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Abstract

Fine-tuned pre-trained language models (LMs)
have achieved enormous success in many nat-
ural language processing (NLP) tasks, but they
still require excessive labeled data in the fine-
tuning stage. We study the problem of fine-
tuning pre-trained LMs using only weak super-
vision, without any labeled data. This prob-
lem is challenging because the high capacity
of LMs makes them prone to overfitting the
noisy labels generated by weak supervision.
To address this problem, we develop a con-
trastive self-training framework, COSINE, to
enable fine-tuning LMs with weak supervision.
Underpinned by contrastive regularization and
confidence-based reweighting, our framework
gradually improves model fitting while effec-
tively suppressing error propagation. Experi-
ments on sequence, token, and sentence pair
classification tasks show that our model outper-
forms the strongest baseline by large margins
and achieves competitive performance with
fully-supervised fine-tuning methods. Our
implementation is available on https://

github.com/yueyu1030/COSINE.

1 Introduction
Language model (LM) pre-training and fine-tuning
achieve state-of-the-art performance in various nat-
ural language processing tasks (Peters et al., 2018;
Devlin et al., 2019; Liu et al., 2019; Raffel et al.,
2019). Such approaches stack task-specific layers
on top of pre-trained language models, e.g., BERT
(Devlin et al., 2019), then fine-tune the models with
task-specific data. During fine-tuning, the semantic
and syntactic knowledge in the pre-trained LMs is
adapted for the target task. Despite their success,
one bottleneck for fine-tuning LMs is the require-
ment of labeled data. When labeled data are scarce,
the fine-tuned models often suffer from degraded
performance, and the large number of parameters
can cause severe overfitting (Xie et al., 2019).

∗Equal Contribution.

To relieve the label scarcity bottleneck, we fine-
tune the pre-trained language models with only
weak supervision. While collecting large amounts
of clean labeled data is expensive for many NLP
tasks, it is often cheap to obtain weakly labeled
data from various weak supervision sources, such
as semantic rules (Awasthi et al., 2020). For ex-
ample, in sentiment analysis, we can use rules
‘terrible’→Negative (a keyword rule) and
‘* not recommend *’→Negative (a pat-
tern rule) to generate large amounts of weak labels.

Fine-tuning language models with weak supervi-
sion is nontrivial. Excessive label noise, e.g., wrong
labels, and limited label coverage are common and
inevitable in weak supervision. Although existing
fine-tuning approaches (Xu et al., 2020; Zhu et al.,
2020; Jiang et al., 2020) improve LMs’ generaliza-
tion ability, they are not designed for noisy data and
are still easy to overfit on the noise. Moreover, ex-
isting works on tackling label noise are flawed and
are not designed for fine-tuning LMs. For exam-
ple, Ratner et al. (2020); Varma and Ré (2018) use
probabilistic models to aggregate multiple weak
supervisions for denoising, but they generate weak-
labels in a context-free manner, without using LMs
to encode contextual information of the training
samples (Aina et al., 2019). Other works (Luo
et al., 2017; Wang et al., 2019b) focus on noise tran-
sitions without explicitly conducting instance-level
denoising, and they require clean training samples.
Although some recent studies (Awasthi et al., 2020;
Ren et al., 2020) design labeling function-guided
neural modules to denoise each sample, they re-
quire prior knowledge on weak supervision, which
is often infeasible in real practice.

Self-training (Rosenberg et al., 2005; Lee, 2013)
is a proper tool for fine-tuning language models
with weak supervision. It augments the training set
with unlabeled data by generating pseudo-labels for
them, which improves the models’ generalization
power. This resolves the limited coverage issue in

https://github.com/yueyu1030/COSINE
https://github.com/yueyu1030/COSINE
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weak supervision. However, one major challenge
of self-training is that the algorithm still suffers
from error propagation—wrong pseudo-labels can
cause model performance to gradually deteriorate.

We propose a new algorithm COSINE1 that
fine-tunes pre-trained LMs with only weak supervi-
sion. COSINE leverages both weakly labeled and
unlabeled data, as well as suppresses label noise
via contrastive self-training. Weakly-supervised
learning enriches data with potentially noisy labels,
and our contrastive self-training scheme fulfills the
denoising purpose. Specifically, contrastive self-
training regularizes the feature space by pulling
samples with the same pseudo-labels close while
pushing samples with different pseudo-labels apart.
Such regularization enforces representations of
samples from different classes to be more distin-
guishable, such that the classifier can make bet-
ter decisions. To suppress label noise propaga-
tion during contrastive self-training, we propose
confidence-based sample reweighting and regular-
ization methods. The reweighting strategy em-
phasizes samples with high prediction confidence,
which are more likely to be correctly classified,
in order to reduce the effect of wrong predictions.
Confidence regularization encourages smoothness
over model predictions, such that no prediction
can be over-confident, and therefore reduces the
influence of wrong pseudo-labels.

Our model is flexible and can be naturally ex-
tended to semi-supervised learning, where a small
set of clean labels is available. Moreover, since we
do not make assumptions about the nature of the
weak labels, COSINE can handle various types of
label noise, including biased labels and randomly
corrupted labels. Biased labels are usually gener-
ated by semantic rules, whereas corrupted labels
are often produced by crowd-sourcing.

Our main contributions are: (1) A contrastive-
regularized self-training framework that fine-tunes
pre-trained LMs with only weak supervision. (2)
Confidence-based reweighting and regularization
techniques that reduce error propagation and pre-
vent over-confident predictions. (3) Extensive ex-
periments on 6 NLP classification tasks using 7
public benchmarks verifying the efficacy of CO-
SINE. We highlight that our model achieves com-
petitive performance in comparison with fully-
supervised models on some datasets, e.g., on the

1Short for Contrastive Self-Training for Fine-Tuning Pre-
trained Language Model.

Yelp dataset, we obtain a 97.2% (fully-supervised)
v.s. 96.0% (ours) accuracy comparison.

2 Background

In this section, we introduce weak supervision and
our problem formulation.
Weak Supervision. Instead of using human-
annotated data, we obtain labels from weak super-
vision sources, including keywords and semantic
rules2. From weak supervision sources, each of the
input samples x ∈ X is given a label y ∈ Y ∪ {∅},
where Y is the label set and ∅ denotes the sample
is not matched by any rules. For samples that are
given multiple labels, e.g., matched by multiple
rules, we determine their labels by majority voting.
Problem Formulation. We focus on the weakly-
supervised classification problems in natural lan-
guage processing. We consider three types of tasks:
sequence classification, token classification, and
sentence pair classification. These tasks have a
broad scope of applications in NLP, and some ex-
amples can be found in Table 1.

Formally, the weakly-supervised classification
problem is defined as the following: Given weakly-
labeled samples Xl = {(xi, yi)}Li=1 and unlabeled
samples Xu = {xj}Uj=1, we seek to learn a classi-
fier f(x; θ) : X → Y . Here X = Xl ∪ Xu denotes
all the samples and Y = {1, 2, · · · , C} is the label
set, where C is the number of classes.

3 Method

Our classifier f = g ◦ BERT consists of two parts:
BERT is a pre-trained language model that outputs
hidden representations of input samples, and g is
a task-specific classification head that outputs a
C-dimensional vector, where each dimension cor-
responds to the prediction confidence of a specific
class. In this paper, we use RoBERTa (Liu et al.,
2019) as the realization of BERT.

The framework of COSINE is shown in Figure 1.
First, COSINE initializes the LM with weak labels.
In this step, the semantic and syntactic knowledge
of the pre-trained LM are transferred to our model.
Then, it uses contrastive self-training to suppress
label noise propagation and continue training.

3.1 Overview
The training procedure of COSINE is as follows.
Initialization with Weakly-labeled Data. We
fine-tune f(·; θ) with weakly-labeled data Xl by

2Examples of weak supervisions are in Appendix A.
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Figure 1: The framework of COSINE. We first fine-tune the pre-trained language model on weakly-labeled data
with early stopping. Then, we conduct contrastive-regularized self-training to improve model generalization and
reduce the label noise. During self-training, we calculate the confidence of the prediction and update the model
with high confidence samples to reduce error propagation.

Formulation Example Task Input Output

Sequence Classification Sentiment Analysis, Topic Classification,
Question Classification [x1, . . . ,xN ] y

Token Classification Slot Filling, Part-of-speech Tagging,
Event Detection [x1, . . . , xN ] [y1, . . . , yN ]

Sentence Pair Classification Word Sense Disambiguation, Textual Entailment,
Reading Comprehension [x1,x2] y

Table 1: Comparison of different tasks. For sequence classification, input is a sequence of sentences, and we output
a scalar label. For token classification, input is a sequence of tokens, and we output one scalar label for each token.
For sentence pair classification, input is a pair of sentences, and we output a scalar label.

solving the optimization problem

min
θ

1

|Xl|
∑

(xi,yi)∈Xl

CE (f(xi; θ), yi) , (1)

where CE(·, ·) is the cross entropy loss. We adopt
early stopping (Dodge et al., 2020) to prevent the
model from overfitting to the label noise. However,
early stopping causes underfitting, and we resolve
this issue by contrastive self-training.
Contrastive Self-training with All Data. The
goal of contrastive self-training is to leverage all
data, both labeled and unlabeled, for fine-tuning, as
well as to reduce the error propagation of wrongly
labelled data. We generate pseudo-labels for the
unlabeled data and incorporate them into the train-
ing set. To reduce error propagation, we introduce
contrastive representation learning (Sec. 3.2) and
confidence-based sample reweighting and regular-
ization (Sec. 3.3). We update the pseudo-labels
(denoted by ỹ) and the model iteratively. The pro-
cedures are summarized in Algorithm 1.
� Update ỹ with the current θ. To generate the
pseudo-label for each sample x ∈ X , one straight-
forward way is to use hard labels (Lee, 2013)

ỹhard = argmax
j∈Y

[f(x; θ)]j . (2)

Notice that f(x; θ) ∈ RC is a probability vector
and [f(x; θ)]j indicates the j-th entry of it. How-

ever, these hard pseudo-labels only keep the most
likely class for each sample and result in the prop-
agation of labeling mistakes. For example, if a
sample is mistakenly classified to a wrong class,
assigning a 0/1 label complicates model updating
(Eq. 4), in that the model is fitted on erroneous
labels. To alleviate this issue, for each sample x
in a batch B, we generate soft pseudo-labels3 (Xie
et al., 2016, 2019; Meng et al., 2020; Liang et al.,
2020) ỹ ∈ RC based on the current model as

ỹj =
[f(x; θ)]2j/fj∑

j′∈Y [f(x; θ)]
2
j′/fj′

, (3)

where fj =
∑

x′∈B[f(x
′; θ)]2j is the sum over soft

frequencies of class j. The non-binary soft pseudo-
labels guarantee that, even if our prediction is in-
accurate, the error propagated to the model update
step will be smaller than using hard pseudo-labels.
� Update θ with the current ỹ. We update the
model parameters θ by minimizing

L(θ; ỹ) = Lc(θ; ỹ) +R1(θ; ỹ) + λR2(θ), (4)

where Lc is the classification loss (Sec. 3.3),
R1(θ; ỹ) is the contrastive regularizer (Sec. 3.2),
R2(θ) is the confidence regularizer (Sec. 3.3), and
λ is the hyper-parameter for the regularization.

3More discussions on hard vs.soft are in Sec. 4.5.
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Algorithm 1: Training Procedures of COSINE.
Input: Training samples X ; Weakly labeled samples

Xl ⊆ X ; Pre-trained LM f(·; θ).
// Fine-tune the LM with weakly-labeled data.
for t = 1, 2, · · · , T1 do

Sample a minibatch B from Xl.
Update θ by Eq. 1 using AdamW.

// Conduct contrastive self-training with all data.
for t = 1, 2, · · · , T2 do

Update pseudo-labels ỹ by Eq. 3 for all x ∈ X .
for k = 1, 2, · · · , T3 do

Sample a minibatch B from X .
Select high confidence samples C by Eq. 9.
Calculate Lc by Eq. 10,R1 by Eq. 6,R2 by

Eq. 12, and L by Eq. 4.
Update θ using AdamW.

Output: Fine-tuned model f(·; θ).

Contrastive
Learning

High-confidence 
Sample Pairs

Compact Clusters of 
Samples 

Figure 2: An illustration of contrastive learning. The
black solid lines indicate similar sample pairs, and the
red dashed lines indicate dissimilar pairs.

3.2 Contrastive Learning on Sample Pairs
The key ingredient of our contrastive self-training
method is to learn representations that encourage
data within the same class to have similar repre-
sentations and keep data in different classes sepa-
rated. Specifically, we first select high-confidence
samples (Sec. 3.3) C from X . Then for each pair
xi, xj ∈ C, we define their similarity as

Wij =

{
1, if argmax

k∈Y
[ỹi]k = argmax

k∈Y
[ỹj ]k

0, otherwise
,

(5)
where ỹi, ỹj are the soft pseudo-labels (Eq. 3) for
xi, xj , respectively. For each x ∈ C, we calculate
its representation v = BERT(x) ∈ Rd, then we
define the contrastive regularizer as

R1(θ; ỹ) =
∑

(xi,xj)∈C×C

`(vi,vj ,Wij), (6)

where

` =Wijd
2
ij + (1−Wij)[max(0, γ − dij)]2. (7)

Here, `(·, ·, ·) is the contrastive loss (Chopra et al.,
2005; Taigman et al., 2014), dij is the distance4

between vi and vj , and γ is a pre-defined margin.
For samples from the same class, i.e. Wij = 1,

Eq. 6 penalizes the distance between them, and
4We use scaled Euclidean distance dij = 1

d
‖vi − vj‖22 by

default. More discussions on Wij and dij are in Appendix E.

for samples from different classes, the contrastive
loss is large if their distance is small. In this way,
the regularizer enforces similar samples to be close,
while keeping dissimilar samples apart by at least γ.
Figure 2 illustrates the contrastive representations.
We can see that our method produces clear inter-
class boundaries and small intra-class distances,
which eases the classification tasks.

3.3 Confidence-based Sample Reweighting
and Regularization

While contrastive representations yield better de-
cision boundaries, they require samples with high-
quality pseudo-labels. In this section, we introduce
reweighting and regularization methods to suppress
error propagation and refine pseudo-label qualities.
Sample Reweighting. In the classification task,
samples with high prediction confidence are more
likely to be classified correctly than those with
low confidence. Therefore, we further reduce label
noise propagation by a confidence-based sample
reweighting scheme. For each sample x with the
soft pseudo-label ỹ, we assign x with a weight
ω(x) defined by

ω = 1− H (ỹ)

log(C)
, H(ỹ) = −

C∑
i=1

ỹi log ỹi, (8)

where 0 ≤ H(ỹ) ≤ log(C) is the entropy of ỹ.
Notice that if the prediction confidence is low, then
H(ỹ) will be large, and the sample weight ω(x)
will be small, and vice versa. We use a pre-defined
threshold ξ to select high confidence samples C
from each batch B as

C = {x ∈ B | ω(x) ≥ ξ}. (9)

Then we define the loss function as

Lc(θ, ỹ) =
1

|C|
∑
x∈C

ω(x)DKL (ỹ‖f(x; θ)) , (10)

where

DKL(P‖Q) =
∑
k

pk log
pk
qk

(11)

is the Kullback–Leibler (KL) divergence.
Confidence regularization The sample reweight-
ing approach promotes high confidence samples
during contrastive self-training. However, this strat-
egy relies on wrongly-labeled samples to have low
confidence, which may not be true unless we pre-
vent over-confident predictions. To this end, we
propose a confidence-based regularizer that encour-
ages smoothness over predictions, defined as

R2(θ) =
1

|C|
∑
x∈C
DKL (u‖f(x; θ)) , (12)
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where DKL is the KL-divergence and ui = 1/C
for i = 1, 2, · · · , C. Such term constitutes a regu-
larization to prevent over-confident predictions and
leads to better generalization (Pereyra et al., 2017).

4 Experiments

Datasets and Tasks. We conduct experiments on
6 NLP classification tasks using 7 public bench-
marks: AGNews (Zhang et al., 2015) is a Topic
Classification task; IMDB (Maas et al., 2011) and
Yelp (Meng et al., 2018) are Sentiment Analysis
tasks; TREC (Voorhees and Tice, 1999) is a Ques-
tion Classification task; MIT-R (Liu et al., 2013) is a
Slot Filling task; Chemprot (Krallinger et al., 2017)
is a Relation Classification task; and WiC (Pilehvar
and Camacho-Collados, 2019) is a Word Sense Dis-
ambiguation (WSD) task. The dataset statistics are
summarized in Table 2. More details on datasets
and weak supervision sources are in Appendix A5.
Baselines. We compare our model with different
groups of baseline methods:
(i) Exact Matching (ExMatch): The test set is
directly labeled by weak supervision sources.
(ii) Fine-tuning Methods: The second group of
baselines are fine-tuning methods for LMs:
�RoBERTa (Liu et al., 2019) uses the RoBERTa-
base model with task-specific classification heads.
� Self-ensemble (Xu et al., 2020) uses self-
ensemble and distillation to improve performances.
� FreeLB (Zhu et al., 2020) adopts adversarial train-
ing to enforce smooth outputs.
�Mixup (Zhang et al., 2018) creates virtual training
samples by linear interpolations.
� SMART (Jiang et al., 2020) adds adversarial
and smoothness constraints to fine-tune LMs and
achieves state-of-the-art result for many NLP tasks.
(iii) Weakly-supervised Models: The third group
of baselines are weakly-supervised models6:
� Snorkel (Ratner et al., 2020) aggregates different
labeling functions based on their correlations.
� WeSTClass (Meng et al., 2018) trains a classi-
fier with generated pseudo-documents and use self-
training to bootstrap over all samples.
� ImplyLoss (Awasthi et al., 2020) co-trains a rule-
based classifier and a neural classifier to denoise.
� Denoise (Ren et al., 2020) uses attention network
to estimate reliability of weak supervisions, and
then reduces the noise by aggregating weak labels.

5Note that we use the same weak supervision signals/rules
for both our method and all the baselines for fair comparison.

6All methods use RoBERTa-base as the backbone unless
otherwise specified.

� UST (Mukherjee and Awadallah, 2020) is state-
of-the-art for self-training with limited labels. It
estimates uncertainties via MC-dropout (Gal and
Ghahramani, 2015), and then select samples with
low uncertainties for self-training.
Evaluation Metrics. We use classification accu-
racy on the test set as the evaluation metric for
all datasets except MIT-R. MIT-R contains a large
number of tokens that are labeled as “Others”. We
use the micro F1 score from other classes for this
dataset.7

Auxiliary. We implement COSINE using Py-
Torch8, and we use RoBERTa-base as the pre-
trained LM. Datasets and weak supervision de-
tails are in Appendix A. Baseline settings are in
Appendices B. Training details and setups are in
Appendix C. Discussions on early-stopping are in
Appendix D. Comparison of distance metrics and
similarity measures are in Appendix E.

4.1 Learning From Weak Labels

We summarize the weakly-supervised leaning re-
sults in Table 3. In all the datasets, COSINE out-
performs all the baseline models. A special case is
the WiC dataset, where we use WordNet9 to gen-
erate weak labels. However, this enables Snorkel
to access some labeled data in the development set,
making it unfair to compete against other methods.
We will discuss more about this dataset in Sec. 4.3.

In comparison with directly fine-tuning the pre-
trained LMs with weakly-labeled data, our model
employs an “earlier stopping” technique10 so that
it does not overfit on the label noise. As shown,
indeed “Init” achieves better performance, and it
serves as a good initialization for our framework.
Other fine-tuning methods and weakly-supervised
models either cannot harness the power of pre-
trained language models, e.g., Snorkel, or rely on
clean labels, e.g., other baselines. We highlight
that although UST, the state-of-the-art method to
date, achieves strong performance under few-shot
settings, their approach cannot estimate confidence
well with noisy labels, and this yields inferior per-
formance. Our model can gradually correct wrong
pseudo-labels and mitigate error propagation via
contrastive self-training.

It is worth noticing that on some datasets, e.g.,

7The Chemprot dataset also contains “Others” type, but
such instances are few, so we still use accuracy as the metric.

8https://pytorch.org/
9https://wordnet.princeton.edu/

10We discuss this technique in Appendix D.

https://pytorch.org/
https://wordnet.princeton.edu/
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Dataset Task Class # Train # Dev # Test Cover Accuracy

AGNews Topic 4 96k 12k 12k 56.4 83.1
IMDB Sentiment 2 20k 2.5k 2.5k 87.5 74.5
Yelp Sentiment 2 30.4k 3.8k 3.8k 82.8 71.5

MIT-R Slot Filling 9 6.6k 1.0k 1.5k 13.5 80.7
TREC Question 6 4.8k 0.6k 0.6k 95.0 63.8

Chemprot Relation 10 12.6k 1.6k 1.6k 85.9 46.5
WiC WSD 2 5.4k 0.6k 1.4k 63.4 58.8

Table 2: Dataset statistics. Here cover (in %) is the fraction of instances covered by weak supervision sources in
the training set, and accuracy (in %) is the precision of weak supervision.

Method AGNews IMDB Yelp MIT-R TREC Chemprot WiC (dev)

ExMatch 52.31 71.28 68.68 34.93 60.80 46.52 58.80
Fully-supervised Result
RoBERTa-CL� (Liu et al., 2019) 91.41 94.26 97.27 88.51 96.68 79.65 70.53
Baselines
RoBERTa-WL† (Liu et al., 2019) 82.25 72.60 74.89 70.95 62.25 44.80 59.36
Self-ensemble (Xu et al., 2020) 85.72 86.72 80.08 72.88 66.18 44.62 62.71
FreeLB (Zhu et al., 2020) 85.12 88.04 85.68 73.04 67.33 45.68 63.45
Mixup (Zhang et al., 2018) 85.40 86.92 92.05 73.68 66.83 51.59 64.88
SMART (Jiang et al., 2020) 86.12 86.98 88.58 73.66 68.17 48.26 63.55
Snorkel (Ratner et al., 2020) 62.91 73.22 69.21 20.63 58.60 37.50 ---∗

WeSTClass (Meng et al., 2018) 82.78 77.40 76.86 ---⊗ 37.31 ---⊗ 48.59
ImplyLoss (Awasthi et al., 2020) 68.50 63.85 76.29 74.30 80.20 53.48 54.48
Denoise (Ren et al., 2020) 85.71 82.90 87.53 70.58 69.20 50.56 62.38
UST (Mukherjee and Awadallah, 2020) 86.28 84.56 90.53 74.41 65.52 52.14 63.48

Our COSINE Framework
Init 84.63 83.58 81.76 72.97 65.67 51.34 63.46
COSINE 87.52 90.54 95.97 76.61 82.59 54.36 67.71

�: RoBERTa is trained with clean labels. †: RoBERTa is trained with weak labels. ∗: unfair comparison. ⊗: not applicable.

Table 3: Classification accuracy (in %) on various datasets. We report the mean over three runs.
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Figure 3: Results of label corruption on TREC. When
the corruption ratio is less than 40%, the performance
is close to the fully supervised method.

AGNews, IMDB, Yelp, and WiC, our model
achieves the same level of performance with mod-
els (RoBERTa-CL) trained with clean labels. This
makes COSINE appealing in the scenario where
only weak supervision is available.

4.2 Robustness Against Label Noise
Our model is robust against excessive label noise.
We corrupt certain percentage of labels by ran-
domly changing each one of them to another class.
This is a common scenario in crowd-sourcing,
where we assume human annotators mis-label each
sample with the same probability. Figure 3 summa-
rizes experiment results on the TREC dataset. Com-

Model Dev Test #Params
Human Baseline 80.0 ---
BERT (Devlin et al., 2019) --- 69.6 335M
RoBERTa (Liu et al., 2019) 70.5 69.9 356M
T5 (Raffel et al., 2019) --- 76.9 11,000M
Semi-Supervised Learning
SenseBERT (Levine et al., 2020) --- 72.1 370M
RoBERTa-WL† (Liu et al., 2019) 72.3 70.2 125M
w/ MT† (Tarvainen and Valpola, 2017) 73.5 70.9 125M
w/ VAT† (Miyato et al., 2018) 74.2 71.2 125M
w/ COSINE† 76.0 73.2 125M
Transductive Learning
Snorkel† (Ratner et al., 2020) 80.5 --- 1M
RoBERTa-WL† (Liu et al., 2019) 81.3 76.8 125M
w/ MT† (Tarvainen and Valpola, 2017) 82.1 77.1 125M
w/ VAT† (Miyato et al., 2018) 84.9 79.5 125M
w/ COSINE† 89.5 85.3 125M

Table 4: Semi-supervised Learning on WiC. VAT (Vir-
tual Adversarial Training) and MT (Mean Teacher) are
semi-supervised methods. †: has access to weak labels.

pared with advanced fine-tuning and self-training
methods (e.g. SMART and UST)11, our model
consistently outperforms the baselines.

4.3 Semi-supervised Learning
We can naturally extend our model to semi-
supervised learning, where clean labels are avail-

11Note that some methods in Table 3, e.g., ImplyLoss and
Denoise, are not applicable to this setting since they require
weak supervision sources, but none exists in this setting.
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able for a portion of the data. We conduct exper-
iments on the WiC dataset. As a part of the Su-
perGLUE (Wang et al., 2019a) benchmark, this
dataset proposes a challenging task: models need
to determine whether the same word in different
sentences has the same sense (meaning).

Different from previous tasks where the labels
in the training set are noisy, in this part, we utilize
the clean labels provided by the WiC dataset. We
further augment the original training data of WiC
with unlabeled sentence pairs obtained from lexi-
cal databases (e.g., WordNet, Wictionary). Note
that part of the unlabeled data can be weakly-
labeled by rule matching. This essentially creates a
semi-supervised task, where we have labeled data,
weakly-labeled data and unlabeled data.

Since the weak labels of WiC are generated by
WordNet and partially reveal the true label informa-
tion, Snorkel (Ratner et al., 2020) takes this unfair
advantage by accessing the unlabeled sentences
and weak labels of validation and test data. To
make a fair comparison to Snorkel, we consider the
transductive learning setting, where we are allowed
access to the same information by integrating unla-
beled validation and test data and their weak labels
into the training set. As shown in Table 4, CO-
SINE with transductive learning achieves better
performance compared with Snorkel. Moreover,
in comparison with semi-supervised baselines (i.e.
VAT and MT) and fine-tuning methods with extra
resources (i.e., SenseBERT), COSINE achieves
better performance in both semi-supervised and
transductive learning settings.

4.4 Case Study
Error propagation mitigation and wrong-label
correction. Figure 4 visualizes this process. Be-
fore training, the semantic rules make noisy predic-
tions. After the initialization step, model predic-
tions are less noisy but more biased, e.g., many sam-
ples are mis-labeled as “Amenity”. These predic-
tions are further refined by contrastive self-training.
The rightmost figure demonstrates wrong-label cor-
rection. Samples are indicated by radii of the circle,
and classification correctness is indicated by color,
i.e., blue means correct and orange means incorrect.
From inner to outer tori specify classification accu-
racy after the initialization stage, and the iteration
1,2,3. We can see that many incorrect predictions
are corrected within three iterations. To illustrate:
the right black dashed line means the corresponding
sample is classified correctly after the first iteration,

and the left dashed line indicates the case where the
sample is mis-classified after the second iteration
but corrected after the third. These results demon-
strate that our model can correct wrong predictions
via contrastive self-training.
Better data representations. We visualize sam-
ple embeddings in Fig. 7. By incorporating the
contrastive regularizerR1, our model learns more
compact representations for data in the same class,
e.g., the green class, and also extends the inter-class
distances, e.g., the purple class is more separable
from other classes in Fig. 7(b) than in Fig. 7(a).
Label efficiency. Figure 8 illustrates the number
of clean labels needed for the supervised model to
outperform COSINE. On both of the datasets, the
supervised model requires a significant amount of
clean labels (around 750 for Agnews and 120 for
MIT-R) to reach the level of performance as ours,
whereas our method assumes no clean sample.
Higher Confidence Indicates Better Accuracy.
Figure 6 demonstrates the relation between predic-
tion confidence and prediction accuracy on IMDB.
We can see that in general, samples with higher
prediction confidence yield higher prediction ac-
curacy. With our sample reweighting method, we
gradually filter out low-confidence samples and as-
sign higher weights for others, which effectively
mitigates error propagation.

4.5 Ablation Study

Components of COSINE. We inspect the impor-
tance of various components, including the con-
trastive regularizerR1, the confidence regularizer
R2, and the sample reweighting (SR) method, and
the soft labels. Table 5 summarizes the results and
Fig. 9 visualizes the learning curves. We remark
that all the components jointly contribute to the
model performance, and removing any of them
hurts the classification accuracy. For example, sam-
ple reweighting is an effective tool to reduce error
propagation, and removing it causes the model to
eventually overfit to the label noise, e.g., the red bot-
tom line in Fig. 9 illustrates that the classification
accuracy increases and then drops rapidly. On the
other hand, replacing the soft pseudo-labels (Eq. 3)
with the hard counterparts (Eq. 2) causes drops in
performance. This is because hard pseudo-labels
lose prediction confidence information.
Hyper-parameters of COSINE. In Fig. 5, we ex-
amine the effects of different hyper-parameters,
including the confidence threshold ξ (Eq. 9), the
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Init Iter 1 Iter 2 Iter 3

Correct
Incorrect

Figure 4: Classification performance on MIT-R. From left to right: visualization of ExMatch, results after the
initialization step, results after contrastive self-training, and wrong-label correction during self-training.
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Figure 5: Effects of different hyper-parameters.
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(a) Embedding w/oR1. (b) Embedding w/R1.

Figure 7: t-SNE (Maaten and Hinton, 2008) visualiza-
tion on TREC. Each color denotes a different class.
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(b) Results on MIT-R.

Figure 8: Accuracy vs. Number of annotated labels.

stopping time T1 in the initialization step, and the
update period T3 for pseudo-labels. From Fig. 5(a),
we can see that setting the confidence threshold
too big hurts model performance, which is because
an over-conservative selection strategy can result
in insufficient number of training data. The stop-
ping time T1 has drastic effects on the model. This
is because fine-tuning COSINE with weak labels
for excessive steps causes the model to unavoid-
ably overfit to the label noise, such that the con-
trastive self-training procedure cannot correct the
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Figure 9: Learning curves on TREC with different set-
tings. Mean and variance are calculated over 3 runs.

Method AGNews IMDB Yelp MIT-R TREC
Init 84.63 83.58 81.76 72.97 66.50
COSINE 87.52 90.54 95.97 76.61 82.59
w/oR1 86.04 88.32 94.64 74.11 78.28
w/oR2 85.91 89.32 93.96 75.21 77.11
w/o SR 86.72 87.10 93.08 74.29 79.77
w/oR1/R2 86.33 84.44 92.34 73.67 76.95
w/oR1/R2/SR 86.61 83.98 82.57 73.59 74.96
w/o Soft Label 86.07 89.72 93.73 73.05 71.91

Table 5: Effects of different components. Due to space
limit we only show results for 5 representative datasets.

error. Also, with the increment of T3, the update
period of pseudo-labels, model performance first
increases and then decreases. This is because if we
update pseudo-labels too frequently, the contrastive
self-training procedure cannot fully suppress the
label noise, and if the updates are too infrequent,
the pseudo-labels cannot capture the updated infor-
mation well.
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5 Related Works

Fine-tuning Pre-trained Language Models. To
improve the model’s generalization power dur-
ing fine-tuning stage, several methods are pro-
posed (Peters et al., 2019; Dodge et al., 2020; Zhu
et al., 2020; Jiang et al., 2020; Xu et al., 2020; Kong
et al., 2020; Zhao et al., 2020; Gunel et al., 2021;
Zhang et al., 2021; Aghajanyan et al., 2021; Wang
et al., 2021), However, most of these methods fo-
cus on fully-supervised setting and rely heavily on
large amounts of clean labels, which are not al-
ways available. To address this issue, we propose a
contrastive self-training framework that fine-tunes
pre-trained models with only weak labels. Com-
pared with the existing fine-tuning approaches (Xu
et al., 2020; Zhu et al., 2020; Jiang et al., 2020),
our model effectively reduce the label noise, which
achieves better performance on various NLP tasks
with weak supervision.
Learning From Weak Supervision. In weakly-
supervised learning, the training data are usually
noisy and incomplete. Existing methods aim to
denoise the sample labels or the labeling functions
by, for example, aggregating multiple weak super-
visions (Ratner et al., 2020; Lison et al., 2020;
Ren et al., 2020), using clean samples (Awasthi
et al., 2020), and leveraging contextual informa-
tion (Mekala and Shang, 2020). However, most of
them can only use specific type of weak supervi-
sion on specific task, e.g., keywords for text clas-
sification (Meng et al., 2020; Mekala and Shang,
2020), and they require prior knowledge on weak
supervision sources (Awasthi et al., 2020; Lison
et al., 2020; Ren et al., 2020), which somehow
limits the scope of their applications. Our work
is orthogonal to them since we do not denoise the
labeling functions directly. Instead, we adopt con-
trastive self-training to leverage the power of pre-
trained language models for denoising, which is
task-agnostic and applicable to various NLP tasks
with minimal additional efforts.

6 Discussions

Adaptation of LMs to Different Domains. When
fine-tuning LMs on data from different domains,
we can first continue pre-training on in-domain
text data for better adaptation (Gururangan et al.,
2020). For some rare domains where BERT trained
on general domains is not optimal, we can use
LMs pretrained on those specific domains (e.g.
BioBERT (Lee et al., 2020), SciBERT (Beltagy

et al., 2019)) to tackle this issue.
Scalability of Weak Supervision. COSINE can
be applied to tasks with a large number of classes.
This is because rules can be automatically gener-
ated beyond hand-crafting. For example, we can
use label names/descriptions as weak supervision
signals (Meng et al., 2020). Such signals are easy to
obtain and do not require hand-crafted rules. Once
weak supervision is provided, we can create weak
labels to further apply COSINE.
Flexibility. COSINE can handle tasks and weak
supervision sources beyond our conducted exper-
iments. For example, other than semantic rules,
crowd-sourcing can be another weak supervision
source to generate pseudo-labels (Wang et al.,
2013). Moreover, we only conduct experiments
on several representative tasks, but our framework
can be applied to other tasks as well, e.g., named-
entity recognition (token classification) and reading
comprehension (sentence pair classification).

7 Conclusion
In this paper, we propose a contrastive regular-
ized self-training framework, COSINE, for fine-
tuning pre-trained language models with weak su-
pervision. Our framework can learn better data
representations to ease the classification task, and
also efficiently reduce label noise propagation by
confidence-based reweighting and regularization.
We conduct experiments on various classification
tasks, including sequence classification, token clas-
sification, and sentence pair classification, and the
results demonstrate the efficacy of our model.

Broader Impact
COSINE is a general framework that tackled the la-
bel scarcity issue via combining neural nets with
weak supervision. The weak supervision provides
a simple but flexible language to encode the domain
knowledge and capture the correlations between
features and labels. When combined with unla-
beled data, our framework can largely tackle the
label scarcity bottleneck for training DNNs, en-
abling them to be applied for downstream NLP
classification tasks in a label efficient manner.

COSINE neither introduces any social/ethical
bias to the model nor amplify any bias in the data.
In all the experiments, we use publicly available
data, and we build our algorithms using public
code bases. We do not foresee any direct social
consequences or ethical issues.
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A Weak Supervision Details

COSINE does not require any human annotated
examples in the training process, and it only needs
weak supervision sources such as keywords and
semantic rules. According to some studies in exist-
ing works Awasthi et al. (2020); Zhou et al. (2020),
such weak supervisions are cheap to obtain and are
much efficient than collecting clean labels. In this
way, we can obtain significantly more labeled ex-
amples using these weak supervision sources than
human labor.

There are two types of semantic rules that we
apply as weak supervisions:

� Keyword Rule: HAS(x, L) → C. If x
matches one of the words in the list L, we
label it as C.

� Pattern Rule: MATCH(x, R) → C. If x
matches the regular expression R, we label
it as C.

In addition to the keyword rule and the pattern rule,
we can also use third-party tools to obtain weak
labels. These tools (e.g. TextBlob12) are available
online and can be obtained cheaply, but their pre-
diction is not accurate enough (when directly use
this tool to predict label for all training samples,
the accuracy on Yelp dataset is around 60%).
We now introduce the semantic rules on each
dataset:

� AGNews, IMDB, Yelp: We use the rule in Ren
et al. (2020). Please refer to the original paper
for detailed information on rules.

� MIT-R, TREC: We use the rule in Awasthi et al.
(2020). Please refer to the original paper for
detailed information on rules.

� ChemProt: There are 26 rules. We show part
of the rules in Table 6.

� WiC: Each sense of each word in WordNet has
example sentences. For each sentence in the
WiC dataset and its corresponding keyword,
we collect the example sentences of that word
from WordNet. Then for a pair of sentences,
the corresponding weak label is “True” if their
definitions are the same, otherwise the weak
label is “False”.

12https://textblob.readthedocs.io/en/
dev/index.html.

B Baseline Settings

We implement Self-ensemble, FreeLB, Mixup
and UST based on their original paper. For other
baselines, we use their official release:
� WeSTClass (Meng et al., 2018): https:

//github.com/yumeng5/WeSTClass.
� RoBERTa (Liu et al., 2019): https:

//github.com/huggingface/transformers.
� SMART (Jiang et al., 2020): https:

//github.com/namisan/mt-dnn.
� Snorkel (Ratner et al., 2020): https:

//www.snorkel.org/.
� ImplyLoss (Awasthi et al., 2020): https:

//github.com/awasthiabhijeet/

Learning-From-Rules.
� Denoise (Ren et al., 2020): https:

//github.com/weakrules/

Denoise-multi-weak-sources.

C Details on Experiment Setups

C.1 Computing Infrastructure

System: Ubuntu 18.04.3 LTS; Python 3.7; Pytorch
1.2. CPU: Intel(R) Core(TM) i7-5930K CPU @
3.50GHz. GPU: GeForce GTX TITAN X.

C.2 Hyper-parameters

We use AdamW (Loshchilov and Hutter, 2019) as
the optimizer, and the learning rate is chosen from
1× 10−5, 2× 10−5, 3× 10−5}. A linear learning
rate decay schedule with warm-up 0.1 is used, and
the number of training epochs is 5.

Hyper-parameters are shown in Table 7. We use
a grid search to find the optimal setting for each
task. Specifically, we search T1 from 10 to 2000,
T2 from 1000 to 5000, T3 from 10 to 500, ξ from
0 to 1, and λ from 0 to 0.5. All results are reported
as the average over three runs.

C.3 Number of Parameters

COSINE and most of the baselines (RoBERTa-
WL / RoBERTa-CL / SMART / WeSTClass / Self-
Ensemble / FreeLB / Mixup / UST) are built on
the RoBERTa-base model with about 125M param-
eters. Snorkel is a generative model with only a
few parameters. ImplyLoss and Denoise freezes
the embedding and has less than 1M parameters.
However, these models cannot achieve satisfactory
performance in our experiments.

https://textblob.readthedocs.io/en/dev/index.html.
https://textblob.readthedocs.io/en/dev/index.html.
https://github.com/yumeng5/WeSTClass
https://github.com/yumeng5/WeSTClass
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/namisan/mt-dnn
https://github.com/namisan/mt-dnn
https://www.snorkel.org/
https://www.snorkel.org/
https://github.com/awasthiabhijeet/Learning-From-Rules
https://github.com/awasthiabhijeet/Learning-From-Rules
https://github.com/awasthiabhijeet/Learning-From-Rules
https://github.com/weakrules/Denoise-multi-weak-sources
https://github.com/weakrules/Denoise-multi-weak-sources
https://github.com/weakrules/Denoise-multi-weak-sources
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Rule Example

HAS (x, [amino acid,mutant,
mutat, replace] ) → part_of

A major part of this processing requires endoproteolytic cleavage at spe-
cific pairs of basic [CHEMICAL]amino acid[CHEMICAL] residues,
an event necessary for the maturation of a variety of important bio-
logically active proteins, such as insulin and [GENE]nerve growth
factor[GENE].

HAS (x, [bind, interact,
affinit] ) → regulator

The interaction of [CHEMICAL]naloxone estrone azine[CHEMICAL]
(N-EH) with various [GENE]opioid receptor[GENE] types was studied
in vitro.

HAS (x, [activat, increas,
induc, stimulat, upregulat]
) → upregulator/activator

The results of this study suggest that [CHEMI-
CAL]noradrenaline[CHEMICAL] predominantly, but not exclusively,
mediates contraction of rat aorta through the activation of an
[GENE]alphalD-adrenoceptor[GENE].

HAS (x, [downregulat,
inhibit, reduc, decreas]
) → downregulator/inhibitor

These results suggest that [CHEMICAL]prostacyclin[CHEMICAL]
may play a role in downregulating [GENE]tissue factor[GENE] expres-
sion in monocytes, at least in part via elevation of intracellular levels
of cyclic AMP.

HAS (x, [ agoni, tagoni]*
) → agonist * (note the leading
whitespace in both cases)

Alprenolol and BAAM also caused surmountable antagonism
of [CHEMICAL]isoprenaline[CHEMICAL] responses, and this
[GENE]beta 1-adrenoceptor[GENE] antagonism was slowly reversible.

HAS (x, [antagon] ) →
antagonist

It is concluded that [CHEMICAL]labetalol[CHEMICAL] and dilevalol
are [GENE]beta 1-adrenoceptor[GENE] selective antagonists.

HAS (x, [modulat,
allosteric] ) → modulator

[CHEMICAL]Hydrogen sulfide[CHEMICAL] as an allosteric modu-
lator of [GENE]ATP-sensitive potassium channels[GENE] in colonic
inflammation.

HAS (x, [cofactor] ) →
cofactor

The activation appears to be due to an increase of [GENE]GAD[GENE]
affinity for its cofactor, [CHEMICAL]pyridoxal phos-
phate[CHEMICAL] (PLP).

HAS (x, [substrate, catalyz,
transport, produc, conver]
) → substrate/product

Kinetic constants of the mutant [GENE]CrAT[GENE] showed modi-
fication in favor of longer [CHEMICAL]acyl-CoAs[CHEMICAL] as
substrates.

HAS (x, [not] ) → not [CHEMICAL]Nicotine[CHEMICAL] does not account for the CSE
stimulation of [GENE]VEGF[GENE] in HFL-1.

Table 6: Examples of semantic rules on Chemprot.

Hyper-parameter AGNews IMDB Yelp MIT-R TREC Chemprot WiC

Dropout Ratio 0.1
Maximum Tokens 128 256 512 64 64 400 256

Batch Size 32 16 16 64 16 24 32
Weight Decay 10−4

Learning Rate 10−5 10−5 10−5 10−5 10−5 10−5 10−5

T1 160 160 200 150 500 400 1700
T2 3000 2500 2500 1000 2500 1000 3000
T3 250 50 100 15 30 15 80
ξ 0.6 0.7 0.7 0.2 0.3 0.7 0.7
λ 0.1 0.05 0.05 0.1 0.05 0.05 0.05

Table 7: Hyper-parameter configurations. Note that we only keep certain number of tokens.

D Early Stopping and Earlier Stopping

Our model adopts the earlier stopping strategy dur-
ing the initialization stage. Here we use “earlier
stopping” to differentiate from “early stopping”,
which is standard in fine-tuning algorithms. Early
stopping refers to the technique where we stop
training when the evaluation score drops. Earlier
stopping is self-explanatory, namely we fine-tune

the pre-trained LMs with only a few steps, even
before the evaluation score starts dropping. This
technique can efficiently prevent the model from
overfitting. For example, as Figure 5(b) illustrates,
on IMDB dataset, our model overfits after 240 itera-
tions of initialization with weak labels. In contrast,
the model achieves good performance even after
400 iterations of fine-tuning when using clean la-
bels. This verifies the necessity of earlier stopping.
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Distance d Euclidean Cos
Similarity W Hard KL-based L2-based Hard KL-based L2-based

AGNews 87.52 86.44 86.72 87.34 86.98 86.55
MIT-R 76.61 76.68 76.49 76.55 76.76 76.58

Table 8: Performance of COSINE under different settings.

E Comparison of Distance Measures in
Contrastive Learning

The contrastive regularizer R1(θ; ỹ) is related to
two designs: the sample distance metric dij and the
sample similarity measure Wij . In our implemen-
tation, we use the scaled Euclidean distance as the
default for dij and Eq. 5 as the default for Wij

13.
Here we discuss other designs.

E.1 Sample distance metric d
Given the encoded vectorized representations vi
and vj for samples i and j, we consider two dis-
tance metrics as follows.
Scaled Euclidean distance (Euclidean): We cal-
culate the distance between vi and vj as

dij =
1

d
‖vi − vj‖22 . (13)

Cosine distance (Cos)14: Besides the scaled Eu-
clidean distance, cosine distance is another widely-
used distance metric:

dij = 1− cos (vi,vj) = 1− ‖vi · vj‖‖vi‖‖vj‖
. (14)

E.2 Sample similarity measures W
Given the soft pseudo-labels ỹi and ỹj for samples
i and j, the following are some designs for Wij . In
all of the cases, Wij is scaled into range [0, 1] (we
set γ = 1 in Eq. 7 for the hard similarity).
Hard Similarity: The hard similarity between two
samples is calculated as

Wij =

{
1, if argmax

k∈Y
[ỹi]k = argmax

k∈Y
[ỹj ]k,

0, otherwise.
(15)

This is called a “hard” similarity because we obtain
a binary label, i.e., we say two samples are similar
if their corresponding hard pseudo-labels are the
same, otherwise we say they are dissimilar.

13To accelerate contrastive learning, we adopt the doubly
stochastic sampling approximation to reduce the computa-
tional cost. Specifically, the high confidence samples C in
each batch B yield O(|C|2) sample pairs, and we sample |C|
pairs from them.

14We use Cos to distinguish from our model name CO-
SINE.

Soft KL-based Similarity: We calculate the simi-
larity based on KL distance as follows.

Wij = exp

(
−β
2

(
DKL(ỹi‖ỹj) +DKL(ỹj‖ỹi)

))
,

(16)
where β is a scaling factor, and we set β = 10 by
default.
Soft L2-based Similarity: We calculate the simi-
larity based on L2 distance as follows.

Wij = 1− 1

2
||ỹi − ỹj ||22, (17)

E.3 COSINE under different d and W .
We show the performance of COSINE with dif-
ferent choices of d and W on Agnews and MIT-R
in Table 8. We can see that COSINE is robust
to these choices. In our experiments, we use the
scaled euclidean distance and the hard similarity
by default.


