
Proceedings of the 1st and 2nd Workshops on Natural Logic Meets Machine Learning (NALOMA), pages 22–25
June 16, 2021. ©2021 Association for Computational Linguistics

22

Transferring Representations of Logical Connectives

Aaron Traylor
Dept. of Computer Science

Brown University

Ellie Pavlick
Dept. of Computer Science

Brown University

{aaron traylor, ellie pavlick, roman feiman}@brown.edu

Roman Feiman
Dept. of Cognitive, Linguistic,

and Psychological Sciences
Brown University

Abstract

In modern natural language processing
pipelines, it is common practice to ”pretrain”
a generative language model on a large corpus
of text, and then to ”finetune” the created
representations by continuing to train them
on a discriminative textual inference task.
However, it is not immediately clear whether
the logical meaning necessary to model
logical entailment is captured by language
models in this paradigm. We examine this
pretrain-finetune recipe with language models
trained on a synthetic propositional language
entailment task, and present results on test
sets probing models’ knowledge of axioms of
first order logic.

1 Introduction

In modern natural language processing pipelines,
it is common practice to “pretrain” a generative
language model on a large corpus of text, and then
to “finetune” the created representations by con-
tinuing to train them on a discriminative textual
inference task. This pretrain-finetune recipe has
led to state-of-the-art accuracy on natural language
inference tasks (Wang et al., 2018), including tasks
that explicitly target logical, compositional reason-
ing (Williams et al., 2017). However, a priori, it is
not obvious that language model pretraining should
lead models to encode anything mirroring the func-
tions of logical concepts such as entailment, nega-
tion, and disjunction, despite their importance in
language, and in fact there are many reasons why
we might directly expect language modeling not
to encode logical meaning: for example, language
modeling does not provide models with access to
variable bindings or truth values (a key component
for defining logical functions), and it only provides
models with access to positive training examples
(sentences that are true in some possible world,
assuming they were true at the time they were ut-
tered) but not negative examples (sentences that

have never been attested). This difference between
our expectations for these models and their empir-
ical performance gives rise to a broader question:
under what conditions can core logical concepts
emerge, and what information is sufficient to learn
them? We assume entailment as a task is crucial
to beginning to form an answer; if a system can
accurately determine whether a given premise log-
ically entails a given hypothesis, it may have a
representation of logical conjunction, disjunction,
conditionals, and negation. Thus, by observing
how language model pretraining affects the perfor-
mance of a model of logical entailment, we can
better understand the extent to which these mod-
els capture logical reasoning capabilities, if at all.
The primary question we aim to answer is: does
the traditional language modelling objective result
in representations which readily support classical
logical reasoning?

Due to the pervasiveness of statistical artifacts
in natural language inference datasets (Gururangan
et al., 2018; Tsuchiya, 2018), directly assessing the
logical reasoning capabilities of neural models us-
ing these datasets is challenging. Thus, we design
a set of experiments using a toy dataset and task
which uses propositional logic sentences in place
of natural language, but otherwise uses the same
common pretraining+finetuning recipe.

Note that we do not aim to answer the question
“can neural networks do logical reasoning” in gen-
eral. This question has been explored extensively
elsewhere (see e.g. (Bowman et al., 2014; Geiger
et al., 2018; Evans et al., 2018)). Rather, we are
interested in understanding what aspects of logi-
cal reasoning can be encoded during unsupervised
pretraining.

Specifically, we test whether sentence encodings
learned on a language modeling task transfer to a
“downstream” entailment task, i.e. improving the
efficiency and/or accuracy of the model trained on
the downstream task.



23

2 Experimental Design

2.1 Dataset creation
We create two propositional logic language
datasets– one for each of the pretraining and entail-
ment steps. For the pretraining corpus, we create
500,000 unique well-formed propositional logic
sentences containing atomic symbols and logical
connectives, which is roughly the size of a large
natural language corpus. These sentences are gen-
erated by nesting between 2 and 14 clauses, each
containing a unary or binary logical connective
from the set (¬, |=,&, ‖) and atomic symbols. In
order to parallel a natural language pretraining cor-
pus, we construct our data such that only logically
consistent sentences are present in the propositional
logic language. E.g. A&B might appear as a sen-
tence in our corpus, whereas A&¬A is logically
inconsistent and would not be included. There
are 30,000 unique symbols across our dataset, and
symbols are distributed between atomic sentences
uniformly, as opposed to the Zipfian distribution
of natural language: this is designed in order to
make it extremely challenging for the model to
make judgments based on co-occurence statistics
of symbols.

For the entailment training dataset, 100,000
unique propositional logic premise/hypothesis
pairs are generated using the same sentence-
generating algorithm as used for the pretrain-
ing dataset. As done by (Evans et al., 2018),
the dataset is balanced such that, for each
premise/hypothesis pair (A1, A2), there is a cor-
responding premise/hypothesis pair (B1, B2) such
that A1 |= A2 and B1 |= B2 but A1 6|= B2 and
B1 6|= B2. This reduces the effect of artifacts re-
sulting from sentence generation, as each sentence
is used evenly with each of the entailed and not
entailed labels. We hold out an additional 5,000
pairs containing sentences not seen in training as a
validation dataset.

2.2 Language model pretraining and
finetuning

The objective of our model during pretraining is
the typical language modelling objective. We use
unidirectional LSTMs (Hochreiter and Schmidhu-
ber, 1997), as well as Transformers (Vaswani et al.,
2017) as sequence models. We train models until
the perplexity converges to a local minimum, using
early stopping on a validation set.

We use a simple linear classifier based on the

last step of the sequence model to determine model
predictions on the entailment task. We compare the
performance at the entailment task of pretrained
sequence models to those initialized from scratch.

Figure 1: Average accuracy of 100 different hyperpa-
rameter settings of LSTMs on the entailment validation
dataset over time.

Figure 2: Perplexity versus accuracy for 100 different
LSTM hyperparameter settings.

2.3 Axiomatic test sets

We create several diagnostic test datasets represent-
ing axioms of first order logic (e.g. the double nega-
tion diagnostic dataset contains entailment pairs of
the structure A entails ¬¬A.) These diagnostic
datasets allow a fine-grained look at which func-
tional elements of logical connectives the network
is or is not able to capture after training. Sentences
within a diagnostic dataset range across lengths to
observe whether length significantly impacts the
models’ judgments. Performance on these datasets
is judged by F1 score– there are several distractor
negative examples based on each pattern.



24

Figure 3: F1-score on axiomatic test sets of the best performing classifier model of each of the four conditions.

Model w/ Pretraining w/o Pretraining
CBOW - 51.47
LSTM 70.41 68.74

Transformer 70.54 63.95

Table 1: Best performance on entailment validation set
across hyperparameter sweep of each model.

3 Experiments

We compare the performance on the entailment task
of a classifier on top of a model pretrained on the
language modelling objective described in 2.1 to
that of a classifier on top of a model with randomly
initialized parameters. Models were implemented
in pytorch (Paszke et al., 2019) and were trained
using GPUs. We conduct a large hyperparameter
sweep for each of our four settings: LSTMs and
Transformers as classifier models with and without
pretraining before the entailment task. We search
across learning rate, hidden dimension, symbol em-
bedding dimension, dropout, weight decay, and, re-
spective to each model, number of stacked LSTMs
and number of transformer heads/layers.

4 Results

The entailment dataset is evenly balanced, so max-
imum class accuracy is 50%. As shown in Table
1, the performance of the different types of classifi-
cation models is comparable. The baseline contin-
uous bag of words model performs slightly above
chance.

Figure 1 displays the validation accuracy tra-
jectory over time of 100 different hyperparameter
settings for LSTM initialized with and without pre-
training. Models that do not reach a new maxi-
mum accuracy within 10 epochs have their train-
ing stopped early. Most of the pretrained models’
performance spikes early, while many models ini-
tialized from scratch take much longer and must
see the training data many more times before their
accuracy begins to increase.

Figure 2 plots the relationship between the per-

plexity and accuracy that LSTM models converge
to. There appears to be a local minimum of per-
plexity that the models achieve in pretraining, and
this data suggests no relationship between lower
perplexity of the language model and higher accu-
racy.

The models do not perform well on the diagnos-
tic axiomatic test set dataset across the board, as
observed in Figure 3. Despite the extensive training
in each scenario, the models are unable to regularly
capture even extremely simple patterns, such as
double negation of one clause. The effect of clause
length varies– the models may be picking up on
dataset artifacts for shorter premises and hypothe-
ses. Furthermore, despite its low performance at
the entailment task, the F1 score of the continuous
bag of words model is significantly higher than that
of the other models. This is an interesting trend that
could be due to the pretraining leading the model
into a poor initialization, which requires further
investigation.

5 Discussion

In our experiments, we find mixed evidence to sug-
gest that language model pretraining on sentences
gives a reliable performance increase over mod-
els trained entirely from scratch with regards to
purely logical entailment. On average, pretrained
LSTMs and Transformers perform slightly better
than those initialized entirely from scratch, but the
performance of these models at held-out test sets
which specifically probe fundamental axioms of
logical entailment is underwhelming and worse
than the baseline model. Furthermore, no model
performs especially well at the entailment task– log-
ical operators are applied inflexibly to their input,
and no model performs near 100% accuracy.

It is potentially the case that, within modern
natural language inference pipelines, the logical
information encoded at the pretraining step is par-
tially responsible for the increase in accuracy at
downstream tasks. However, it is hard to say that
any such transfer of representations that facilitate



25

explicit logical capabilities occurs. It is possible
that language models, if they do not preserve log-
ical information, lead models to perform well at
entailment tasks in general by capturing complex
lexical heuristics and associations between topics
at the pretraining step.

In future work, we will test whether pretraining
on both positive and negative examples affects en-
tailment performance. Furthermore, we will test
whether adjusting from a uniform distribution of
the symbols to a Zipfian distribution causes the
performance of the pretrained model to improve,
which would suggest that these models rely much
more heavily on exploiting frequency heuristics
than captured logical capabilities to more accu-
rately model the training data.

References

Samuel R Bowman, Christopher Potts, and Christo-
pher D Manning. 2014. Recursive neural net-
works can learn logical semantics. arXiv preprint
arXiv:1406.1827.

Richard Evans, David Saxton, David Amos, Pushmeet
Kohli, and Edward Grefenstette. 2018. Can neu-
ral networks understand logical entailment? arXiv
preprint arXiv:1802.08535.

Atticus Geiger, Ignacio Cases, Lauri Karttunen,
and Christopher Potts. 2018. Stress-testing neu-
ral models of natural language inference with
multiply-quantified sentences. arXiv preprint
arXiv:1810.13033.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel R Bowman, and
Noah A Smith. 2018. Annotation artifacts in
natural language inference data. arXiv preprint
arXiv:1803.02324.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Masatoshi Tsuchiya. 2018. Performance impact
caused by hidden bias of training data for rec-
ognizing textual entailment. arXiv preprint
arXiv:1804.08117.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

