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Abstract
Current abstractive summarization systems
outperform their extractive counterparts, but
their widespread adoption is inhibited by the
inherent lack of interpretability. Extractive
summarization systems, though interpretable,
suffer from redundancy and possible lack of
coherence. To achieve the best of both worlds,
we propose EASE, an extractive-abstractive
framework that generates concise abstractive
summaries that can be traced back to an ex-
tractive summary. Our framework can be ap-
plied to any evidence-based text generation
problem and can accommodate various pre-
trained models in its simple architecture. We
use the Information Bottleneck principle to
jointly train the extraction and abstraction in
an end-to-end fashion. Inspired by previous
research that humans use a two-stage frame-
work to summarize long documents (Jing and
McKeown, 2000), our framework first extracts
a pre-defined amount of evidence spans and
then generates a summary using only the ev-
idence. Using automatic and human evalua-
tions, we show that the generated summaries
are better than strong extractive and extractive-
abstractive baselines.

1 Introduction

Pretrained sequence-to-sequence language models
such as BART (Lewis et al., 2020), T5 (Raffel et al.,
2019) and their variants have achieved state-of-the-
art results on various tasks such as summarization,
machine translation, and data2text tasks (Zhang
et al., 2019b; Kale and Rastogi, 2020). Despite the
higher fidelity compared with models without pre-
training for tasks such as summarization (Maynez
et al., 2020), the lack of interpretability in abstrac-
tive generation remains an obstacle to their broader
adoption. Extractive summarization systems, on
the other hand, have the advantage of being inter-
pretable but are too restrictive by forcing the out-
put to be spans from the document, reducing their
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Source Document:
(CNN)Mike Rowe is coming to a river near you. "Sometimes, you hear about a per-
son who makes you feel good about humanity, but bad about yourself," Rowe says.
On Thursday’s episode of "Somebody’s Gotta Do It," Rowe meets up with Chad
Pregracke, the founder of Living Lands & Waters, who does just that. Pregracke
wants to clean up the nation’s rivers one piece of detritus at a time. His quota? Always
"more." Read Mike Rowe’s Facebook post on how to break our litter habit. Since
he founded the nonprofit in 1998 at the ripe age of 23, Pregracke and more than
87,000 volunteers have collected 8.4 million pounds of trash from U.S. waterways.
Those efforts helped him earn the 2013 CNN Hero of the Year Award, along
with numerous other honors. "Wherever you are, no matter if there’s a stream, a
creek, a lake, whatever, that needs to be cleaned up, you can do it. Just organize
it and do it," he told CNN’s Anderson Cooper after his win. Pregracke also gives
Rowe a tour of the 150-foot, solar-powered barge that the Living Lands & Waters
staff calls home during lengthy cleanups. The part-home, part-office, part-dumpster
has seven bedrooms, two bathrooms, a classroom and a kitchen – and just happens
to be made from a recycled strip club. According to the organization’s latest annual
report, Pregracke has made it his mission in 2015 to remove 500,000 more pounds of
trash. If you’d like to help achieve this goal, visit his website to learn how to help:
LivingLandsAndWaters.org/Get-Involved/.
Summary: Mike Rowe meets Chad Pregracke, the founder of Living Lands & Wa-
ters. The nonprofit has collected 8.4 million pounds of trash from U.S. waterways.
Pregracke was named the 2013 CNN Hero of the Year.

Figure 1: An example of a summary and its evidence
(highlighted) as generated by our framework.

naturalness, coherence, and conciseness. In this
paper, we propose EASE, a novel framework that
combines the two systems to produce natural sum-
maries that can be traced back to an interpretable
extractive summary. Our general framework can
accommodate different pretrained models and suit-
able for any evidence-based text generation task.

The existing extractive-abstractive systems can
be divided into three main categories: 1- Rely-
ing on attention for interpretability (Hsu et al.,
2018). Due to the probabilistic nature of the at-
tention mechanism, it falls short of providing us-
able evidence; 2- Providing word-level evidence for
the generated summaries (Gehrmann et al., 2018).
Though more useful than attention, this evidence is
too granular to be useful for humans; 3- Training
the content selector separately using pseudo labels
or other heuristics (Liu and Lapata, 2019; Pilault
et al., 2020). In contrast, we seek a theoretically-
grounded model that can learn the evidence extrac-
tion end-to-end.

Perhaps the closest work to ours is Zhao et al.
(2020) focusing on long-document summarization
by training a joint extractive-abstractive model via
weak supervision. Though a complicated and spe-
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cific framework, it achieves poor results on bench-
marks such as CNN/DM. EASE on the other hand,
is based on the Information Bottleneck (IB) prin-
ciple (Tishby et al., 1999), which formalizes the
trade-off between the size of the extracted evidence
and the information provided for the generation
of the final output. While this method has been
successfully adopted by prior work for a simpler
discriminative task (Paranjape et al., 2020), we
extend it to generative tasks where the extracted
evidence can be viewed as a coarse version of the
final abstractive output.

We leverage pretrained language models that
first extract the necessary evidence from the source
document (extractor) and then, using only the ex-
tracted evidence spans, generate the final output
(abstractor). Fig. 1 shows an example of the sum-
mary and evidence generated by our system.

Our main contributions are as follows:

• We propose EASE, a general-purpose
theoretically-grounded Extractive-Abstractive
framework for extractive-abstractive text
generation that is jointly trained in an
end-to-end fashion. We apply EASE to text
summarization.

• Our abstractor generates the summary using
only the extracted evidence which can be
viewed as an extractive summary. We propose
a new sparsity budget parameter that controls
the trade-off between the length of the evi-
dence spans (i.e., the extractive summary)and
the final abstractive output’s quality

• Our results show that EASE extracts evidence
better than the baselines without significantly
sacrificing the quality of the generated sum-
mary, compared with the state-of-the-art fully
abstractive systems on the CNN/DailyMail
dataset.

2 Extractive-Abstractive Framework

There exists evidence that humans use a two-
stage extractive-abstractive framework to summa-
rize long documents (Jing and McKeown, 2000) by
first extracting salient parts and then deciding what
to eliminate, reword, and reorganize. Inspired by
this, we propose EASE, a framework that learns
extraction and abstraction collectively in an end-to-
end fashion. This not only provides interpretable
evidence for the generated summary, which can be

many times smaller than the original document, but
also reduces the effective input length used during
abstraction. This has been shown to directly corre-
late with the extent of hallucination in pretrained
language models (Yang et al., 2020a).

In order to formalize the problem, we use the
IB principle to learn an optimal model between
the original document x and the final summary y
through a compressed representation z. The IB
objective is to minimize the following:

LIB = I(x; z)− βI(z; y), (1)

where I() is the mutual information. This objec-
tive encourages z to contain only the information
about x that is useful in predicting y. Moreover,
β controls the trade-off in z between containing
information about x (i.e., sparsity) vs about y (i.e.,
prediction quality).

We use a relaxation for (1) similar to Paranjape
et al. (2020) to make it tractable. As such, z is
obtained by masking the original document x to
produce a summaries y. We illustrate EASE in
Fig. 2. EASE can perform extraction (i.e., mask-
ing) either at the token or at the sentence level.
We first describe the token-level model and sub-
sequently generalize it for sentence-level extrac-
tion. As such, the extractor masks tokens in the
original document x to extract a rough summary
z, which is used as evidence by the abstractor to
produce the summary y. We define z = m � x
where m is a boolean mask on the input x. This
is similar to the masking process used in Masked
Language Models (MLM), except that instead of
random masking (Devlin et al., 2019) or heuristic-
based masking (Zhang et al., 2019b,d), we learn
which tokens should be masked in an end-to-end
fashion. Using the variational bound (Alemi et al.,
2016) on (1), the model is trained using two loss
terms. The first loss ensures that the final summary
is close to the golden summaries:

LTask = Em'p(m|x)[− log qθ(y|m� x)], (2)

where qθ(y|z) is a parametric approximation to the
true likelihood p(y|z).

Similar to Paranjape et al. (2020), we assume
that the mask variables over individual words are
conditionally independent given the input x. This
means that the evidence z can contain redundan-
cies, as the extractor chooses evidence individually
without conditioning on prior extractions. Since
the extracted evidence is not the final summary,
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Figure 2: The Extractive-Abstractive model architec-
ture. The extractor samples the evidence from the
source which is used by the abstractor.

the abstractor still has the opportunity to eliminate
redundancies. Nallapati et al. (2017) explore a
modeling approach that keeps track of the current
state of the summary, but we leave this direction to
future work. Formally,

pθ(z|x) =
∏
j

pθ(zj |x),

where pθ(zj |x) = Bernoulli(θj(x)).
Optimizing the loss in (2) would result in the

extractor masking no tokens and hence, maximiz-
ing the mutual information between the input and
output of the abstractor. Therefore, the second
loss term is a sparsity constraint to ensure that the
extractor’s output is a measurable subset of input to-
kens and can be used as evidence for the abstractor
output:

LSparsity =
∑
j

KL[pθ(zj |x), r(zj)], (3)

where we set the prior distribution r(zj) =
Bernouli(π). For summarization tasks π can be
small i.e. 0.3 ≤ π ≤ 0.5. As such, the combined
loss can be written as:

LEA =Em'p(z|x)[− log qθ(y|m� x)]

+β
∑
j

KL[pθ(zj |x), Bernouli(π)], (4)

where pθ(z|x) is the parametric posterior distribu-
tion over z and β is a hyperparameter to weigh the
performance-sparsity trade-off.

2.1 Soft Masking
The combined loss presented above is not differ-
entiable, as it includes sampling operations from
Bernoulli distributions. Since we aim to learn
the masking function (unlike random masking),
this would not be amenable to end-to-end train-
ing using backpropagation. Rather than using

the REINFORCE algorithm which suffers from
high variance (Bastings et al., 2019), we use the
Gumbel Softmax reparameterization trick (Jang
et al., 2017) similar to Paranjape et al. (2020).
This replaces the sampling step with an argmax:
argmaxi∈0,1(logp(zj |x) + gi), where gi is a ran-
dom sample from the Gumbel(0, 1) distribution.
Finally, the argmax is replaced by a weighted soft-
max:

z∗j =
exp ((log(p(zj = 1|x) + g1)/τ)∑
i∈0,1 exp ((log(p(zj = i|x) + gi)/τ)

.

Note that z∗j ∈ (0, 1) gets boundary values (i.e., 0
or 1) when τ → 0 (in practice, we use τ = 0.01).

2.2 Model Architecture

As illustrated in Fig. 2, our model has two parts: the
extractor and the abstractor. The extractor is a pre-
trained transformer encoder similar to BERT (De-
vlin et al., 2019) with an additional linear layer
on top that computes pθ(zj |x). The abstractor
on the other hand, is a pretrained seq-to-seq lan-
guage model like BART (Lewis et al., 2020). From
our experiments, we find a BART-base encoder
(6 layers) to be adequate as an extractor model,
while we use a BART-large abstractor. Note that
we can use any other pretrained encoders (e.g.,
RoBERTa (Liu et al., 2019)) and seq2seq models
(e.g., Pegasus (Zhang et al., 2019b)) for the extrac-
tion and abstraction task, respectively. Also note
that after the evidence extraction, in order to ensure
that there is no leakage of information, we need to
encode the extracted tokens separately again. Us-
ing the same encoded representation would leak
information to the abstractor about the masked to-
kens.

During training, given an input x, the extrac-
tor generates a probability for each token in x to
be selected (i.e. not masked). Based on these
probabilities (pj), we sample mj with values in
(0,1). We then pass z = x � m to the abstrac-
tor to generate the output. In our experiments, we
tried two different ways of masking the input us-
ing m: 1) directly masking the embedding, i.e.
zj = mj ∗ xj + (1−mj) ∗ xmask where xmask is
initialized from the BART’s original <mask> to-
ken, and, 2) using m as an attention mask for both
the encoder’s self attention as well as the encoder-
decoder cross attention, i.e. to block attention to
the masked tokens. However, we did not observe a
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significant difference between these two schemes.
During the inference, the extractor deterministi-
cally selects the top π% of the source tokens. Such
hard masking ensures that the sparsity requirement
is exactly met during inference time.

2.3 Sentence-level Extraction

In the previous section, we described token-level
extraction where each token in the source docu-
ment is individually masked or retained. The main
drawback of using scattered token-level extraction
is that it is difficult to be used as interpretable evi-
dence. While in Section 5.1, we explore a method
for improving the interpretability of token-level ev-
idence by encouraging span-level extraction, in this
section, we focus on sentence-level extraction as
an effective means to achieve interpretability.

In sentence-level extraction approaches, the
model first selects the sentences that need to be
masked, followed by the masking of all tokens
within those sentences. Unlike the token-level
model, the extractor’s output in this setup is a lin-
guistically plausible (but possibly redundant) ex-
tractive summary, i.e., complete sentences from the
source. For sentence-level extraction, we add a spe-
cial [CLS] token to the beginning of each sentence
and use its representation as the sentence encoding.
We also add a segment embedding to each token in
the sentence to distinguish between the sentences
in a document. The segment embeddings are initial-
ized randomly and learned during training. We use
the [CLS] token representation to perform soft
masking as in the token-level model.

3 Experimental Settings

Datasets: We primarily experiment with the
CNN/DailyMail dataset (Hermann et al., 2015) ow-
ing to its extractive-like nature; its summaries are
typically closely related to the source sentences.
We also present results on the XSUM (Narayan
et al., 2018) dataset, a highly abstractive dataset in
which summaries can be viewed as a title for the
source documents.

Model Hyperparameters and evaluation met-
rics: We initialize the seq-to-seq abstractor with
the BART-large model and initialize the extractor
with the BART-base encoder.
We use the fairseq codebase1 for our experiments
and use the same hyperparameters as used for fine-

1https://github.com/pytorch/fairseq

tuning BART on CNN/DM and XSum by the of-
ficial codebase. Specifically, we fine-tune BART
using a polynomial decay learning rate scheduler
with the Adam optimizer (Kingma and Ba, 2014).
We use a learning rate of 3e-5 with 500 warmup
steps and train for 20000 steps. During our initial
experiments, we observed similar results for values
of β ∈ [1, 10] in (4). We use β = 5 in our reported
results. We use ROUGE F1 scores (R1/R2/RL)
for the automatic evaluation. ROUGE scores were
calculated using the files2rouge toolkit2.

4 Results

In this section, we report the performance of our
model from both automatic and human evaluation
perspective, along with ablation studies. Figure 4
shows example summaries along with evidence
highlighted from our system at different sparsity
levels.

4.1 Automatic Evaluation

In Table 1, we present the performance of our
model for CNN/DM and XSum when using a spar-
sity of 0.5, with a BART-base encoder as the extrac-
tor and a BART-large abstractor. We also present
the performance of BART and BERTSUM as repre-
sentative abstractive and extractive systems, respec-
tively. Moreover, they can be considered as EASE’s
exctractor (BERTSUM) or abstractor (BART) on
their own. Note that for BERTSUM, we present the
performance of the Ext-large version for CNN/DM
and the two-stage ExtAbs version for XSum. We
also include results from previous evidence-based
extractive-abstractive systems for comparison. For
CNN/DM, our token-level and sentence-level mod-
els that use around 50% of the source input perform
slightly better than BERTSUM, but slightly worse
than BART-large. For XSum, our gap with the
BART-large baseline is larger. This is expected
given that XSum summaries are highly abstractive,
making it much harder for the extractor to extract
the most important information in an end-to-end
fashion.

Moreover, we observe that the sentence-level
model performs slightly better than the token-
level model for CNN/DM but slightly worse for
XSum. We hypothesize that for the more extrac-
tive CNN/DM dataset, keeping continuous spans
of text is of paramount importance, while for the
more abstractive XSum dataset, the sparsity budget

2https://github.com/pltrdy/files2rouge
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Model CNN/DailyMail XSum

BART-large (Lewis et al., 2019) 44.16/21.28/40.90 45.14/22.27/37.25
BERTSUM (Liu and Lapata, 2019) 43.85/20.34/39.90 38.81/16.50/31.27

Previous evidence-based Extractive-Abstractive systems

Bottom-Up (Gehrmann et al., 2018) 40.96/18.38/38.16 -
SEAL (Zhao et al., 2020) 39.3/16.5/- -

EASE (ours)

Token-level sparsity 0.5 43.96/20.91/40.74 42.70/19.38/33.81
Sentence-level sparsity 0.5 43.98/20.95/40.78 41.82/19.05/33.99

Table 1: ROUGE-1/2/L results for CNN/DailyMail and XSum.
‘

Figure 3: R1/R2/RL vs Sparsity for token level and
sentence level models. For sentence level model, we
enforce it to extract at least three sentences.

can be better spent on a more scattered extraction
of key pieces throughout the document. In section
5, we explore ideas to 1) improve the performance
of the token-level model using pre-training; 2) im-
prove the interpretability of token-level models by
encouraging the extraction of continuous spans;
and 3) improve the performance of both token and
sentence level models using semi-supervised learn-
ing.

4.2 Model Analysis

Effect of Sparsity Prior: In this section, we in-
vestigate the effect of sparsity on the generated
summaries. Figure 3 presents ROUGE score of
both token-level and sentence-level models, trained
with different sparsity priors. As expected, in-
creasing the sparsity ratio improves the ROUGE
scores at the cost of more verbose extracted evi-
dence. Moreover, the performance gains flatten
after a sparsity of around 0.3. We found that token-
level models are more robust to lower sparsity rates,
i.e. they can remove functional words without los-

Model Token level Sentence Level
base Ex + base Ab 42.9/19.8/39.7 42.42/19.7/39.27

base Ex + base Ab shared 42.28/19.37/39.14 42.58/19.81/39.43
base Ex + large Ab 43.96/20.91/40.74 43.98/20.95/40.78

Table 2: Ablation studies on the effect of model size
and sharing. All models are trained with 0.5 sparsity.

ing document information, but they are not well-
suited in terms of interpretability. Note that for
the sentence-level models, at inference time we ex-
tracted at least three sentences to ensure that short
documents would have enough evidence at lower
sparsity rates.

Effect of model size: We examine the effect of
using models of different sizes on summarization
performance, and also explore the possibility of
sharing the encoder. We consider BART-base and
BART-large for the abstractor. We also experi-
mented with using RoBERTa (Liu et al., 2019) and
BART-large encoder for the extractor but found
it very unstable and hard to tune the relative loss
weights. To explore the possibility of reducing the
model size, we also experiment with sharing the
encoder’s parameters between the extractor and
abstractor encoders. Table 2 presents results of
these settings for both token-level and sentence-
level models using a sparsity of 0.5.

We can see that using a large model for the ab-
stractor yields significant improvements. Moreover,
sharing the encoder between the extractor and the
abstractor does not hurt the performance. However,
since using a large abstractor is essential while us-
ing a large extractor is unstable during training,
we use a BART-base extractor and a BART-large
abstractor for our default setting.

Effect of extraction: We evaluate the effect of
extraction quality on the final summary for our
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Extract Sentences Sparsity 0.5 Sparsity 0.3
π% 43.98/20.95/40.78 43.38/20.57/40.2

Top-3 41.37/18.58/38.18 41.19/18.63/38.01
Lead-3 40.84/18.16/37.71 40.6/18.05/37.46

Random-3 31.46/10.04/28.92 31.34/10.06/28.79

Table 3: Effect of different extraction techniques on the
final summary.

sentence-level models. We use our model trained
with different sparsity rates but during inference,
feed only the top-3 sentences with highest scores
to the abstractor for generating the summary. We
compare with the baselines of using random-3 and
lead-3 sentences as well as using all π% of sen-
tences. Table 3 presents results of our two models
with sparsity values of 0.5 and 0.3. We find that
for both models, summaries using the top-3 sen-
tences selected by the extractor outperform lead-3
extraction, even though the CNN/DM dataset has
a strong lead bias. We conclude that our extractor
is indeed extracting important sentences, which we
further confirm using human evaluations, described
in the next section.

4.3 Human Evaluation

We conduct human evaluation on both the extracted
evidence and the generated summaries. For the
summaries, we asked annotators to rate them be-
tween 1-5 on two qualitative aspects of the sum-
mary: Consistency and Relevance. Consistency is
the factual alignment between the summary and the
source document, measuring whether the summary
is changing details or hallucinating. Relevance
measures whether the summary captures the key
points of the source document. We compared our
generated summaries with BART as a baseline. We
also evaluate the relevance of extractions from the
sentence-level models. To make evaluation easier,
we gather the top-3 sentences with the highest ex-
traction scores and ask annotators whether those
are the most important sentences in the source doc-
ument. Here, we compare with Lead-3 extraction
as a baseline.

We sampled 200 examples from the CNN/DM
test set and conducted human evaluation using
Amazon Mechanical Turk with three annotators.
We present the average annotators’ scores in Ta-
ble 4, using z-score p-values smaller than 0.01 to
measure statistical significance. We find that for
extraction relevance, the top-3 sentences from our
extractor scored higher than Lead-3, which itself
received a high relevance score due to the strong

Models Summary Extraction
Consistency Relevance Relevance

BART 4.89 4.13 -
Token-level model 4.77 4.16 -

Sentence-level model 4.86 3.80 4.45
Lead-3 extraction - - 4.38

Table 4: Human Evaluation results on CNN/DM. We
evaluate our token-level and sentence-level models,
with 0.5 sparsity on summary relevance and consis-
tency and compare with BART. We evaluate extrac-
tion relevance of our sentence-level model and compare
with Lead-3.

lead bias in the CNN/DM dataset. For abstractive
summaries, we find that the sentence-level model
achieves a similar consistency score as BART, but
slightly better than the token-level model. On one
hand, the sentence model achieves a lower rele-
vance score than BART and token model. We hy-
pothesize that the interpretable nature of the sen-
tence model results in a loss of some of the key
information in the source document as expected,
whereas the token model avoids this by extract-
ing keywords throughout the source. On the other
hand, the token-level model can fabricate new de-
tails between the extracted keywords, which results
in lower consistency. As such, there is an inherent
trade-off between relevance and interpretability.

5 Further improvements and Future
Work

5.1 Span-level model with Lasso loss
In the previous section, we found that although
sentence-level models are interpretable, they can
miss out on key parts of the source document. How-
ever, token-level models enjoy much more freedom
during extraction but yield evidence that is not very
useful for humans. To find a compromise between
these two, i.e. a span-level model, we attempt to
make the evidence extracted by token-level models
more contiguous, by adding a lasso loss (Bastings
et al., 2019) to the total loss in (4):

LLasso =
n−1∑
i=0

|zi − zi+1|, (5)

where n is the number of source tokens. The lasso
loss ensures that the number of transitions between
the masked and unmasked tokens is minimized and
hence, the model extracts more contiguous spans
of text as evidence. In the first row of Table 5,
we observe that the lasso loss mainly improves the
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Source Document:
(CNN)Two passengers found dead on a cruise ship in Puerto Rico appear to have died in a murder-suicide, the cruise line said. Holland America Line said two guests were
found dead inside their stateroom on the ms Ryndam at 11:30 a.m. Thursday. "The cabin was immediately secured, and the authorities were notified, including the FBI," Holland
America said. "We are cooperating fully with the investigation, and the authorities will make the official determination on what occurred." FBI spokesman Moises Quinones said
authorities were on scene investigating. The ship left Tampa, Florida, on March 29 on a 14-day Southern Caribbean cruise. It’s currently in San Juan, Puerto Rico. Puerto Rico Port
Authority spokesman Efraín Santiago told El Nuevo Dia newspaper that the cleaning staff on the ship had discovered the deceased passengers after knocking on the cabin’s door.
Summary (Sparsity 0.3): Holland America Line said two guests were found dead inside their stateroom on the ms Ryndam at 11:30 a.m. Thursday. The FBI is investigating.
Source Document:
(CNN)Gastrointestinal illness has gripped 100 people on the cruise ship Celebrity Infinity, according to a report from the Centers for Disease Control. Of the ship’s 2,117
passengers, 95 have suffered from vomiting, diarrhea and other symptoms, the CDC said. The illness has also affected five members of the 964-person crew. The CDC has yet
to determine what’s causing the ailments. Two staffers from the agency are scheduled to meet the West Coast-based ship in San Diego on Monday. The Infinity left San Diego on
March 29. It made its last stop in Puerto Vallarta, Mexico, on April 10, according to MarineTraffic.com. Celebrity Cruises has been taking action since the outbreak began, including
increasing cleaning and disinfection procedures, keeping passengers informed and taking specimens from the afflicted for testing by the CDC, the agency says. According to
the Maritime Executive, this is the third time the Celebrity Infinity has suffered an outbreak of gastrointestinal illness, with others occurring in 2006 and 2013. The ship was built in 2001
and refurbished in 2011.
Summary (Sparsity 0.5): Of the ship’s 2,117 passengers, 95 have suffered from vomiting, diarrhea. The illness has also affected five members of the 964-person crew. Celebrity Cruises
has been taking action since the outbreak began.

Figure 4: Summarization outputs with their evidence (highlighted), from our systems at different sparsity levels.

token-level model. This is particularly evident in
the improvement in RL which is due to the extrac-
tion of contiguous spans as evidence.

5.2 Unlabeled Pretraining

Although we initialize the extractor and abstrac-
tor with pretrained language models, the model
may benefit from further pretraining suited to the
downstream task. To this end, we use our model
in an auto-encoding fashion, i.e., the abstractor
reconstructs the original text using the extracted
pieces selected by the extractor. Our hypothesis
is that an extractor capable of extracting the most
informative parts from which the source can be re-
constructed should be better positioned to extract
important parts of the source, resulting in higher-
quality summaries. Therefore, we pretrain EASE
on the WikiText-103 (Merity et al., 2017) dataset
to reconstruct the original unlabeled documents
using the same loss as in (4) by setting Y = X .
This can be viewed as a special case of summariza-
tion, where the compression rate is one. We only
pretrain the token-level model, since pretraining
sentence-level models without measures such as
topic guidance (Kang and Hovy, 2020) typically
leads to hallucination. Results on the CNN/DM
dataset by adding pretraining are presented in the
second row of Table 5. Even though pretraining im-
proves the token-level model, results for the span-
level model are mixed. Our hypothesis is that the
lasso continuity helps with summarization by pick-
ing contiguous spans, as evidenced by the high
RL. However, during the reconstruction pretrain-
ing, the lasso loss can be problematic by masking
long spans, which are then prone to hallucinations.
We leave pretraining alongside span extraction us-
ing techniques such as guided reconstruction to
future work.

Model Token level Span Level (lasso)
vanilla EASE 43.96/20.91/40.74 44.33/20.67/41.06
+ pretraining 44.12/20.89/40.80 44.06/20.82/40.83

Table 5: CNN/DM results on token-level models
trained with lasso loss and pretraining.

Model Token level Sentence level
vanilla EASE 43.96/20.91/40.74 43.98/20.95/40.78

+ SSL 44.28/21.21/41.0 44.10/21.12/40.89

Table 6: Results on token level and sentence level mod-
els, trained with additional semi-supervised extraction.

5.3 Semi-supervised Training

Multiple recent works (Nallapati et al., 2017; Liu
and Lapata, 2019) have explored heuristics to ob-
tain pseudo alignments between target summaries
and source sentences for summarization datasets.
To evaluate the effect of weakly supervising the ex-
tractor in EASE using these pseudo labels, we use
the greedy procedure of Liu and Lapata (2019) to
obtain oracle extractive annotations for CNN/DM.
As such, we maintain an evidence set and greed-
ily add source sentences to the set that yield the
maximum increase in its ROUGE score against
the target summary. This yields a binary label-
ing of input sentences and we introduce an ad-
ditional binary cross entropy loss to our training
objective in (4) between this binary labeling and
the predicted masking probabilities. By using the
sentence-level pseudo labels for the tokens of each
sentence, we also add this loss to the token-level
models. We have shown the results in Table. 6. We
observe improvements in all ROUGE metrics for
both sentence-level and token-level models, though
the gains on the former are more modest. Studying
the interaction of this objective with the aforemen-
tioned lasso objectives is left for future work.
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6 Related Work

6.1 Pretrained Models for Summarization

Lewis et al. (2020) introduced BART, a general-
purpose denoising seq2seq transformer, that
achieved the state-of-the-art results on many sum-
marization tasks. Later, Zhang et al. (2019b) ex-
tended the MLM denoising objective using sen-
tence masking. Zhang et al. (2019c) introduced a
multi-stage encoder for extractive summarization,
whereas Zhang et al. (2019a) use a two-stage de-
coder to generate summaries by creating a draft
and refining it using a pretrained language model.
In EASE, we use pretrained models, i.e., BART, to
initialize the extractive and abstractive modules but
after that, use an end-to-end loss that trains both
modules simultaneously.

6.1.1 Self-supervised Summarization
Miao and Blunsom (2016) introduced an au-
toencoder setup for sentence compression to re-
duce the need for labeled examples. A copy
ptr/generator model was used for the compressor
which alongside the reconstructor is trained to re-
construct the unlabeled documents. Moreover, RE-
INFORCE (Williams, 1992) was used to train the
model end-to-end. Baziotis et al. (2019) intro-
duced a similar autoencoder setup but used the
Gumbel Softmax reparametrization for training.
(Févry and Phang, 2018) also used a denoising au-
toencoder to compress sentences and a countdown
at the decoder to control summary length.

Inspired by the IB principle, West et al. (2019)
introduced a recursive algorithm to prune a docu-
ment to form an unsupervised extractive summary.
These summaries are in turn used to train a self-
supervised system using a next-sentence objective
is used. In contrast, we use a loss formulation de-
rived directly from the IB and train the model end-
to-end. (Saito et al., 2020) used a saliency model to
extract important pieces of a document before feed-
ing them to an abstractive seq2seq model. In con-
trast with our model, the saliency module is trained
separately by using heuristics to provide pseudo
labels for the extraction. (Yang et al., 2020b) pro-
posed pretraining over millions of news articles
using the lead sentence as the self supervision.

6.2 Evidence-based Extractive-Abstractive
Summarization

The transformer decoder (Liu* et al., 2018) was
first used to accommodate long documents from

a coarse extractive summarizer. Later, Zhao et al.
(2020) also focus on long-document summarization
and train a joint extractive-abstractive model by
weakly supervising the extractor through pseudo
labels. This model, although interpretable, does
poorly on a dataset like CNN/DM. (Pilault et al.,
2020) introduce another interpretable summarizing
model for long documents by performing a sim-
ple extractive step to condition the decoder. They
show that this approach produces more abstractive
summaries compared with the copy mechanism.
Unlike these models, we train both modules jointly
using the theoretically grounded IB principle with
no pseudo labels. Moreover, we seek consistent
models suitable for more extractive datasets and
achieve results on par with the abstractive model
while only using half of the input. (Gehrmann et al.,
2018) trained a content selector separately to tag
the words and then use bottom-up attention to only
copy words from the tagged set. Similar to our
token-level model, this is not useful evidence.

Compressive summarization is another way to
have a trade-off between extractive and abstrac-
tive methods where extractive summaries are com-
pressed to form the final summary (Mendes et al.,
2019). Recently, Desai et al. (2020) use syntactic
rules to find a high-recall candidate set and then use
the notions of plausibility and salience to ensure
the grammaticality and importance of the remain-
ing pieces, respectively. Unlike compressive sum-
marization, we explore an extractive-abstractive
framework where a concise abstractive summary
can be traced back to the evidence; learned jointly
with no manual rules or postprocessing.

7 Conclusion

In this paper, we introduced EASE, an extractive-
abstractive framework for summarization tasks that
trains an extractor and an abstractor in an end-to-
end fashion. The extracted evidence can be viewed
as an interpretable extractive summary of the sum-
mary from which the final summary is generated
by the abstractor. We show that our sentence-level
extractive-abstractive summarization systems are
better than strong extractive-abstractive baselines
and either on-par or only slightly lower in quality
compared to strong abstractive baselines.
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8 Ethical Considerations

Intellectual Properties and Privacy Rights All
of the datasets (CNN/DM and XSum) used in our
study are publicly available. Regarding privacy
rights, the authors of the paper completed IRB hu-
man subject protection training for conducting this
study.

Compensation for Annotators We compen-
sated the Turkers approximately $15 per hour. We
first annotated examples in-house to determine the
required annotation speed. We evaluated 200 ex-
amples with 8 annotations per example (including
outputs from different models) and typically each
example takes around 10 minutes.

Steps Taken to Avoid Potential Problems We
interacted closely with the Turkers to ensure that
compensation was fair and that the instructions
were clear. We did pilot examples with each an-
notator in the beginning to help them to be better
calibrated.

Environmental Cost The experiments described
in the paper make use of V100 GPUs with 32GB
memory. We used up to 8 GPUs per experiment.
The experiments may take several hours. We didn’t
do a lot of parameter search: we re-used the best
parameter reported from BART open-source code
and only tuned weight on loss on the validation set.
Future work will be able to draw on these insights
and models in production may be trained once for
use using the most promising settings.
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