
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 5881–5891

June 6–11, 2021. ©2021 Association for Computational Linguistics

5881

Sliding Selector Network with Dynamic Memory for Extractive
Summarization of Long Documents

Peng Cui and Le Hu
School of Computer Science and Technology
Harbin Institute of Technology, Harbin, China
{pcui,lhu}@insun.hit.edu.cn

Abstract

Neural-based summarization models suffer
from the length limitation of text encoder.
Long documents have to been truncated be-
fore they are sent to the model, which re-
sults in huge loss of summary-relevant con-
tents. To address this issue, we propose the
sliding selector network with dynamic mem-
ory for extractive summarization of long-form
documents, which employs a sliding window
to extract summary sentences segment by seg-
ment. Moreover, we adopt memory mecha-
nism to preserve and update the history in-
formation dynamically, allowing the seman-
tic flow across different windows. Experi-
mental results on two large-scale datasets that
consist of scientific papers demonstrate that
our model substantially outperforms previous
state-of-the-art models. Besides, we perform
qualitative and quantitative investigations on
how our model works and where the perfor-
mance gain comes from.1

1 Introduction

Text summarization is an important task of natural
language processing which aims to distil salient
contents from a textual document. Existing sum-
marization models can be roughly classified into
two categories, which are abstractive and extractive.
Abstractive summarization usually adopts natural
language generation technology to produce a word-
by-word summary. In general, these approaches
are flexible but may yield disfluent summaries (Liu
and Lapata, 2019a). By comparison, extractive ap-
proaches aim to select a subset of the sentences
in the source document, thereby enjoying better
fluency and efficiency (Cao et al., 2017).

Although many summarization approaches have
demonstrated their success on relatively short doc-
uments, such as news articles, they usually fail

1Code will be released at https://github.com/
pcui-nlp/SSN_DM

Paragraph 1: Medical tourism is illustrated as

occurrence in which individuals travel abroad

to receive healthcare services. It is a multi-

billion dollar industry and countries like India,

Thailand, Israel, Singapore, …

Paragraph 2: The prime driving factors in

medical tourism are increased medical costs,

increased insurance premiums, increasing

number of uninsured or partially insured

individuals in developed countries, …

……

Paragraph 5: It is generally presumed in

marketing that products with similar

characteristics will be equally preferred by the

consumers, however, attributes, which make the

product similar to other products, will not….

Figure 1: An example where a paragraph-by-paragraph
extraction will produce an incoherent summary.

to achieve desired performance when directly ap-
plied in long-form documents, such as scientific
papers. This inferior performance is partly due to
the truncation operation, which inevitably leads to
information loss, especially for extractive models
because parts of gold sentences would be inacces-
sible. In addition, the accurate modeling of long
texts remains a challenge (Frermann and Klemen-
tiev, 2019).

A practical solution for this problem is to use a
sliding window to process documents separately.
This approach is used in other NLP tasks, such
as machine reading comprehension (Wang et al.,
2019b). However, such a paradigm is not suitable
for summarization task because the concatenation
of summaries that are independently extracted from
local contexts is usually inconsistent with the gold
summary of the entire document. Figure 1 shows
an example to illustrate this problem. The core
topic of the source document is “medical tourism,”
which is discussed in Paragraphs 1 and 2. How-

https://github.com/pcui-nlp/SSN_DM
https://github.com/pcui-nlp/SSN_DM
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ever, the 5-th paragraph is mainly about “consumer
and product.” As a consequence, the paragraph-
by-paragraph extraction approach might produce
a both repetitive and noisy summary. Under this
circumstance, the supervised signals will have a
negative effect on model behaviors because under-
standing why Paragraph 5 should output an empty
result without information conveying from previ-
ous texts is confused for the model.

In this paper, we propose a novel extractive sum-
marization model for long-form documents. We
split the input document into multiple windows and
encode them with a sliding encoder sequentially.
During this process, we introduce a memory to
preserve salient information learned from previous
windows, which is used to complete and enrich
local texts. Intuitively, our model has the following
advantages: 1) In each window, the text encoder
processes a relatively short segment, thereby yield-
ing more accurate representations. 2) The local text
representations can capture beyond-window con-
textual information via the memory module. 3) The
previous selection results are also parameterized
in the memory block, allowing the collaboration
among summary sentences.

To sum up, our contributions are threefold.
(1) We propose a novel extractive summarization

model that can summarize documents of arbitrary
length without truncation loss. Also, it employs
the memory mechanism to address context frag-
mentation. To the best of our knowledge, we are
the first to propose applying memory networks into
extractive text summarization task.

(2) The proposed framework (i.e., a sliding en-
coder combined with dynamic memory) provides a
general solution for summarizing long documents
and can be easily extended to other abstractive and
extractive summarization models.

(3) Our model achieves the state-of-the-art re-
sults on two widely used datasets for long docu-
ment summarization. Moreover, we conduct exten-
sive analysis to understand how our model works
and where the performance gain comes from.

2 Related Work

Neural Extractive Summarization. Neural-
networks have become the dominant approach for
extractive summarization. Existing studies usu-
ally formulate this task as sentence labelling (Dong
et al., 2018; Nallapati et al., 2016; Zhang et al.,
2019) or sentence ranking (Narayan et al., 2018).

Among them, recurrent neural networks (Cheng
and Lapata, 2016; Zhou et al., 2018), Transformer
encoder (Wang et al., 2019a), or graph neural net-
works (Wang and Liu, 2020, Xu et al., 2020, Cui
et al., 2020) (Wang et al., 2020; Xu et al., 2019;
Cui et al., 2020) have been used to learn sentence
representation.

Recently, pre-trained language model (e.g.
BERT (Devlin et al., 2018)) has provided substan-
tial performance gain for extractive summarization.
Liu and Lapata (2019b) modified standard BERT
for document modelling. Xu et al. (2019) used a
span-BERT to perform span-level summarization.
Zhong et al. (2020) regarded document summa-
rization as a semantic matching task and used a
Siamese-BERT as the matching model. However,
the valid length of standard BERT is only 512,
which means most of them can hardly generalize
to long-form documents effectively.

Long Document Summarization. Recent years
have seen a surge of interest on long document
summarization, especially scientific publications.
Celikyilmaz et al. (2018) used a multi-agent frame-
work to boost the encoder performance. Cohan
et al. (2018) proposed a hierarchical network that
incorporates the discourse structures into the en-
coder and decoder. Xiao and Carenini (2019) pro-
posed to model the local and global contexts jointly.
Cui et al. (2020) proposed a hybrid model that em-
ploys a neural topic model (NTM) to infer latent
topics as a kind of global information.

Despite their success, these approaches still face
the input length limitation and the difficulty in
encoding long texts accurately. In comparison,
our model addresses these problems with a novel
segment-wise extraction way and can summarize
arbitrarily long documents without any content
truncation.

Memory Networks. Memory network (Weston
et al., 2015) is a general framework that employs
a memory bank to model long-term information.
Due to its flexible architecture and superior adapt-
ability, it has been applied into various NLP scenar-
ios, such as text classification (Zeng et al., 2018),
question answering (Kumar et al., 2016; Xiong
et al., 2016), and sentiment analysis (Tang et al.,
2016). In this study, we leverage a memory module
capture beyond-window when performing segment-
level summarization. To the best of our knowledge,
memory networks have never been applied into
extractive summarization task.
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3 Model

This section describes our model, namely, the Slid-
ing Selector Network with Dynamic Memory (SSN-
DM), of which Figure 2 gives an overall architec-
ture. Formally, given a document D of arbitrary
length, we first split D into multiple segments ac-
cording to the pre-defined window length. Then,
we use a BERT encoder to sequentially encode each
segment and select salient sentences. During this
process, a memory module is applied to achieve the
information flow across different windows. Finally,
the extracted sentences are aggregated to generate
the final summary. We elucidate each module in
the following subsections.

3.1 Sliding Encoder

Let segk = sk1, s
k
2, . . . , s

k
n be the kth window con-

sisting of n sentences. We encode the window text
with a pre-trained BERT, which has been proven
effective on extractive summarization task (Liu and
Lapata, 2019b; Xu et al., 2019; Cui et al., 2020).
Following previous studies, we modify the stan-
dard BERT by inserting [CLS] and [SEP ] tokens
into the beginning and end of each sentence, re-
spectively.

OB = BERT (wk
1,CLS , w

k
1,2, . . . , w

k
n,SEP ) (1)

where wk
i,j denotes the jth word of the ith sen-

tence. OB = {hk1,CLS , h
k
1,2, . . . , h

k
n,SEP } denotes

the representations of each token learned by BERT.
We regard the hidden states of [CLS] tokensHk =
{hk1,CLS , h

k
2,CLS , . . . , h

k
n,CLS} as the correspond-

ing sentence representations.
On top of BERT encoder, we add an additional

layer to incorporate two types of structural infor-
mation. The first part is the position information of
the current window. In our segment-wise encoding,
the position embeddings equipped in BERT are re-
calculated in each window, thereby losing the exact
position of each token in the entire document. This
positional bias may lead to inferior performance
(Zhong et al., 2019; Dai et al., 2019). To address
this problem, we assign a window-level position en-
coding to each window as a complementary feature,
indicating its relative position in the document.

In addition, we further introduce a group of sec-
tion (e.g., introduction, conclusion) embeddings to
capture the discourse information, which has been
proved an important feature for scientific papers
summarization (Cohan et al., 2018). Combining
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Figure 2: The framework of our model. There are three
major components: (1) The sliding encoder generates
representation of each sentence in the current window.
(2) The memory layer infuses history information into
sentence representations via graph neural networks. (3)
The predication layer aggregates learned features to
compute the binary sentence labels.

these two parts, the structural encoding layer can
be denoted as:

fs(H
k) = tanh(W1H

k +W2e
k
w +W3es) (2)

where ekw indicates the kth window-level position
embedding, and es the section embedding. Both of
them are randomly initialized and learned as a part
of the model. Throughout the paper, W∗ represents
trainable parameter matrix.

Noticeably, the section features might not be
generally available for long texts of other genres.
Therefore, in our experiments, we consider es as
an optional setting and conduct quantitative inves-
tigations on Section 5 to probe into its effect on
model performance.

3.2 Graph-based Memory Interaction
After encoding the window text, we infuse the his-
tory information of previous texts into the learned
representations Hk via a memory module. Let
Mk ∈ Rl×dm be the memory block in the kth win-
dow that preserves salient information of previous
k − 1 windows, where l represents the number of
memory slots and dm represents the dimension of
memory vector. M0 is initialized with fixed values
in the first window and then updated in the learn-
ing process dynamically. The detail of this part is
explained in Section 3.4.

We use a graph neural network to model the in-
teraction between memory module and the current
window. Concretely, we first construct a bipartite
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Figure 3: An illustration of the information flow in our
model. Paths (a) denote the interaction between mem-
ory vectors (M) and sentence representations (S) via a
GAT layer. Paths (b) denote the compution of sentence
labels. Paths (c) denote the updating process of mem-
ory module.

graph that consists of l memory nodes and n sen-
tence nodes, whose embeddings are initialized with
Mk and Hk, respectively. Then, we use graph at-
tention network (GAT; Velickovic et al., 2018) to
encode this graph. Given a sentence node hi, we
update its representation by aggregating its neigh-
boring nodes, as shown as follows,

zki,j =LeaklyRelu(Wa[h
k
i ;SG(m

k
j )]),

αi,j =
exp(zki,j)∑l
j=1 exp(z

k
i,j)

,

h̃ki =‖Tt=1

l∑
j=1

tanh(αt
i,jW

t
cSG(m

k
j )),

(3)

where αi,j denotes the attention weight from node
hki to node mk

j . Multi-head attention is applied to
stabilize the calculation process. Function SG(·)
stands for stop-gradient operation.

We refer H̃k and M̃k to the sentence representa-
tions and memory vectors after graph propagation,
respectively. During the graph interaction, the sen-
tence representations are completed and enriched
by history information and vice versa.

Empirical observations of prior research (Tang
et al., 2016; Zeng et al., 2018) have shown that
stacking multiple memory layers can bring further
performance gain. Similarly, in our model, the
multi-hops setting can be achieved by increasing
the graph iteration number, i.e., repeating the GAT
calculation process (Eq. 3).

3.3 Prediction Layer

We have obtained the sentence representations Hk

derived from window text, and its extended version
H̃k enriched by memory information. Given ith
sentence, we send hki and h̃ki into a MLP classifier
to compute its summary label.

ỹi = fo(h̃
k
i , h

k
i , |hki − hki |, h̃ki ◦ hki ) (4)

where ỹi represents the predicted probability of ith
sentence, and ◦ represents the point-wise operation.
fo is a feed-forward network with three hidden
layers. We construct interaction features between
h̃ki and hki to capture the importance of ith sentence
in both current segment and history context.

The training objective of the model is to mini-
mize the binary cross-entropy loss given the pre-
dictions and ground truth sentence labels, i.e.,
L = −

∑
yilog(ỹi) + (1− yi)log(1− ỹi)

After processing the entire document, we rank
all the sentences and select top-k as the final sum-
mary, where k is a hyperparameter set according
to the average length of reference summaries. It
worth noting that the memory module also acts
as an intermediary to make the sentence scores of
different windows comparable.

3.4 Dynamic Memory Updating

Now we explain the learning process of memory
module. Figure 3 presents the information flow
of our model. In each window, after the predic-
tion layer, we update the memory values with two
inputs.

First, recall that in GAT calculation, the updated
memory vectors M̃k has also encoded the con-
textual information of the current window during
the interaction with Hk. Therefore, we combine
M̃k and Mk with gating mechanism (Chung et al.,
2014).

σki = tanh(Wm ∗ m̃k
i ),

uki = σki ◦mk
i + (1− σki ) ◦ m̃k

i

(5)

where uki is the liner interpolation between history
memory mk

i and the newly computed mik. σki ∈
Rdm is an gate vector to modulates the information
flow.

The second part refers to the extraction result of
the current window. We first aggregate the sentence
representations with their predicted probabilities
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(Eq.4) to parameterize the selected sentences.

rksum =
n∑

i=1

ỹi ∗ hki . (6)

Here, rksum can be considered a sentence-level cov-
erage vector (See et al., 2017) that records what
contents has been extracted from the current win-
dow. This ensures that the following selection is
informed by previous decisions.

Then, we use a single feedforward layer to gen-
erate new memory Mk+1 = {mk+1

1 , . . . ,mk+1
l }

for next window.

mk+1
i = tanh(W4m

k
i +W5r

k
sum). (7)

4 Experimental Setup

4.1 Datasets
Our model is particularly designed for long docu-
ment summarization. For this reason, we do not
conduct experiments on the widely explored news
datasets consisting of relatively short documents.
For example, the articles in DailyMail (Hermann
et al., 2015) dataset have an average of 600 words,
which can be effectively processed by most exist-
ing models. Instead, following prior research on
long-form documents summarization(Cohan et al.,
2018; Xiao and Carenini, 2019; Cui et al., 2020;
Zhong et al., 2020), we evaluate our model on the
following two large-scale scientific paper datasets.

Datasets #Doc Avg. Tokens
Train Val. Test Doc Sum

arXiv 203,037 6,436 6,440 4,938 220
PubMed 119,224 6,633 6,658 3,016 203

Table 1: The statistics of two datasets
arXiv and PubMed (Cohan et al., 2018) are
two recently constructed datasets collected from
arXiv.com and PubMed.com, respectively. Both of
them consist of scientific papers, which are much
longer than the common news articles. We prepro-
cess and split datasets in accordance with (Cohan
et al., 2018) and use the oracle labels created by
(Xiao and Carenini, 2019). Their statistics is sum-
marized in Table 1.

Figure 4 shows the position distributions of
ground-truth sentences of the two datasets, where
we can see the importance of the long text pro-
cessing ability for extractive summarization mod-
els. For example, the maximum length of standard
BERT is 512, which means that a large proportion
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Figure 4: Position distribution of gold sentences on two
datasets.

(colored in grey) of ground-truth sentences would
be inaccessible for existing state-of-the-art BERT-
based summarization models.

4.2 Models for Comparison

We compare our model with the following state-of-
the-art summarization approaches.
Pointer Generator Network (PGN; See et al.,
2017) extends the standard seq2seq framework
with attention, coverage, and copy mechanism.
Discourse-Aware (Cohan et al., 2018) is an ab-
stractive model particularly designed for summariz-
ing long-form document with discourse structure.
It employs a hierarchical encoder and explicitly
introduces the section information of scientific pa-
pers.
Seq2seq-local&global (Xiao and Carenini, 2019)
is also an extractive model for long document sum-
marization that jointly encodes local and global
contexts.
Match-Sum (Zhong et al., 2020) is a state-of-the-
art BERT-based summarization model. It performs
summary-level extraction based on the matching
scores between candidate summary and the source
document.
Topic-GraphSum (Cui et al., 2020) introduces a
joint neural topic model to explore latent topics
as a kind of global information to help summarize
long documents. Since Cui et al. (2020) used differ-
ent data preprocessing, we repeat the experiments
using the model released by the authors and prepro-
cess the data in accordance with previous studies
(Cohan et al., 2018; Xiao and Carenini, 2019) to
make the results comparable.

4.3 Implementation Details

For the sliding encoder, we use the “bert-base-
uncased” version with the hidden size of 768 and
fine-tune it for all experiments. The maximum
length of window is set to 512, and we segment the
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Models arXiv PubMed
R-1 R-2 R-L R-1 R-2 R-L

Lead 33.66 8.94 22.19 35.63 12.28 25.17
LexRank+ 33.85 10.73 28.99 39.19 13.89 34.59
LSA+ 29.91 7.42 25.67 33.89 9.93 29.70
Oracle* 53.88 23.05 34.90 55.05 27.48 38.66
Seq2seq-attention+ 29.30 6.00 25.56 31.55 8.52 27.38
PGN+ 32.06 9.04 25.16 35.86 10.22 29.69
Disourse-aware+ 35.80 11.05 31.80 38.93 15.37 35.21
Cheng & Lapta (2016)* 42.24 15.97 27.88 43.89 18.53 30.17
SummaRuNNer* 42.81 16.52 28.23 43.89 18.78 30.36
Seq2seq-local&global* 43.62 17.36 29.14 44.85 19.70 31.43
Match-Sum 40.59 12.98 32.64 41.21 14.91 36.75
Topic-GraphSum 44.03 18.52 32.41 45.95 20.81 33.97
SSN-DM 45.03 19.03 32.58 46.73 21.00 34.10
SSN-DM + discourse 44.90 19.06 32.77 46.52 20.94 35.20

Table 2: Rouge results on two dataets. Apart from the baselines mentioned in Section 4.2, we also collected the
public results reported by previous studies. Oracle represents the results of ground truth sentences extracted by the
greedy algorithm, usually as the upper bound. Results with + are token from Cohan et al. (2018), and results with
* are token from Xiao and Carenini (2019).

documents with sentence as the smallest unit to al-
leviate semantic fragility. For the memory module,
we set the number of slots to 50 and the dimension
of the memory vector to 768, same with the hidden
size of the encoder. The iteration number of GAT
is set to 2. We use Rouge (Lin, 2004) as the evalua-
tion metric and select the hyperparameters by grid
search based on the “Rouge-2” performance on val-
idation sets. Further analysis about the impacts of
hyperparameters are discussed in Section 5.2.

We train our model with 2 NVIDIA V100 cards
with a small batch size of 16. During the training,
we use Adam (Kingma and Ba, 2015) to optimize
parameters with a learning rate of 5e-4. An early-
stop strategy (Caruana et al., 2000) is applied when
valid loss is no longer decent. The extracted sen-
tence number is set to 7 for arXiv dataset and 6
for PubMed dataset according to their average sum-
mary length. We report the average results over 5
runs.

5 Results and Analysis

5.1 Main Results

Table 2 presents the results of different models on
two datasets. The first section includes traditional
approaches and the Oracle; the second and the third
sections includes abstractive and extractive models,
respectively; and the last section reports ours. Our
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Figure 5: Proportion of sentences selected by each win-
dow.

model with discourse represents that we leverage
section information as additional feature (Eq. 2).
Several observations deserve to be mentioned.

• Encoding long texts for abstractive summa-
rization is a challenge. The vanilla seq2seq with
attention model and the pointer network perform
rather poorly on the two datasets. A possible reason
is that most encoders experience difficulties in mod-
eling long-range contextual dependency when en-
coding long texts (Vaswani et al., 2017; Frermann
and Klementiev, 2019), thereby leading to the infe-
rior performance during the generation (decoding)
process.

• Global Information Modeling is important
for summarizing long documents. We also
observe that Seq2seq-local&global and Topic-
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Figure 6: Impact of window length (left) and slot num-
ber (right) on model performance (R-1).

GraphSum show promising results on the two
datasets. Both of them explicitly model the global
information (e.g., latent topics). Such observation
provides a useful instruction for designing the sum-
marization model for long documents.
• Our framework is effective. Our two mod-

els substantially outperform all the baselines on
two datasets. Figure 5 shows the proportion of
sentences selected by each window, where we
can see that our model can extract contents from
any position of an entire document. By con-
trast, BERT-Sum and Topic-GraphSum, two BERT-
based strong baselines, can only select sentences
from the first 512 or 768 words because their trun-
cation setting. This superiority endows our model
a higher upper bound when summarizing long doc-
uments.
• Discourse structure is automatically cap-

tured. The last section of Table 3 shows that the in-
corporation of discourse information brings no sub-
stantial performance gain for our model, though ob-
servations in previous studies (Cohan et al., 2018;
Xiao and Carenini, 2019) have shown it an effective
feature on arXiv and PubMed datasets. A possible
reason is that our window-level position encoding
has already learned such discourse information be-
cause it indicates the window’s relative position in
the document, while scientific papers are generally
organized in specific and relatively fixed structure.
This observation implies that the performance of
our model does not rely on prior information of
datasets. As a result, our model could be easily
generalized to long texts of other genres.

5.2 Results on Varying Hyperparameters

We conduct experiments to probe into the impact
of several important hyperparameters on model
performance, including window length, number of
memory slots, and number of memory hops (i.e.,
iteration number of GAT).

Iteration Rouge-1
Numbers arXiv PubMed

t = 0 44.79 46.42
t = 1 44.95 46.69
t = 2 45.03 46.73
t = 3 44.97 46.74
t = 4 45.01 46.71

Table 3: R-1 results on varying iteration numbers t of
GAT.

Impact of Window Length. Intuitively, a
shorter window means more accurate text encoding.
However, it will result in more segments, which is
demanding for memory module. Therefore, it is
important to find a balanced window length. Fig-
ure 6 (left) shows that the overall performance is
enhanced when the window length increases from
a small value (128). This is because that too short
windows suffer from semantic fragility. However,
when the window length is set to 368-512, the per-
formance shows a stable trend, implying that the
step number and text length are both in a suitable
range. For the sake of efficiency, we set the window
length to 512 in our experiments.

Impact of Slots Numbers. Figure 6 (right)
presents the Rouge-1 results on varying slot num-
bers. As can be seen, the curves on the two datasets
are not monotonous and show a similar trend. In
particular, within a particular range where l is rela-
tively small, more slots produce better performance
because the memory capacity is improving. How-
ever, such increasing trend will reach a saturation
when slot number exceeds a threshold, which is 60
in our experiments.

Impact of Iteration Numbers. Recall that in
memory layer, we employ a GAT to calculate the
interaction between the memory and the window
texts. To select the best iteration number (hop num-
ber) t, we compare the performance of different
t on the validation sets of two datasets. Table 3
shows when t goes from 0 to 2, the performance
is slightly boosted. However, this increasing trend
is not always monotonous, and a larger t does not
bring further substantial gain. To balance the time
cost and performance, we select t=2 for the two
datasets.

5.3 Effect of Dynamic Memory
In this subsection, we perform quantitative and
qualitative investigations to understand the effect
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connected, fighting social isolation……

…… We decided to take a snapshot of the

metropolitan area of the city of @entity

investigating the relationship between adherence to

diet or nutritional regimen, BMI, and subjective

well-being and the impact of social and cultural

participation. Engagement with community

activities, friendships, and meaningful volunteer work

are perceived as strategies for maintaining social

participation, especially for people with a chronic

disease. Thus, encouraging participation in social and

cultural activities could be a key tool to fight social
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…… Availability and access to cultural and
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Social isolation can have a negative effect on

nutrition, and thus we speculated that social

and cultural participation might influence

adherence to diet. …… Subjective well-being

significantly correlates with high self-esteem,

and self-esteem shares significant variance in

both mental well-being and happiness. Self-

esteem has been found to be the most dominant

and powerful……
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however, its determinants change with age. ……

Their results suggest that participation in social

and cultural activities is beneficial for health, since

it helps people to remain active and socially

connected, fighting social isolation. ……

…… We decided to take a snapshot of the

metropolitan area of the city of @entity

investigating the relationship between adherence to

diet or nutritional regimen, BMI, and subjective

well-being and the impact of social and cultural

participation. Engagement with community

activities, friendships, and meaningful volunteer work

are perceived as strategies for maintaining social

participation, especially for people with a chronic

disease. Thus, encouraging participation in social and

cultural activities could be a key tool to fight social

isolation and its health detrimental outcomes. ……

…… Availability and access to cultural and

social activities are a key element of healthy

environment, especially of urban environment.

Social isolation can have a negative effect on

nutrition, and thus we speculated that social

and cultural participation might influence

adherence to diet. …… Subjective well-being

significantly correlates with high self-esteem,

and self-esteem shares significant variance in

both mental well-being and happiness. Self-

esteem has been found to be the most dominant

and powerful……

Figure 7: Comparison between the output of our full model (top) and the ablated model (bottom). We use
underlined text to denote model-selected sentences and bold text to denote the ground truth sentences. The ab-
lated model selects repetitive contents in 4-th window and noisy contents in 5-th window.

of memory module. To this end, we construct an
ablated version by removing the memory module
and then seek to observe the result difference.

Case Study. Figure 7 provides a case study that
compares the selection results of the ablated model
and our full model. In 4-th window, the ablated
model selects a repetitive sentence, whereas our
full model avoids such error. This positive effect is
brought by the extraction results preserved in mem-
ory module, which serve as a reminder of what in-
formation has already been selected. We also note
that the ablated model selects wrong sentences in
5-th window. This is because that the model mis-
takes the “self-esteem” as the salient information.
By contrast, our model, being aware of previous
texts, correctly captures the “social isolation” as
the core topic and filters the noisy sentences.

Quantitative analysis. In Figure 8, we com-
pare the Rouge scores between our full model and
the ablated one. As can be seen, the performance
declines dramatically on both datasets when the
memory module is removed. This proves that the
dynamic memory indeed plays a necessary role in
our model.

We further analyze the effecf of memory mod-
ule in better granularity. Intuitively, the memory
module should enhance our model in the following
aspects: (1) Reducing Redundancy. Our mem-
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Figure 8: Rouge results of our full model and the ab-
lated version on the two datasets.

ory module explicitly records the previous predic-
tions and functions like a sentence-level coverage
mechanism, which is expected to reduce repetition.
(2) Avoiding Noise. As discussed in Section 1,
segment-wise extraction tend to mistake locally im-
portant content as summary sentences due to the
lack of global context. Our memory module allows
the cross-window information flow and therefore
should alleviate this problem. (3) Perceiving Sen-
tence Length. The awareness of previous selec-
tions may also allow the model to capture sentence
length information (Zhong et al., 2019). Ideally,
our model is able to adaptively change the change
the length of extracted sentence, thereby achieving
better performance.

To verify our hypothesis, we design three mea-
surements to quantitatively evaluate the model per-
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Models SRep SNoise SLen

arXiv
w/o memory 0.105 0.118 1.247
Full model 0.033 0.011 0.295

PubMed
w/o memory 0.107 0.097 1.106
Full model 0.031 0.008 0.343

Table 4: Comparison between our full model and the
ablated version. SRep, SNoise and SLen are the met-
rics of repetition, noise, and length deviation. Lower is
better.

formance on above aspects. Similar to (Zhong
et al., 2019), we use SRep = 1− CountUniq(ngram)

Count(ngram)
to measure the degree of repetition, where
Count(ngram) andCountUniq(ngram) are the
total and unique number of ngrams of selected
sentences. For the noise measurement, we have
Snoise = Count(NoisySent)

Count(ExtractSent) , where NoisySent
are the sentences with "R-1" smaller than a thresh-
old. For the length deviation, we have SLen =
(|sum|−|ref |)

|ref | , where |sum| and |ref | denote the
length of model-produced summary and reference
summary, respectively.

Table 4 presents the comparison results. The
model achieves better performance in three indi-
cators when combined with memory mechanism,
consistent with aforementioned analysis.

6 Conclusion and Future Work

In this study, we propose a novel extractive summa-
rization that can summarize long-form documents
without content loss. We conduct extensive exper-
iments on two well-studied datasets that consist
of scientific papers. Experimental results demon-
strate that our model outperforms previous state-
of-the-art models. In the future, we will extend
our framework (i.e., a sliding encoder combined
with long-range memory modeling) to abstractive
summarization models.
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