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Abstract

One key ingredient of neural machine transla-
tion is the use of large datasets from different
domains and resources (e.g. Europarl, TED
talks). These datasets contain documents trans-
lated by professional translators using differ-
ent but consistent translation styles. Despite
that, the model is usually trained in a way that
neither explicitly captures the variety of trans-
lation styles present in the data nor translates
new data in different and controllable styles.
In this work, we investigate methods to aug-
ment the state-of-the-art Transformer model
with translator information that is available in
part of the training data. We show that our
style-augmented translation models are able to
capture the style variations of translators and
to generate translations with different styles on
new data. Indeed, the generated variations dif-
fer significantly, up to +4.5 BLEU score differ-
ence. Despite that, human evaluation confirms
that the translations are of the same quality.

1 Introduction

Translators often translate the original content with
provided guidelines for styles.1 However, guide-
lines are supposed to be high level and not com-
prehensive. Personal stylistic choices are thus wel-
come as creative part of the translator’s job, as
long as their translation style consistency is en-
sured to the task. By contrast, although neural
machine translation (NMT) models (Cho et al.,
2014; Sutskever et al., 2014) are trained from these
human translations (e.g. Europarl, TED Talks), the
models do not explicitly learn to capture the rich va-
riety of translators’ styles from the data. This limits
their capability to creatively translate new data with
different and consistent styles as translators do. We
believe that modeling the style of translators is an

∗Y. Wang carried out this work during an internship with
Amazon AI.

1See https://www.ted.com/participate/translate/guidelines
as an example of translation style guidelines.

important yet overlooked aspect in NMT. Our con-
tribution, to the best of our knowledge, is to fill this
gap for the first time.

In particular, our work investigates ways to in-
tegrate translator information into NMT, with an
emphasis on mimicking the translator’s style. Our
study uses the TED talk dataset, with four lan-
guage pairs with translator annotations. We present
and compare a set of different methods of using
a discrete translator token to model and control
translator-related stylistic variations in translation.
Note that using a discrete token is a common ap-
proach to model and control not only specific traits
in translation such as verbosity, politeness and
speaker-related variances (Sennrich et al., 2016a;
Michel and Neubig, 2018)) but also other aspects
in NMT such as language ids (Johnson et al., 2017;
Fan et al., 2020). However, our study is the first to
use such a discrete token to model the style of trans-
lators. It also provides several insights regarding
translation style modeling as follows.

First, we show that the state-of-the-art Trans-
former model implicitly learns the style of transla-
tors only to a limited extent. Moreover, methods
that add translator information to the decoder sur-
prisingly result in NMT that fully ignores the addi-
tional knowledge. This is regardless of whether the
token is added to the bottom (i.e. the embedding
layer) or to the top (i.e. the softmax layer) of the
decoder. Meanwhile, methods that add the informa-
tion to the encoder seem to model the translator’s
style effectively.

Second, we show that our best style-augmented
NMT method is able to control the generation of
translation in a way that mimics the translator’s
style, e.g. lexical and grammatical preferences,
verbosity. While output produced by the style-
augmented NMT can vary significantly with the
translator-token values, with BLEU score varia-
tions up to +4.5, a human evaluation confirms that
observed differences are all about style and not

https://www.ted.com/participate/translate/guidelines
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translation quality. Finally, we show that the trans-
lator information has more impact on NMT than
the speaker information, which was investigated by
Michel and Neubig (2018).

2 Related Work

Style itself is a broad concept (Kang and Hovy,
2019). It includes both simple high-level stylistic
aspects of language such as verbosity (Marchisio
et al., 2019; Agrawal and Carpuat, 2019; Lakew
et al., 2019), formality (Niu et al., 2017; Xu et al.,
2019), politeness (Mirkin et al., 2015) and complex
aspects such as demography (Vanmassenhove et al.,
2018; Moryossef et al., 2019; Hovy et al., 2020)
and personal traits (Mirkin and Meunier, 2015; Ra-
binovich et al., 2017; Michel and Neubig, 2018).

Our study focuses on capturing the personal style
of translators. The closest work to our study is
thus the work of Michel and Neubig (2018), where
they study instead the effects of using the speaker
information in NMT. In our results, we show that
the translator information has indeed more impact
to NMT than the speaker information.

Finally, another distantly related research line
tries to improve the diversity in the top rank transla-
tions of an input (Li et al., 2016; Shen et al., 2019;
Agrawal and Carpuat, 2020). In fact, adding the
translator information to NMT also provides means
to generate translations with significantly different
stylistic variations.

3 NMT with Translator Information

NMT reads an input sequence x = x1, ..., xn in the
source language with an encoder and then produces
an output sequence y = y1, ..., ym in the target lan-
guage. The generation process is performed in
a token-by-token manner and its probability can
be factored as

∏m
j=1 P (yj |y<j ,x), where y<j de-

notes the previous sub-sequence before j-th token.
The prediction for each token over the vocabulary
V is based on a softmax function as follows:

P (yj |y<j ,x) = softmax(WV oj + bV ). (1)

Here, oj ∈ Rd is an output vector with size d
(e.g. 512 or 1024), encoding both the context from
the encoder and the state of the decoder at time j.
Meanwhile, WV ∈ R|V|×d and bV ∈ R|V| are a
trainable projection matrix and bias vector.
We adjust NMT in different ways as below to let it
mimic and control the translator’s style.

Source Token. In our first approach, we insert the
translator token T as the beginning of each input
sentence. The translator token is thus assigned with
an embedding vector like any other source token.
Hence, the embedding sequence Eenc for the MT
encoder becomes:

Eenc = [e(T ), e(x1), ..., e(xn)], (2)

where e(·) is an embedding lookup function.
Token Embedding. We also consider adding the
embedded translator token e(T ) to every token em-
bedding in the encoder and/or decoder as follows:

Eenc = [e(T ) + e(x1), ..., e(T ) + e(xn)], (3)

Edec = [e(T ) + e(y1), ..., e(T ) + e(ym)]. (4)

Our motivation is to reinforce the influence of the
translator token in MT.
Output Bias. Following Michel and Neubig
(2018), we add the translator token information
to the output bias at the final layer of the decoder
(FULL-BIAS variant). Specifically, the method di-
rectly modulates the word probability over vocabu-
lary V as follows:

P (yj |y<j ,x, T ) = softmax(WV oj + bV + bT ).
(5)

Here, bT ∈ R|V| is the translator-specific bias vec-
tor, which can be thought of as a translator-token
embedding with dimension |V| rather than d. We
also explore another variant, named FACT-BIAS, as
in Michel and Neubig (2018). This variant instead
learns the translator bias through the factorization:

bT = WsT , (6)

with parameters W ∈ R|V|×k and sT ∈ Rk×1

where k << |V|.
Note that while the above methods digest the

translator token at an earlier stage, this one con-
sumes translator signals in a late fusion manner.

4 Experiments

4.1 Dataset and Models
We run experiments with the WIT3 public dataset
of TED talks (Cettolo et al., 2012), with four
language pairs: English-German (en-de), English-
French (en-fr), English-Italian (en-it) and English-
Spanish (en-es). The dataset contains both speaker
and translator information for each talk and transla-
tion, thus allowing to measure the effects of trans-
lators and speakers.
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Figure 1: TED talks translated by top 10 translators.

en-de en-fr en-it en-es

#talks 425 674 827 808
avg sent/talk 107.44 118.78 118.86 115.10
std dev 64.75 60.06 59.95 56.23

#train 36,594 67,554 83,968 79,200
#val 4,066 7,506 9,329 8,800
#test 5,000 5,000 5,000 5,000

Table 1: Data statistics for four language pairs.

We construct training, validation and test sets
for each translation direction as follows. We first
extract all talks that are translated by the 10 most
popular translators (see Figure 1) and split them
into parallel sentences. From the data of each trans-
lator, we then sample 500 sentences for testing, and,
from the remaining data, 90% for training and 10%
for validation. All training, testing, and validation
sentence pairs are put together and annotated with
training and speaker labels. Table 1 shows the data
statistics for four language pairs.

For preprocessing, we employ Moses (Koehn
et al., 2007) tool2 for tokenization and apply
subword-nmt3 (Sennrich et al., 2016b) to learn sub-
word representations.

We choose Transformer (Vaswani et al., 2017) as
the baseline and employ Fairseq (Ott et al., 2019)
for our implementations. Our Transformer model
is comprised of 6 layers of encoder-decoder net-
work, where each layer contains 16 heads with a

2https://github.com/moses-smt/
mosesdecoder

3https://github.com/rsennrich/
subword-nmt

self-attention hidden state of size 1024 and a feed-
forward hidden state of size 4096. We employ
Adam optimizer (Kingma and Ba, 2015) to update
model parameters. We warm up the model by lin-
early increasing the learning rate from 1× 10−7 to
5× 10−4 for 4000 updates and then decay it with
an inverse square root of the rest training steps by
a rate of 1× 10−4. We apply a Dropout of 0.3 for
en-de and 0.1 for both en-fr and en-it.

For all MT systems, we load weights from pre-
trained models to set up a better model initializa-
tion. Specifically, we employ models pretrained on
WMT data for en-de and en-fr (Ott et al., 2018),
and pretrain models for en-it and en-es using our
large in-house out-of-domain data, as there are no
previous pretrained models for these pairs. We fine-
tune models on TED talk data for 10 epochs4 and
select the best model based on the validation loss.

During inference, we employ beam search with
a beam size of 4 and add a length penalty of 0.4.

We use the BLEU score (Papineni et al., 2002)
to evaluate translation accuracy.

4.2 Results

4.2.1 Adding Translator Token
We first compare methods to integrate the translator
token into the Transformer. Notice that we report
performance of the model in two settings: (i) when
fed with the oracle translator label (as at training
time) and (ii): when fed with randomly assigned
labels. Intuitively, if a model really leverages the
translator information, we expect to see a perfor-
mance drop in the randomized setting. Results are
shown in Table 2.

Our findings are as follows. First, it is surpris-
ingly ineffective to add the translator token into
the decoder, whether to the input (DEC-EMB) or
to the softmax (FULL-BIAS, FACT-BIAS). In most
cases, our randomization experiment shows that
the model simply ignores the information.

Second, methods adding the token to the encoder
(SRC-TOK, ENC-EMB) are significantly more ef-
fective. Translation accuracy is also consistently
better (at most by 0.4 BLEU) than with the Trans-
former baseline, indicating the translator token is
useful. For those models, randomizing translator
labels results in visible drops in BLEU score (up to
1.0 BLEU), indicating that the translator informa-
tion has an important effect to the model.

4We try finetuning with more epochs and observe no fur-
ther improvements.

https://github.com/moses-smt/mosesdecoder
https://github.com/moses-smt/mosesdecoder
https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt
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Model en-de en-fr en-it en-es

BASE 32.7011 48.2014 42.5908 50.0203

SRC-TOK 32.7309 48.5906 42.8611 50.2018
Rand (∆) -0.12 -1.01 -0.32 -0.21
ENC-EMB 32.8609 48.4121 42.7904 50.2513
Rand (∆) -0.33 -0.96 -0.43 -0.64
DEC-EMB 32.7113 48.1612 42.5307 49.9214
Rand (∆) -0.02 +0.01 0 +0.10
FULL-BIAS 32.6508 48.1812 42.6109 49.9707
Rand (∆) -0.02 0 +0.03 -0.01
FACT-BIAS 32.6303 48.2310 42.6402 50.0207
Rand (∆) +0.07 -0.02 -0.02 +0.01

Table 2: Average BLEU scores from 3 random seeds.
Subscripts denote the standard deviation (e.g., 32.7011
⇒ 32.70±0.11). Best results for each column are in
bold. “Rand (∆)” denotes the absolute performance
change after randomizing translator tokens.

4.2.2 Style Imitation
Following the common practice in evaluating the
style imitation (e.g. see (Michel and Neubig, 2018;
Hovy et al., 2020)), we train a classifier to predict
the translator style of the output of various models.
We employ a Logistic Regression classifier based
on both uni-gram and bi-gram word features. The
classifier, trained on NMT training data, is applied
on the outputs of NMT models. Figure 2 shows the
results of this experiment.

As can be seen, the standard Transformer learns
the style of translators only to a limited extent. The
style of translation outputs are less consistent with
the original translator’s style, i.e. accuracy is be-
tween 20% and 35%). Meanwhile, the classifica-
tion accuracy is significantly higher (up to +12%
relative) under SRC-TOK and ENC-EMB. This con-
firms that explicitly incorporating translator infor-
mation at the sentence level allows for transferring
some of her/his personal traits into the translations.

Meanwhile, we notice higher accuracy achieved
with the reference translations (e.g. 42% in EN-
ES), suggesting there is room for improvement.

4.2.3 Stylistic Variations
We analyzed stylistic variations using different
translator token labels. In particular, we evaluate
model outputs on en-fr after translating the entire
test set with the same translator token labels. As
in Table 3, translator-informed NMT can produce
quite different outputs, resulting in BLEU score
variations up to +4.5, (i.e. between T7 and T3,
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Figure 2: Translator classification accuracy. ENC-EMB
yields the best result in most cases.

T8, T10). We also observe differences in BLEU
(albeit smaller) when testing with the WMT 2014
test set. In particular, BLEU score variations are
up to +0.84 between T7 and T5. We also compute
the symmetric-BLEU distances between any two of
the translators using their predictions for both TED
and WMT test set and visualize their heatmaps in
Figure 3. We observe that a similar BLEU distance
between various translators in both test sets. Be-
sides, T7 has a farther distance with others but its
gap is closer on WMT than TED. These findings
verify the consistency of translator styles in data
from different domains.

Then, we asked 3 professional translators to
grade the quality of translation produced with the
labels T7 and T3 on the TED talks. The evaluation
is on a 1-6 scale (higher is better) on a random
sample of 100 sentences. This resulted in average
scores of 4.867 and 4.860 for T3 and T7, respec-
tively. A similar human evaluation with T7 and
T5 labels was also run on a random sample of 100
sentences of the WMT 2014 test set. It provided
the same conclusion: average scores are very simi-
lar: 4.99 and 5.0 for T5 and T7 respectively. Both
evaluations confirm that there is no difference in
translation quality when using different token la-
bels, i.e. the low BLEU score of T7 is only an
effect due to stylistic differences.

Table 4 shows examples of translations gener-
ated with labels T3 and T7. As we can observe, the
translations show different use of grammars, words
and verbosity.5

5Note that one could argue that it is not just about style
here but also translation fidelity. We thank a reviewer for
pointing it out.
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Dataset T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
TED 48.02 46.85 48.07 47.82 47.49 47.50 43.50 48.01 48.07 48.12
WMT 42.19 42.34 42.08 42.32 42.46 42.34 41.62 42.27 41.77 42.35

Table 3: BLEU scores when translating the test set with a specific translator id.

T2 T3 T4 T5 T6 T7 T8 T9 T10

TED

T1

T2

T3

T4

T5

T6

T7

T8

T9

83.6 89.5 89.2 86.1 87.1 69.6 88.9 93.4 90.6

89.4 90.3 91.8 92.9 79.6 90.6 84.3 89.2

92.5 90.5 93.0 74.3 94.8 91.0 94.5

93.0 93.7 74.9 93.9 89.0 94.5

93.5 77.6 92.6 86.1 91.8

77.0 94.2 87.5 92.8

75.3 69.9 74.0

90.1 95.5

91.8

T2 T3 T4 T5 T6 T7 T8 T9 T10

WMT
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T5

T6

T7

T8

T9

87.9 90.9 91.7 88.8 90.1 78.1 90.7 92.8 91.4

92.1 92.1 94.0 94.4 85.3 93.5 89.2 92.8

93.4 91.9 94.5 82.2 95.3 93.6 95.3

93.0 93.8 81.8 94.2 92.6 95.2

94.7 85.2 93.7 89.8 93.3

84.0 95.6 91.2 94.9

83.2 79.4 82.2

93.0 96.3

94.1

Figure 3: Heatmap visualization for symmetric-BLEU distances between translators.

V
er

bo
si

ty

Src: And I’m not the first person to ask this question.
T3: Je ne suis pas la première personne à poser cette
question.
T7: Je ne suis pas la première à poser cette question.
Src: And then everybody kind of runs out and goes
out.
T3: Et puis tout le monde s’enfuit..
T7: Tout le monde s’enfuit.

W
or

d Src: Same story for fairness.
T3: Même histoire pour l’équité.
T7: Même histoire d’équité.

G
ra

m
m

ar Src: I had just tweeted, “Pray for Egypt".
T3: J’avais tweeté : “Priez pour l’Egypte".
T7: Je venais de tweeter, “Priez pour l’Egypte."

Table 4: Examples of stylistic differences: T3 and T7
have different preferences of grammars and words in
translation. Their translations are also different in the
verbosity (Using T7 results in consistently less verbose
output than as of using T3), which is indeed also what
translations by T3 and T7 differ in the training data.

4.2.4 Translator vs. Speaker Effects

Finally, we compared the effect of the translator
token with that of the speaker token, which was
proposed in Michel and Neubig (2018) to perform
extreme personalization. Results on all four direc-
tions (see Table 5) show that the translator token
has more impact. 6 Given that speaker and author
style has received much more attention in the liter-

6One probable reason is that the speaker signal is more
sparse than the translator signal, i.e. each speaker is repre-
sented by one TED talk, while translators by multiple talks.

Model en-de en-fr en-it en-es
BASE 32.7011 48.2014 42.5908 50.0203

ENC-EMB
Speaker 32.8013 48.1810 42.2309 49.2508

ENC-EMB
Translator 32.8609 48.4121 42.7904 50.2513

Table 5: Comparison between ENC-EMB on Trans-
lator and Speaker sides. Results are similar for SRC-
TOK.

ature, we hope that this final result will spark more
interests on the style of translators.

5 Conclusion

We designed various ways of incorporating trans-
lator information into NMT, in order to model and
control the generation of translation with differ-
ent translator styles. We show that resulting style-
augmented NMT produces significantly different
stylistic variations, mimicking professional transla-
tors. Human evaluation confirms that the generated
variations are all of same translation quality.
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