clear given
its context. Afterwards norm placeholders in the
text are replaced with a generic <norm> token,
numeric tokens with <num> and tokens which
were anonymized (via "xx", "..", etc.) by <anon>,
to infer some semantic meaning for them via word
embeddings. Then any tokens within parentheses
were removed, as in most cases these only contain
references to other legal documents. Afterward, all
special characters and any enumeration symbols
were removed, as German verdicts contain a lot of
structural information. Finally, each token is then
mapped to a unique identifier.

After all those processing steps, the whole
dataset contains around one million unique tokens,
thus we only use tokens that appear at least 100
times in the corpus resulting in a total number of
tokens around 50.000. Although this vocabulary
size seems rather small, it is comparable to other
methods (See et al., 2017) and was necessary to
reduce the hardware requirements for the neural
networks. All tokens which were not selected are
replaced by an <unk> token in the pre-processed
text. Subword-based tokenization would be one
option to removing unknown tokens, but we de-
cided against it as only 2.7% of the text is replaced
with <unk>. We pre-trained GloVe embeddings
(Pennington et al., 2014) on those tokens.

5 Method

The basic building blocks of our models, namely
CNNs, RNNs, and the attention mechanisms can
be defined by their transformations on a sequence
of embeddings X = x1, . . . , xN ;xi ∈ Rd. For
convenience, given a matrix M ∈ Rn×m we define
Mi,: as the i-th row andM:,j as the j-th column vec-
tor. The general structure of both model types can
be seen in Figure 1 and will be further explained in
the respective subsections.

Formally, a 1-dimensional CNN transforms a
sequenceX ∈ RN×d into the sequence Y ∈ RN×e
by2

Yi,ej = bej

+ (
d−1∑
k=0

wej ,k ? X:,k)i
(1)

2Definition from pytorch.org
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Table 1: Dataset statistics from Cohan et al. (2018) expanded with compression ratio and our dataset. Length
denotes the number of tokens. Compression is the percentage of words in the summary compared to the document
length. Newsroom and BigPatent statistics taken from Sharma et al. (2019) and XSum from Narayan et al. (2018).

Dataset #docs avg. doc length avg. summary length compression ratio
CNN 92k 656 43 15.3
Daily Mail 219k 693 52 13.3
NYT 655k 530 38 13.9
PubMed 133k 3016 203 14.9
ArXiv 215k 4938 220 22.4
Newsroom 1212k 751 45 16.7
BigPatent 1341k 3573 117 30.5
XSum 227k 431 23 18.7
Legal 100k 2422 75 32.3

with ? being the cross-correlation operation and
b, w learnable weights and hidden state dimensions
are d and e.

For the RNN we use a Gated Recurrent Unit
(GRU) (Cho et al., 2014) which calculates a new
embedding via gates and the previous element in
the sequence. We transform a sequenceX ∈ RN×d
into the sequence Y ∈ RN×e by:

rj = σ([WrXt,:]j + [UrYt−1,:]j + brj)

zj = σ([WzXt,:]j + [UzYt−1,:]j + bzj )

ĥtj = tanh([WXt,:]j + [U(r � Yt−1,:)]j + bhj )

Yt,j = zjYt−1,: + (1− zj)ĥtj
(2)

In this case σ is the sigmoid function and � the
Hadamard product. Wr, Ur,Wz, Uz,W,U, b de-
note learnable parameters (definition as the Py-
Torch implementation).

The attention mechanism (Bahdanau et al., 2015)
is defined as the weighted sum over the embeddings
x1, . . . , xN ∈ Rd in the following way:

a =
N∑
i=1

αixi (3)

αi is a weighting for every element in the sequence,
and can be calculated by taking the softmax over
the attention score e ∈ RN , which is calculated for
the dot-attention via:

ei = sTxi (4)

In those formulations s ∈ Rd is a learnable
parameter and the final attention score is α =
softmax(e).

5.1 Extractive
Our extractive summarization system is extract-
ing sentences to create a summarization. Given
a verdict V = (f1, . . . , fn, r1, . . . , rm) where fi
denotes a sentence from the facts and ri denotes
a sentences from the reasoning part, we want to
find a selection of sentences S = F ∪ R with
F ⊂ {f1, . . . , fn} and R ⊂ {r1, . . . , rm} which
maximizes the ROUGE score compared to the ref-
erence summary. For every sentence si we want to
find a function which tells us whether to include
the sentence in the created summary:

f(si|V, θ) =
{

1, if si ∈ S
0, else

(5)

5.1.1 Gold Labels
The decision on labels for the selection process is
not straightforward, as in most cases the guiding
principle is not directly copied from the body of
the verdict. To overcome this mismatch, it is com-
mon to greedily select sentences from the text until
the ROUGE score between the guiding principle
and the selected sentences does not increase any-
more (Nallapati et al., 2017). In our case, we went
through the verdict and included a sentence, if it
increases the ROUGE-2 F1 score of the current
selection.

The only problem with this labeling approach is
that the resulting summary is way longer than the
guiding principle which has on average 75 tokens.
With on average 227 tokens the greedy selection
is approximately 3 times longer. To combat this
issue, we additionally tested a different selection
scheme, where we select one sentence from the
body of the verdict which has the highest ROUGE-
2 F1 score per sentence in the guiding principle. If
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Figure 1: Word embeddings are aggregated to sentence embeddings. For the extractive models (left) information
is passed between sentences before classification. In the abstractive case (right) the sentence embeddings are
aggregated into document embeddings for facts and reasoning and used in a decoder with the previous words from
the summary to predict the current word.

we could not find any overlapping sentences, we
used the ROUGE-1 F1 score instead. We then eval-
uated both labels as an oracle method, to determine
what the maximum possible score for each of them
would be (see Table 4). There are on average 78
tokens in the one-to-one selection, i.e. lengthwise
it is perfectly matching with the reference summary.
Surprisingly, the ROUGE scores for the one-to-one
selection are higher than the greedy selection. We
suspect this is due to the ROUGE-1 criterion in
the one-to-one selection. We decided against using
ROUGE-1 in the greedy case, as it would further
increase the length of the created summary.

5.1.2 Baseline

In addition to the oracle methods, we included other
common baselines for the extractive model. One
common baseline called lead-3 (Nallapati et al.,
2017) simply takes the first 3 sentences of the text
as a summary. In our case, we expanded this def-
inition to lead-f-r, which denotes that f sentences
are taken from the beginning of the facts and r sen-
tences from the reasoning. Additionally, we also
included a random baseline, where we selected 3
random sentences from the whole text. We also
tested TextRank (Mihalcea and Tarau, 2004) and
LexRank (Erkan and Radev, 2004).

5.1.3 Models

We will now define the models we used for extrac-
tive summarization. All following models use the
same schema: the token embeddings are processed
by multiple Linear layers with ReLU functions in
between. Those token hidden states are then used
to calculate the sentence embeddings. Linear layers

and a Sigmoid function map those to the selection
score. The only difference between the models is
the way the sentence embeddings are calculated.

We used GloVe (Pennington et al., 2014) to map
a word id to a 100-dimensional vector representing
its semantics. The sentences are embedded via a
CNN, GRU or attention. The CNN model applies
multiple 1-dimensional convolutions with ReLU
activations in between to the word embeddings. By
taking the maximum value over the word embed-
ding dimension, we obtain the sentence embedding.
For the RNN model, we pass all the tokens from
the sentence into the GRU and then use the embed-
ding of the last word as the sentence embedding.
When using attention, the weighted sum is directly
used as a sentence embedding.

As the semantics of a sentence are highly de-
pendent on its context, we created cross-sentence
layers. The cross-sentence RNN is a bidirectional
GRU that passes information around neighbor-
ing sentences, the final sentence embedding given
by the hidden state of that sentence. The cross-
sentence CNN works similarly but uses multiple
1-dimensional Convolutions with ReLUs instead.
This way the embedding of a sentence is always de-
pendent on the context of the sentence. We tested
the models with and without this cross-sentence
information passing.

Each model is trained to optimize the binary
cross-entropy loss which is scaled so that the se-
lected sentences gain similar importance to the
unimportant sentences. The negative examples are
more common, i.e. the training becomes harder
without the positive weighting p. The loss for ver-
dict can be formulated in the following way, with V
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denoting all sentences in the verdict and S denoting
the selected summary sentences:

L(V, S) =
1

|V |
(p
∑
s∈S

log(f(s|V, θ))

+
∑
s 6∈S

log(1− f(s|V, θ)))
(6)

We tested all the possible combinations from above.
We also fixed the dimensions of each learnable pa-
rameter to the embedding size, i.e. during process-
ing each data point has the same dimensionality.

For each training, we choose a random learning
rate between 1× 10−3 and 1× 10−6 on a log scale,
i.e. higher and lower learning rates are equally
likely. This was necessary as each model variation
needs slightly different learning rates for optimal
results and a fixed learning rate would underesti-
mate the performance of a specific model. Each
model was trained twice with two different learning
rates and we then choose the best model based on
the ROUGE-1 F1 score on the validation set. Each
model was also tested on the one-to-one and the
greedy label selection, i.e. in total, a specific model
was trained 4 times. From the two models trained
we picked the one with the higher validation set
ROUGE-1 performance. Training each model took
between 2 and 4 hours.

5.2 Abstractive

The abstractive models produce one word after the
other and can be understood as conditional lan-
guage models which depend on the content of the
text and the previously generated words. Given a
verdict V we want to approximate the probability
distribution over the words wi in the summary S:

P (w1,...,n|V ) =
∏
wi∈S

P (wi|w1,...,i−1, V ) (7)

This can be approximated by a neural network,
which is trained to predict the current word given
the previous words from the summary and the text
as features. For abstractive models we did some
minor adjustments to the embeddings: we added
one <end> token to denote that the model wants
to end the current sentence.

5.2.1 Models
The abstractive models use the same building
blocks as in the extractive case. Instead of passing
information between sentences, they are aggregated

to one document embedding. We follow the gen-
eral encoder-decoder structure. The encoder part
of the model is calculating embeddings for the two
segments in the body of the court ruling and the pre-
viously generated words. The sentences from facts
and reasoning are embedded using the attention
mechanism from above. To create the document
embedding, we apply the RNN model over the sen-
tences where the document is represented by the
hidden state of the last sentence. We choose this
model combination as it gave us the best extrac-
tive performance and thus we can assume that it
can adequately model the verdict. The previously
generated words are used in a GRU and the hidden
state for the last word is forwarded through two lin-
ear layers followed by ReLUs to create the wanted
embedding.

Given an embedding for the generated words,
the facts, and reasoning, the decoder will concate-
nate their representation and then apply three linear
layers with ReLU functions in between. The final
layer generates a prediction value for each word
which is then transformed to the wanted probabil-
ity by applying a softmax function. We denote this
encoder-decoder model as our Baseline model.

As a model variation (Guided), the attention can
be altered to dynamically change its searching be-
havior. The dot-attention is changed in the fol-
lowing way with xlin(.) denoting one Linear layer
which is swapped depending on if the model is cur-
rently encoding the facts or the reasoning section,
and p ∈ Rd denotes the embedding obtained from
the previously generated words i.e. xlin(.) maps
from Rd to Rd1 :

ei = xlin(p)
Txi (8)

Inspired by the approaches from Cao et al. (2018);
Chen and Bansal (2018) and Bae et al. (2019), we
further extend the Guided model by using extracted
sentences as a template for the encoder part of the
network. In this model (Template), the encoders for
the body of the verdict get the embedding from the
extracted sentence instead of the embedding from
the previously generated words to dynamically alter
the aggregation behaviour based on what should
be currently generated. The extracted sentence is
aggregated via dot-attention.

During training, we generate the summary word
for word, i.e. the model is optimized to predict the
current word given the previous words from the
gold summary. We optimize the log probability of
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Method Greedy One-to-One
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

Att - x 25.91 8.66 18.07 28.04 10.67 20.21
CNN - x 25.67 8.13 17.90 28.28 10.95 20.64
RNN - x 18.10 2.80 12.08 20.49 4.71 13.72
Att - CNN 23.98 6.62 15.94 18.31 2.98 12.04
Att - RNN 25.07 7.65 17.11 30.50 13.06 22.95
CNN - CNN 18.31 2.98 12.04 29.70 12.30 22.21
CNN - RNN 22.98 5.80 15.15 29.63 12.18 22.02
RNN - CNN 18.20 2.87 12.14 21.17 5.16 14.18
RNN - RNN 22.13 5.96 15.42∗ 22.05 5.88 15.30∗

Table 2: Test performance levels for extractive methods. The methods are written as sentence - cross-sentence
encoder. We pick the top-3 sentences for each extractive method. ROUGE-L score marked with * is not exact as
we needed to remove some verdicts due to recursion errors induced by long generated summaries.

the given word and sum the loss over the whole
summary sequence:

l(wi|V, θ) = log(fθ(wi)) (9)

L(w1, . . . , wn) =
∑
wi∈S

l(wi|V, θ) (10)

We fixed the learning rate to 5 × 10−3 for the
training as each epoch takes multiple hours. As
evaluation on an epoch level would be very time-
consuming, we instead evaluated the model every
1000 verdicts on 100 verdicts from the validation
set. 10 verdicts are batched together for optimiza-
tion. After the 80th such iteration, we decrease the
learning rate by a factor of 0.95 for 20 iterations.
We used early stopping with a patience of 30 on the
validation loss and training each model took 4-5
days.

For testing, the summarization model is allowed
to produce at most 150 tokens or 3 sentences de-
noted by the <end> token. Each summary is then
generated word for word, where the model gets the
previously generated words as input as well as the
text of the verdict. We used the one-to-one extrac-
tive labels for Template. We use beam search (Rush
et al., 2015) with a width of 5 summaries, i.e. in
each step, the top-5 summaries based on the joint
probability are used for further generation. This
heuristic search is stopped if one sentence reaches
the ending conditions from above.

As a baseline to the abstractive approaches, we
used the Pointer-Generator network from See et al.
(2017). We used the same vocabulary size as with
the other models, but otherwise, the hyperparame-
ters were not changed.

6 Performance Analysis

To evaluate a given system, we use the ROUGE
metric (Lin, 2004) which measures the percentage
of n-gram overlap between a gold label summa-
rization Vsum = (w1, . . . , wn) and a created text
C = (c1, . . . , cm) with wi : i ∈ {1, . . . , n} and
ci : i ∈ {1, . . . ,m} being the words in the respec-
tive texts 3.

In Table 2 we denote the test performance for
the extractive methods. In most cases, the model
with the greedy target selection performs worse
than the one-to-one selection. Models trained on
the one-to-one labels might gain a better separa-
tion between important and irrelevant sentences
and thus we observe a higher summarization score.
In our case, a GRU is less desirable for sentence
encoding. The models with RNNs as sentence en-
coders have a maximum ROUGE-1 score of 22.13
percent. As seen in Table 2 our CNN and attention
models have a higher level of performance by a
wide margin compared to the approaches which
use RNNs as sentence encoders. By introducing a
cross-sentence layer, the overall performance does
increase slightly.

The performance for the abstractive models (Ta-
ble 3) is worse compared to the extractive mod-
els and the baselines. Our current abstractive ap-
proaches are not able to adequately model the sum-
marizations. There is a performance increase for
the Pointer-Generator model (See et al., 2017), but
its summaries are also rather poorly generated. The
common problem for all tested abstractive models
was that they tend to repeat phrases, thus the quality

3Evaluated with the following implementation: https:
//github.com/pltrdy/rouge

https://github.com/pltrdy/rouge
https://github.com/pltrdy/rouge
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Table 3: Test performance for the abstractive models. Baseline and Guided method have converged to a similar
language model, but they produce slightly different probability for the words.

Method ROUGE-1 ROUGE-2 ROUGE-L
Baseline 12.37 0.77 9.96
Guided 12.37 0.77 9.96
Template 10.86 0.65 8.32

Table 4: Test performance for the best models, compared to the baselines. For methods marked with *, we had to
exclude some verdicts with long summaries, due to recursion depth of the ROUGE-L calculation.

Method ROUGE-1 ROUGE-2 ROUGE-L
oracle - One-to-One∗ 55.12 40.39 51.38
oracle - Greedy∗ 37.90 26.10 35.16
lead-3-0 11.80 1.52 7.75
lead-0-3 18.44 2.88 12.38
lead-3-3 19.69 3.18 12.42
random 19.95 3.90 13.12
TextRank (Mihalcea and Tarau, 2004) 22.69 5.93 14.95
LexRank (Erkan and Radev, 2004) 24.98 6.87 16.34
Pointer (See et al., 2017) 20.80 5.27 15.98
Ext: Att - RNN 30.50 13.06 22.95
Abs: Baseline 12.37 0.77 9.96

of the summary degrades, which is also reported
by other researchers (See et al., 2017). Further
research is necessary to investigate whether those
low-performance levels are also produced by other
abstractive summarization approaches.

Table 4 shows the test performance for all the
best models, together with the baselines. Our ex-
tractive approach beat all baselines, but we still
have room for improvement as seen by the oracle
performances. Furthermore, as we can report simi-
lar oracle performances to other papers (Xu et al.,
2020; Liu and Lapata, 2019), our hypothesis of us-
ing summarization techniques for the generation of
guiding principles is strengthened.

When comparing the performance numbers with
those reported at nlpprogress.com, we see
the long historic evolution for summarization meth-
ods. The legal domain and especially the German
language are under-researched in the summariza-
tion domain. A lot of work, such as creating appro-
priate language models is necessary to apply those
methods to the German language. With certainty,
we can say that there is a necessity to evaluate sum-
marization models on diverse datasets.

7 Conclusion & Future Work

In this paper, we introduced a new dataset for the
summarization of German court rulings. We cre-

ated multiple models specifically tailored to the
German legal domain and tested strong baseline
models which we want to improve in the future.

Nonetheless, there are still extensions and short-
comings which we want to address in future work.
The vocabulary size needs to increase as German is
a more morphologically rich language than English.
It might be necessary to find more efficient ways to
represent and generate compound nouns, the differ-
ent verb forms, etc. as they drastically increase the
size of the necessary vocabulary. Consequently, the
model complexity needs to be increased. This does
not only include ways to better model the German
language but also taking the structure of the ver-
dicts more into account. Court rulings have a more
sophisticated structure which we did not entirely
utilize in this research paper, i.e. each of the seg-
ments is again subdivided into other sub-segments
and so on. Embracing this more hierarchical view
could make access to information easier and im-
prove the understanding of the source document.

In this research, we laid down the necessary
groundwork for further research. In the future,
we want to do more qualitative analysis, by letting
legal experts evaluate our summarization models.
Summarization is far from being solved and in our
opinion, it is important to introduce different texts
and domains to summarization research.

nlpprogress.com
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Çağlar GuÌ‡lçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of The 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290, Berlin, Germany.
Association for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu,
Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming
Zhou. 2020. ProphetNet: Predicting future n-gram
for sequence-to-SequencePre-training. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 2401–2410, Online. Associa-
tion for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389, Lisbon, Portugal.
Association for Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Eva Sharma, Chen Li, and Lu Wang. 2019. BIG-
PATENT: A large-scale dataset for abstractive and
coherent summarization. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2204–2213, Florence, Italy.
Association for Computational Linguistics.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural
Information Processing Systems, volume 28. Curran
Associates, Inc.

Jiacheng Xu, Zhe Gan, Yu Cheng, and Jingjing Liu.
2020. Discourse-aware neural extractive text sum-
marization. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5021–5031, Online. Association for Computa-
tional Linguistics.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and
Peter Liu. 2020. PEGASUS: Pre-training with ex-
tracted gap-sentences for abstractive summarization.
In Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 11328–11339.
PMLR.

Xingxing Zhang, Furu Wei, and Ming Zhou. 2019. HI-
BERT: Document level pre-training of hierarchical
bidirectional transformers for document summariza-
tion. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 5059–5069, Florence, Italy. Association for
Computational Linguistics.

Qingyu Zhou, Furu Wei, and Ming Zhou. 2020. At
which level should we extract? an empirical analysis
on extractive document summarization. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 5617–5628, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

https://doi.org/10.18653/v1/D18-1441
https://doi.org/10.18653/v1/D18-1441
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/D19-1387
https://aclanthology.org/W04-3252
https://aclanthology.org/W04-3252
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.18653/v1/2020.findings-emnlp.217
https://doi.org/10.18653/v1/2020.findings-emnlp.217
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P19-1212
https://doi.org/10.18653/v1/P19-1212
https://doi.org/10.18653/v1/P19-1212
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.451
https://doi.org/10.18653/v1/2020.acl-main.451
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/2020.coling-main.492
https://doi.org/10.18653/v1/2020.coling-main.492
https://doi.org/10.18653/v1/2020.coling-main.492

