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Abstract
Neural networks are the state-of-the-art method
of machine learning for many problems in natu-
ral language processing (NLP). Their success in
machine translation and other NLP tasks is phe-
nomenal, but their interpretability is challeng-
ing. We want to find out how neural networks
represent meaning. We will focus on lexical
semantics in the embedding layer of the net-
work. We propose to examine the distribution
of meaning in the vector space representation
of words in neural networks trained for NLP
tasks. Furthermore, we propose to consider var-
ious theories of meaning in the philosophy of
language and to find a methodology that would
enable us to connect these areas.

1 NLP, Language, and Meaning

Language has been one of the central topics of
artificial intelligence (AI) research ever since Tur-
ing (1950) considered the question “Can machines
think?” and proposed to replace it with the “imi-
tation game”, based purely on textual communica-
tion.

Even though language is still one of the hard-
est problems in AI, there has been a tremendous
development in recent years in NLP. Machine trans-
lation systems achieve super-human performance
(at least in a competition setting) (Barrault et al.,
2019; Popel et al., 2020). Voice assistants are get-
ting better and better. Some text generation models
are so powerful that their authors consider them to
pose a danger to society (Radford et al., 2019a).

Artificial neural networks are behind a lot of
these achievements. The models that are used in
NLP can have billions of parameters. The same
architecture is often used for various tasks. Con-
sequently, neural networks are often regarded as
black boxes, and interpretation of the trained mod-
els presents a major scientific challenge (Belinkov
et al., 2019).

Certain specific questions, such as whether a
layer of a particular model contains information

about part of speech (POS) can be answered with
various methods. Other, more general questions,
are proving more difficult. How do neural ma-
chine translation (NMT) systems achieve the level
of translation quality comparable to humans? Are
there any fundamental limitations in language un-
derstanding for artificial neural networks? Do neu-
ral networks represent meaning and if they do, then
how?

It is the last question we are interested in. The
nature of meaning is itself a subject of debate in
the philosophy of language. This presents a chal-
lenging methodological problem: on the one hand,
we need a definition of meaning for the question to
make sense; on the other hand, we do not want to re-
strict our research to a predefined concept of mean-
ing, because then we are in danger of assuming the
conclusion and presenting a circular argument. The
solution would be to refine the sought-after concept
of meaning gradually, based on careful justification
supported by empirical observations.

The focus of this work is on lexical semantics
in the embedding layer the neural network. We
believe that this is a good place to start, as it is
the interface between the input text and the net-
work. Furthermore, there are interesting models
for obtaining words embeddings without any hid-
den layers.

1.1 Thesis Proposal

The thesis will consist of two parts. In the first
part, described in Section 2, we will consider var-
ious theories and properties of meaning from the
point of view of philosophy of language. We will
find which aspects of these theories are useful to
describe the process of representing meaning in
neural networks in NLP.

In the second part, described in Section 3, we
will examine the distribution of word representa-
tions in the embedding spaces with respect to mean-
ing. We propose to use mostly unsupervised meth-
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ods, such as clustering, principal component analy-
sis (PCA), independent component analysis (ICA)
and unsupervised mapping of embedding spaces.

The goal of the thesis is to show which theo-
ries of meaning offer a conceptual framework that
would be useful for understanding the empirical
results of the analysis of the embeddings.

2 NLP and Philosophy of Language

There is no agreed-upon general definition of
‘meaning’ (or ‘sense’, ‘semantics’, . . . ; see e.g.
Stokhof (2013), Bender and Koller (2020)).

To be able to talk about representations of mean-
ing, we will have to review different conceptual-
izations of meaning and find one that is useful for
describing the phenomena we encounter when we
examine how neural networks work in NLP. We
will contrast meaning representations in neural lan-
guage models with representations in other appli-
cations, with emphasis on NMT.

There is very little related work that con-
nects NLP with the philosophy of language.
Honkela (2007) links neural language models, self-
organizing maps and Quine’s semantic holism. The
works of Melby (1994, 1995) are discussed in Sec-
tion 2.5.

2.1 The Distributional Hypothesis

Many NLP applications only use raw text for train-
ing data (language models, models for embedding
pretraining, arguably even NMT models, although
the alignment in parallel corpora may be consid-
ered an additional source of information). If they
represent meaning, the information must be derived
from the training corpus, usually presented to the
model through a sliding window of tokens. This
may be the reason behind the popularity of the
distributional hypothesis in neural language model
(LM) literature. The famous saying by Firth (1957),
“You shall know a word by the company it keeps!”,
is quoted in most papers concerned with vector
space models of language.

The general distributional hypothesis states that
the meaning of a word is given by the contexts
in which it occurs. It is, however, worth noticing
that in Firth’s theory, collocation is just one among
multiple levels of meaning, and his text does not
support the idea of meaning being based on the
context alone.

The distributional hypothesis would explain why
word embeddings capture meaning. However, by

itself it tells us nothing about what meaning is and
how it relates to the world or people who are using
the language.

2.2 The Use Theory of Meaning

The use theory of meaning can be summed up as
“the meaning of a word is its use in the language”
(Wittgenstein, 1953, § 43). It is associated with late
Wittgenstein’s concept of language game. Mean-
ing determines which combinations of words are
“in circulation”, excluding the senseless combina-
tions and therefore “bounding of the domain of
language” (Wittgenstein, 1953, § 499), which is
precisely what a LM does; therefore, the use theory
may be one way to connect language modelling
and semantics.

That “knowledge of language emerges from lan-
guage use” is also one of the main hypotheses of
cognitive linguistics (Croft and Cruse, 2004).

This approach tells us a bit more about how
meaning relates to entities outside language: peo-
ple are using language to accomplish something in
the world.

2.3 Structuralism

In structuralism, the meaning of a word is given
by its relation to the other words of the language
(de Saussure, 1916). The nature of the sign is arbi-
trary. This holds for word representations in arti-
ficial neural networks as well. Due to the random
initialization, the vectors are different every time
the model is trained. The individual dimensions of
an embedding vector do not have any preconceived
interpretation and their values are arbitrary. The
embedding vectors do not have any meaning other
than their position among the rest of the vectors,
and a single vector does not have any significance
outside the model.

2.4 Semantic Holism and Atomism

Semantic holism (or meaning holism) is “the thesis
that what a linguistic expression means depends on
its relations to many or all other expressions within
the same totality. [. . . ] The totality in question may
be the language to which the expressions belong or
a theory formulation in that language” (Fodor and
Lepore, 1992). The opposing view is called seman-
tic atomism, and it claims that there are expressions
(typically words), whose meaning does not depend
on the meaning of other expressions. The meaning
of these expressions is given by something outside
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language (e.g. their relation to physical or mental
objects).

2.5 Objectivism and Experientialism

Study of metaphor and its connection to experi-
ence led Lakoff and Johnson (1980) to criticize
what they call the objectivist approach to language.
Melby (1994) applies this critique to machine trans-
lation (MT) and says that “most work in machine
translation is explicitly or implicitly based on [the
objectivist framework].” He lists the following be-
liefs as characteristic for objectivism:

1. Words and expressions are mapped to senses.

2. Each sense exists independently and has the
properties of mathematical sets.

3. The meaning of a sentence can be obtained
by combining the word senses from the bot-
tom up.

Melby (1995) claimed that then-current tech-
niques of machine translation will never be ex-
tended to handle general language texts and that
entirely new techniques that avoid the assumptions
of objectivism will be needed; the systems need
to understand dynamic metaphor and exhibit flex-
ibility in handling new situations. If Lakoff and
Johnson’s theory of metaphor holds, this is a triv-
ial consequence: since understanding metaphor is
based on experience and contemporary translation
systems do not experience anything, they cannot
understand and translate metaphors. The experi-
entialist view of language places emphasis on the
shared experience of the world, which is structured
by metaphors.

More than 25 years later, NMT is based on prin-
ciples that can hardly be construed as an extension
of the old techniques. They are more flexible and
produce significantly better translations. Do neu-
ral networks somehow evade the pitfalls of objec-
tivism? Maybe going repeatedly through the enor-
mous quantity of textual data constitutes a kind
of experience; perhaps it is possible to extract the
experience of others from the data? May that be
one of the reasons for their sudden success in MT
and other NLP applications?

2.6 Meaning and Understanding

Can a LM really understand natural language? Ben-
der and Koller (2020) argue that methods based
only on text cannot learn meaning. They define
meaning as mapping from words to communica-
tive intent. Because text itself does not contain

communicative intent, it is impossible to learn to
understand it from a textual corpora alone.

Our approach works in the opposite direction:
instead of picking a theory of meaning and project-
ing restrictions on technical possibilities, we want
to start with what is already achieved in NLP. We
will analyse the models and find out which aspects
of language use are they able to understand. We
will then find a theory of meaning that explains the
results of the analysis well.

The way a computer solves the NLP tasks does
not necessarily correspond to what a person does
when solving the same. Therefore our results may
not be usable for explaining how we experience lan-
guage. However, the results would still be useful
for understanding the linguistic behavior of black-
box neural models. Comparing our results with
neurological findings about biological representa-
tions of meaning would be interesting, however it
is outside the scope of the proposed thesis.

2.7 Conclusion: Properties of Meaning

Based on the properties of word embeddings men-
tioned in the preceding sections, we want the con-
cept of meaning that we are looking to be compat-
ible with the distributional hypothesis, structural-
ism, and semantic holism. Based on the arguments
given by Lakoff and Johnson (1980); Melby (1995)
and others, we believe that the correct account of
meaning should not be objectivist.

We propose to investigate a possibility of a con-
cept of meaning of an expression as a combina-
tion of various components. These components
would emerge from the use of the expression in con-
text (semantic holism, distributional hypothesis).
Each of them would represent a specific relation to
other expressions (structuralism). The components
would be continuous and will not form a simple tree
hierarchy, therefore avoiding the most problematic
aspects of objectivism. Instead of definition or enu-
meration, the components would be described by
prototypes (experientialism, cognitive linguistics).
ICA of word embeddings is a plausible candidate
for such conceptualization.

3 Properties of Word Embeddings

In this section, we present methods for analysis of
words embeddings and provide examples of results
obtained with these methods.

We will concentrate on embeddings from un-
supervised learning algorithms, language models
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and NMT. Unsupervised learning algorithms for
obtaining word representations, such as Word2vec
(Mikolov et al., 2013a), GloVe (Pennington et al.,
2014) or FastText (Bojanowski et al., 2017), have
the advantage of being simple, both conceptually
and regarding computational costs. Language mod-
elling is the most general language task. Pre-
trained models, such as masked LMs from the
BERT family (Devlin et al., 2018), can be fine-
tuned for many NLP tasks. Large generative LMs
can even be used for various tasks with little or no
fine-tuning (Radford et al., 2019b; Brown et al.,
2020). NMT is a mature NLP application and the
task itself is closely connected to the concept of
meaning. By comparing embeddings from differ-
ent models, we hope to distinguish between prop-
erties of the specific model and general properties
of continuous word representations.

We will also investigate contextual representa-
tions in current Transformer models (e.g. Radford
et al., 2019a). It is possible to reduce contextual
embedding to static embeddings (Bommasani et al.,
2020) and apply the methods for analyzing static
embeddings.

In this section we present methods for analyzing
word embeddings and their results. Related work
on examining vector representations in NLP was
surveyed by Bakarov (2018). Further information
can also be found in the overview of methods for an-
alyzing deep learning models for NLP by Belinkov
and Glass (2019). For more on interpretation in
general and unsupervised methods in examining
word embeddings, see Mareček et al. (2020, Chap-
ters 3 and 4).

Probing is the most common approach for ex-
amining linguistic properties in neural network
components (Belinkov and Glass, 2019). It is the
method of using a supervised classifier to predict
these properties from activations of the neural net-
work. The methodology may present problems
with train/test overlap (Rosa et al., 2020).

Probing is most useful when there are high qual-
ity annotated data for the property that is being
probed. Even though we plan to occasionally use
probing in such cases, we will generally emphasize
unsupervised methods of interpretation, because
we do not want to bias the results by restricting the
possible outcome by probing for specific features.

Component Analysis is an unsupervised method
for factoring the vector space of embeddings into

meaningful components.
PCA is a generally well known example. It is

often used for dimensionality reduction. The result-
ing components are ordered by their importance
and they maximize variance of the data given all
the previous components.

ICA (Jutten and Herault, 1991; Comon, 1994;
Hyvärinen and Oja, 2000) is an algorithm originally
developed for finding separate sources in a mixed
signal, such as a recording of multiple people in
the same room speaking at the same time. It was
used, for example, to extract features from distri-
bution representations of the words (Honkela et al.,
2010). The ICA algorithm consists of: optional
dimension reduction, usually with PCA; centering
the data and whitening them (setting variance of
each component to 1); iteratively finding directions
in the data that are the most non-Gaussian. The last
step is based on the assumption of the central limit
theorem: the mixed signal is a sum of indepen-
dent variables, therefore it should be closer to the
normal distribution, than the variables themselves.

Clustering is another unsupervised method for
examining embeddings. The t-SNE clustering al-
gorithm is often used for visualizing embeddings
(e.g. Maaten and Hinton, 2008). Word embeddings
are clustered according to meaning in t-SNE (Liu
et al., 2018).

We show elsewhere (Musil et al., 2019) that
clusters of embeddings of derivational relations
mostly match manually annotated semantic cate-
gories of these relations (e.g. the relation ’bake–
baker’ belongs to the category ’actor’, and a correct
clustering puts it into the same cluster as ’govern–
governor’).

Unsupervised Mapping There are unsupervised
methods for finding a mapping between two embed-
ding spaces that can be used for simple word-for-
word translation, as a starting point for creating an
unsupervised NMT system (Lample et al., 2017).

Mapping of embedding spaces from different
corpora of the same language can lead to inter-
esting insights, as demonstrated by KhudaBukhsh
et al. (2020), who show polarization in US political
comments by highlighting different use of specific
words or phrases by supporters of different political
parties.

We have found that a neural translation model
divides words into POS classes (Musil, 2019). It
also distinguishes between proper names and gen-
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eral nouns. The structure of representation varies
between the encoder and the decoder of the NMT
system.

The structure of the representation of the same
data in the word2vec model is different, for exam-
ple, in that it distinguishes infinitive forms of verbs
or modal verbs. A completely different structure
is found in the space of representations of words
in the neural model for sentiment analysis. All of
these facts can be shown without annotated data
and thus without deciding beforehand what we will
look for in the space of representations. For this
reason, we find these results more convincing than
if they had been obtained through probing.

3.1 Semantic properties

Hollis and Westbury (2016) have found that prin-
cipal components of word2vec embedding space
are correlated with various psycholinguistic and
semantic properties of words.

One example of a semantic property we have
found is that the shape of the space of word em-
beddings in a convolutional neural network (CNN)
model trained for sentiment analysis is triangular
Musil (2019).

With the help of PCA, we show that the first
principal component represents the polarity of the
words (good/bad); the second component repre-
sents intensity (strong/neutral). The triangular
shape may be explained by the fact that words
that are far from the center on the polarity axis
are always of high intensity. This is an example of
component analysis showing more than a probing
classifier about the structure of the representation.

This may in fact be all the information that the
CNN uses to classify the sentiment. We propose to
test this empirically by projecting the embeddings
on the first two principal components, retraining
the rest of the network and measuring the impact
of this on its performance.

3.2 Word2vec and Semantic Holism

Word representations obtained from the word2vec
model (Mikolov et al., 2013a) exhibit interesting se-
mantic properties. They obey the vector arithmetic
of meanings illustrated by the following equation:

vking − vman + vwoman ≈ vqueen,

meaning that if we start with the word “king”,
by subtracting the vector for the word “man” and
adding the vector for the word “woman” we arrive

at a vector that is nearest in the vector space to the
one that corresponds to the word “queen”. This
means that queen is to woman as king is to man.

This is usually explained by referring to the gen-
eral distributional hypothesis. We propose a more
specific approach based on Frege’s holistic and
functional approach to meaning.

CBOW Skip-gram

∑
w3

w1

w2

w4

w5

...

w3

w1

w2

w4

w5

...

Figure 1: CBOW and Skip-gram language models ac-
cording to (Mikolov et al., 2013a).

There are two variants of the word2vec model
(Mikolov et al., 2013a). The CBOW variant pre-
dicts a missing word based on the context; the
Skip-gram variant predicts context words based
on a single word (see Figure 1). The Skip-gram
variant performs better in analogy tasks (Mikolov
et al., 2013b). We show that the training process
the Skip-gram variant of word2vec is analogous to
a holistic definition of meaning.

Taking Tugendhat’s formal reinterpretation of
Frege’s holistic approach to meaning (Tugendhat,
1970) as a starting point, we demonstrate that it
is analogical to the process of training the Skip-
gram model and it offers a possible explanation of
its semantic properties. Tugendhat’s definition of
meaning as truth-value potential is:

[T]wo expressions ϕ and ψ have the
same truth-value potential if and only if,
whenever each is completed by the same
expression to form a sentence, the two
sentences have the same truth-value.

This definition has one crucial aspect in common
with the Skip-gram version of the word2vec model:
while we examine the meaning of an expression,
the expression is fixed, and the context is chang-
ing for comparison. Therefore, it presupposes the
context as the source of meaning, in the same way,
that Skip-gram learns the representation of a word
from the representation of the context. The fact
that the holistic Skip-gram version of word2vec
works better in analogy tasks than the complemen-
tary atomistic CBOW version supports the holistic
approach to meaning.
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3.3 Independent Component Analysis
Our preliminary experiments with ICA indicate,
that the independent components represent both
morpho-syntactic and semantic features. For our
data, we are able to explain roughly 10% of the di-
mensions by morphological/syntactic features (by
using correlations with annotated data). The other
90% seem to be semantic, although the distinction
between syntactic and semantic properties is blurry
in this context.

ICA of word embeddings seems to be a good
candidate for a non-hierarchical system for describ-
ing relations between words, as expressed in Sec-
tion 2.7.

4 Conclusion and Future Work

Interpretability is an important challenge for neural
networks in NLP. There is a limited amount of find-
ings about linguistic phenomena that we are able
to predict from embeddings. Much less is known
about the semantic properties of the embedding
space. The proposed approach to finding a de-
scription of the process of representing meaning in
neural networks for NLP both from the technologi-
cal and philosophical perspective would contribute
to our understanding of the technology and of the
concept of meaning.

Future work could also address the relation be-
tween neural networks for natural language infer-
ence and the philosophy of inferentialism (Bran-
dom, 1994).

This proposal leaves out important methodologi-
cal questions: we are using machine learning meth-
ods to run experiments on the results of other ma-
chine learning methods. It may be a challenging
task to interpret experiments correctly and attribute
the discovered properties to the original model or to
the model we are using to examine it. The question
of how to incorporate results of machine learning
into the scientific workflow is starting to come up in
other sciences as well, e.g. biology (Currie, 2019).

This question is perhaps too broad and general
to be solved as a part of this thesis. However, we
hope to at least formulate in detail the challenges
that we are facing when performing this kind of
research, as we encounter them while completing
the work proposed in the previous sections.
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Derivational Morphological Relations in Word Em-
beddings. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 173–180, Florence, Italy.
Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Martin Popel, Marketa Tomkova, Jakub Tomek, Łukasz
Kaiser, Jakob Uszkoreit, Ondřej Bojar, and Zdeněk
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Measuring memorization effect in word-level neural
networks probing. In Text, Speech, and Dialogue,
pages 180–188, Cham. Springer International Pub-
lishing.

Martin Stokhof. 2013. Formal semantics and Wittgen-
stein: An alternative? The Monist, 96(2):205–231.

Ernst Tugendhat. 1970. The meaning of ‘Bedeutung’ in
Frege. Analysis, 30(6):177–189.

Alan M. Turing. 1950. Computing Machinery and In-
telligence. Mind, LIX(236):433–460.

Ludwig Wittgenstein. 1953. Philosophical Investiga-
tions. Wiley-Blackwell.

https://doi.org/10.5840/monist20139629
https://doi.org/10.5840/monist20139629
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433

