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Abstract
In open-domain question answering, dense
passage retrieval has become a new paradigm
to retrieve relevant passages for finding an-
swers. Typically, the dual-encoder architec-
ture is adopted to learn dense representations
of questions and passages for semantic match-
ing. However, it is difficult to effectively train
a dual-encoder due to the challenges includ-
ing the discrepancy between training and infer-
ence, the existence of unlabeled positives and
limited training data. To address these chal-
lenges, we propose an optimized training ap-
proach, called RocketQA, to improving dense
passage retrieval. We make three major techni-
cal contributions in RocketQA, namely cross-
batch negatives, denoised hard negatives and
data augmentation. The experiment results
show that RocketQA significantly outperforms
previous state-of-the-art models on both MS-
MARCO and Natural Questions. We also con-
duct extensive experiments to examine the ef-
fectiveness of the three strategies in RocketQA.
Besides, we demonstrate that the performance
of end-to-end QA can be improved based on
our RocketQA retriever 1.

1 Introduction

Open-domain question answering (QA) aims to
find the answers to natural language questions from
a large collection of documents. Early QA systems
(Brill et al., 2002; Dang et al., 2007; Ferrucci et al.,
2010) constructed complicated pipelines consist-
ing of multiple components, including question
understanding, document retrieval, passage rank-
ing and answer extraction. Recently, inspired by
the advancements of machine reading comprehen-
sion (MRC), Chen et al. (2017) proposed a sim-
plified two-stage approach, where a traditional IR
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Figure 1: The comparison of dual-encoder and cross-
encoder architectures.

retriever (e.g., TF-IDF or BM25) first selects a
few relevant passages as contexts, and then a neu-
ral reader reads the contexts and extracts the an-
swers. As the recall component, the first-stage
retriever significantly affects the final QA perfor-
mance. Though efficient with an inverted index,
traditional IR retrievers with term-based sparse rep-
resentations have limited capabilities in matching
questions and passages, e.g., term mismatch.

To deal with the issue of term mismatch, the
dual-encoder architecture (as shown in Figure 1a)
has been widely explored (Lee et al., 2019; Guu
et al., 2020; Karpukhin et al., 2020; Luan et al.,
2020; Xiong et al., 2020) to learn dense represen-
tations of questions and passages in an end-to-end
manner, which provides better representations for
semantic matching. These studies first separately
encode questions and passages to obtain their dense
representations, and then compute the similarity
between the dense representations using similarity
functions such as cosine or dot product. Typically,
the dual-encoder is trained by using in-batch ran-
dom negatives: for each question-positive passage

https://github.com/PaddlePaddle/Research/tree/master/NLP/NAACL2021-RocketQA
https://github.com/PaddlePaddle/Research/tree/master/NLP/NAACL2021-RocketQA
https://github.com/PaddlePaddle/Research/tree/master/NLP/NAACL2021-RocketQA
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pair in a training batch, the positive passages for
the other questions in the batch would be used as
negatives. However, it is still difficult to effectively
train a dual-encoder for dense passage retrieval due
to the following three major challenges.

First, there exists the discrepancy between train-
ing and inference for the dual-encoder retriever.
During inference, the retriever needs to identify
positive (or relevant) passages for each question
from a large collection containing millions of can-
didates. However, during training, the model is
learned to estimate the probabilities of positive pas-
sages in a small candidate set for each question,
due to the limited memory of a single GPU (or
other device). To reduce such a discrepancy, previ-
ous work tried to design specific mechanisms for
selecting a few hard negatives from the top-k re-
trieved candidates (Gillick et al., 2019; Wu et al.,
2020; Karpukhin et al., 2020; Luan et al., 2020;
Xiong et al., 2020). However, it suffers from the
false negative issue due to the following challenge.

Second, there might be a large number of un-
labeled positives. Usually, it is infeasible to com-
pletely annotate all the candidate passages for one
question. By only examining the the top-K pas-
sages retrieved by a specific retrieval approach (e.g.
BM25), the annotators are likely to miss relevant
passages to a question. Taking the MSMARCO
dataset (Nguyen et al., 2016) as an example, each
question has only 1.1 annotated positive passages
on average, while there are 8.8M passages in the
whole collection. As will be shown in our experi-
ments, we manually examine the top-retrieved pas-
sages that were not labeled as positives in the origi-
nal MSMARCO dataset, and we find that 70% of
them are actually positives. Hence, it is likely to
bring false negatives when sampling hard negatives
from the top-k retrieved passages.

Third, it is expensive to acquire large-scale train-
ing data for open-domain QA. MSMARCO and
Natural Questions (Kwiatkowski et al., 2019) are
two largest datasets for open-domain QA. They are
created from commercial search engines, and have
516K and 300K annotated questions, respectively.
However, it is still insufficient to cover all the topics
of questions issued by users to search engines.

In this paper, we focus on addressing these chal-
lenges so as to effectively train a dual-encoder re-
triever for open-domain QA. We propose an opti-
mized training approach, called RocketQA, to im-
proving dense passage retrieval. Considering the

above challenges, we make three major technical
contributions in RocketQA. First, RocketQA in-
troduces cross-batch negatives. Comparing to in-
batch negatives, it increases the number of avail-
able negatives for each question during training,
and alleviates the discrepancy between training and
inference. Second, RocketQA introduces denoised
hard negatives. It aims to remove false negatives
from the top-ranked results retrieved by a retriever,
and derive more reliable hard negatives. Third,
RocketQA leverages large-scale unsupervised data
“labeled” by a cross-encoder (as shown in Figure
1b) for data augmentation. Though inefficient, the
cross-encoder architecture has been found to be
more capable than the dual-encoder architecture in
both theory and practice (Luan et al., 2020). There-
fore, we utilize a cross-encoder to generate high-
quality pseudo labels for unlabeled data which are
used to train the dual-encoder retriever. The contri-
butions of this paper are as follows:

• The proposed RocketQA introduces three
novel training strategies to improve dense pas-
sage retrieval for open-domain QA, namely
cross-batch negatives, denoised hard nega-
tives, and data augmentation.

• The overall experiments show that our pro-
posed RocketQA significantly outperforms
previous state-of-the-art models on both MS-
MARCO and Natural Questions datasets.

• We conduct extensive experiments to examine
the effectiveness of the above three strategies
in RocketQA. Experimental results show that
the three strategies are effective to improve
the performance of dense passage retrieval.

• We also demonstrate that the performance of
end-to-end QA can be improved based on our
RocketQA retriever.

2 Related Work
Passage retrieval for open-domain QA For open-
domain QA, a passage retriever is an important
component to identify relevant passages for an-
swer extraction. Traditional approaches (Chen
et al., 2017) implemented term-based passage re-
trievers (e.g. TF-IDF and BM25), which have
limited representation capabilities. Recently, re-
searchers have utilized deep learning to improve
traditional passage retrievers, including document
expansions (Nogueira et al., 2019c), question ex-
pansions (Mao et al., 2020) and term weight esti-
mation (Dai and Callan, 2019).
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Different from the above term-based approaches,
dense passage retrieval has been proposed to rep-
resent both questions and documents as dense vec-
tors (i.e., embeddings), typically in a dual-encoder
architecture (as shown in Figure 1a). Existing ap-
proaches can be divided into two categories: (1)
self-supervised pre-training for retrieval (Lee et al.,
2019; Guu et al., 2020; Chang et al., 2020) and (2)
fine-tuning pre-trained language models on labeled
data. Our work follows the second class of ap-
proaches, which show better performance with less
cost. Although the dual-encoder architecture en-
ables the appealing paradigm of dense retrieval, it is
difficult to effectively train a retriever with such an
architecture. As discussed in Section 1, it suffers
from a number of challenges, including the training
and inference discrepancy, a large number of unla-
beled positives and limited training data. Several
recent studies (Karpukhin et al., 2020; Luan et al.,
2020; Chang et al., 2020; Henderson et al., 2017)
tried to address the first challenge by designing
complicated sampling mechanism to generate hard
negatives. However, it still suffers from the issue
of false negatives. The later two challenges have
seldom been considered for open-domain QA.

Passage re-ranking for open-domain QA
Based on the retrieved passages from a first-stage
retriever, BERT-based rerankers have recently been
applied to retrieval-based question answering and
search-related tasks (Wang et al., 2019; Nogueira
and Cho, 2019; Nogueira et al., 2019b; Yan et al.,
2019), and yield substantial improvements over the
traditional methods. Although effective to some ex-
tent, these rankers employ the cross-encoder archi-
tecture (as shown in Figure 1b) that is impractical
to be applied to all passages in a corpus with respect
to a question. The re-rankers (Khattab and Zaharia,
2020; Gao et al., 2020) with light weight interac-
tion based on the representations of dense retrievers
have been studied. However, these techniques still
rely on a separate retriever which provides can-
didates and representations. As a comparison, we
focus on developing dual-encoder based retrievers.

3 Approach
In this section, we propose an optimized train-
ing approach to dense passage retrieval for open-
domain QA, namely RocketQA. We first introduce
the background of the dual-encoder architecture,
and then describe the three novel training strategies
in RocketQA. Lastly, we present the whole training
procedure of RocketQA.

3.1 Task Description
The task of open-domain QA is described as fol-
lows. Given a natural language question, a system
is required to answer it based on a large collection
of documents. Let C denote the corpus, consisting
of N documents. We split the N documents into
M passages, denoted by p1, p2, ..., pM , where each
passage pi can be viewed as an l-length sequence
of tokens p

(1)
i , p(2)i , ..., p(l)i . Given a question q,

the task is to find a passage pi among the M candi-
dates, and extract a span p

(s)
i , p(s+1)

i , ..., p(e)i from
pi that can answer the question. In this paper, we
mainly focus on developing a dense retriever to
retrieve the passages that contain the answer.

3.2 The Dual-Encoder Architecture
We develop our passage retriever based on the typi-
cal dual-encoder architecture, as illustrated in Fig-
ure 1a. First, a dense passage retriever uses an en-
coder Ep(·) to obtain the d-dimensional real-valued
vectors (a.k.a., embedding) of passages. Then, an
index of passage embeddings is built for retrieval.
At query time, another encoder Eq(·) is applied to
embed the input question to a d-dimensional real-
valued vector, and k passages whose embeddings
are the closest to the question’s will be retrieved.
The similarity between the question q and a candi-
date passage p can be computed as the dot product
of their vectors:

sim(q, p) = Eq(q) · Ep(p). (1)

In practice, the separation of question encod-
ing and passage encoding is desirable, so that the
dense representations of all passages can be pre-
computed for efficient retrieval. Here, we adopt
two independent neural networks initialized from
pre-trained LMs for the two encoders Eq(·) and
Ep(·) separately, and take the representations at the
first token (e.g., [CLS] symbol in BERT) as the
output for encoding.

Training The training objective is to learn dense
representations of questions and passages so that
question-positive passage pairs have higher simi-
larity than the question-negative passage pairs in
training data. Formally, given a question qi to-
gether with its positive passage p+i and m negative
passages {p−i,j}mj=1, we minimize the loss function:

L(qi, p+i , {p
−
i,j}

m
j=1)

=− log
esim(qi,p

+
i )

esim(qi,p
+
i ) +

∑m
j=1 e

sim(qi,p
−
i,j)

,
(2)
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where we aim to optimize the negative log like-
lihood of the positive passage against a set of m
negative passages. Ideally, we should take all the
negative passages in the whole collection into con-
sideration in Equation 2. However, it is computa-
tionally infeasible to consider a large number of
negative samples for a question, and hence m is
practically set to a small number that is far less
than M . As what will be discussed later, both the
number and the quality of negatives affect the final
performance of passage retrieval.

Inference In our implementation, we use
FAISS (Johnson et al., 2019) to index the dense
representations of all passages. Specifically, we
use IndexFlatIP for indexing and the exact maxi-
mum inner product search for querying.

3.3 Optimized Training Approach

In Section 1, we have discussed three major chal-
lenges in training the dual-encoder based retriever,
including the training and inference discrepancy,
the existence of unlabeled positives, and limited
training data. Next, we propose three improved
training strategies to address the three challenges.

Cross-batch Negatives When training the dual-
encoder, the trick of in-batch negatives has been
widely used in previous work (Henderson et al.,
2017; Gillick et al., 2019; Wu et al., 2020;
Karpukhin et al., 2020; Luan et al., 2020). As-
sume that there are B questions in a mini-batch
on a single GPU, and each question has one posi-
tive passage. With the in-batch negative trick, each
question can be further paired with B−1 negatives
(i.e., positive passages of the rest questions) with-
out sampling additional negatives. In-batch neg-
ative training is a memory-efficient way to reuse
the examples already loaded in a mini-batch rather
than sampling new negatives, which increases the
number of negatives for each question. As illus-
trated at the top of Figure 2, we present an example
for in-batch negatives when training on A GPUs in
a data parallel way. To further optimize the training
with more negatives, we propose to use cross-batch
negatives when training on multiple GPUs, as illus-
trated at the bottom of Figure 2. Specifically, we
first compute the passage embeddings within each
single GPU, and then share these passage embed-
dings among all the GPUs. Besides the in-batch
negatives, we collect all passages (i.e., their dense
representations) from other GPUs as the additional
negatives for each question. Hence, with A GPUs

q11 p11

q12 p12

qAB pAB

In-batch

Cross-batch

q11 p11 p12 p1B

q12 p12p11 p1B

q1B p1Bp12p11

qA1 pA1

qA2 pA2

qAB pABpA2pA1
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GPU1 GPUA
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GPU1

GPUA
pA1p11 pA2

pA1 pAB
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p12 p1B

p11 p1B

p12 p1B

Figure 2: The comparison of traditional in-batch neg-
atives and our cross-batch negatives when trained on
multiple GPUs, where A is the number of GPUs, and
B is the number of questions in each min-batch.

(or mini-batches) 2, we can indeed obtain A×B−1
negatives for a given question, which is approxi-
mately A times as many as the original number of
in-batch negatives. In this way, we can use more
negatives in the training objective of Equation 2, so
that the results are expected to be improved.

Denoised Hard Negatives Although the above
strategy can increase the number of negatives, most
of negatives are easy ones, which can be easily
discriminated. While, hard negatives are shown to
be important to train a dual-encoder (Gillick et al.,
2019; Wu et al., 2020; Karpukhin et al., 2020; Luan
et al., 2020; Xiong et al., 2020). To obtain hard
negatives, a straightforward method is to select the
top-ranked passages (excluding the labeled posi-
tive passages) as negative samples. However, it
is likely to bring false negatives (i.e., unlabeled
positives), since the annotators can only annotate
a few top-retrieved passages (as discussed in Sec-
tion 1). Another note is that previous work mainly
focuses on factoid questions, to which the answers
are short and concise. Hence, it is not challeng-
ing to filter false negatives by using the short an-
swers (Karpukhin et al., 2020). However, it cannot
apply to non-factoid questions. In this paper, we
aim to learn dense passage retrieval for both factoid
questions and non-factoid questions, which needs
a more effective way for denoising hard negatives.

Here, our idea is to utilize a well-trained cross-
encoder to remove top-retrieved passages that are
likely to be false negatives. Because the cross-
encoder architecture is more powerful for capturing
semantic similarity via deep interaction and shows
much better performance than the dual-encoder ar-

2Note that cross-batch negatives can be applied in both
settings of single-GPU and multi-GPUs. When there is only a
single GPU available, it can be implemented in an accumula-
tion way while trading off training time.
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1.	Train	a	dual-encoder	with	
cross-batch	sampling

Cross-Encoder	MC Dual-Encoder	MD(1) Dual-Encoder	MD(2)

DL DL
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	of	MD(0)	and	denosied	by	MC

4.	Train	a	dual-encoder	with	
data	augmentation	
by	MD(1)	and	MC

DL+DU

Figure 3: The pipeline of the optimized training approach RocketQA. MD and MC denote the dual-encoder and
cross-encoder, respectively. We use M (0)

D , M (1)
D and M

(2)
D to denote the learned dual-encoders after different steps.

chitecture (Luan et al., 2020). The cross-encoder is
more effective and robust, while it is inefficient
over a large number of candidates in inference.
Hence, we first train a cross-encoder (following
the architecture shown in Figure 1b). Then, when
sampling hard negatives from the top-ranked pas-
sages retrieved by a dense retriever, we select only
the passages that are predicted as negatives by the
cross-encoder with high confidence scores. The
selected top-retrieved passages can be considered
as denosied samples that are more reliable to be
used as hard negatives.

Data Augmentation The third strategy aims to
alleviate the issue of limited training data. Since
the cross-encoder is more powerful in measuring
the similarity between questions and passages, we
utilize it to annotate unlabeled questions for data
augmentation. Specifically, we incorporate a new
collection of unlabeled questions, while reuse the
passage collection. Then, we use the learned cross-
encoder to predict the passage labels for the new
questions. To ensure the quality of the automati-
cally labeled data, we only select the predicted pos-
itive and negative passages with high confidence
scores estimated by the cross-encoder. Finally, the
automatically labeled data is used as augmented
training data to learn the dual encoder. Another
view of the data augmentation is knowledge distilla-
tion (Hinton et al., 2015), where the cross-encoder
is the teacher and the dual-encoder is the student.

3.4 The Training Procedure

As shown in Figure 3, we organize the above three
training strategies into an effective training pipeline
for the dual-encoder. It makes an analogy to a
multi-stage rocket, where the performance of the
dual-encoder is consecutively improved at three
steps (STEP 1, 3 and 4). That is why we call our

approach RocketQA. Next, we will describe the de-
tails of the whole training procedure of RocketQA.

• REQUIRE: Let C denote a collection of passages.
QL is a set of questions that have corresponding
labeled passages in C, and QU is a set of questions
that have no corresponding labeled passages. DL

is a dataset consisting of C and QL, and DU is a
dataset consisting of C and QU .

• STEP 1: Train a dual-encoder M (0)
D by using cross-

batch negatives on DL.
• STEP 2: Train a cross-encoder MC on DL. The

positives used for training the cross-encoder are
from the original training set DL, while the neg-
atives are randomly sampled from the top-k pas-
sages (excluding the labeled positive passages) re-
trieved by M

(0)
D from C for each question q ∈ QL.

This design is to let the cross-encoder adjust to
the distribution of the results retrieved by the dual-
encoder, since the cross-encoder will be used in
the following two steps for optimizing the dual-
encoder. This design is important, and there is
similar observation in Facebook Search (Huang
et al., 2020).

• STEP 3: Train a dual-encoder M (1)
D by further in-

troducing denoised hard negative sampling on DL.
Regarding to each question q ∈ QL, the hard nega-
tives are sampled from the top passages retrieved
by M

(0)
D from C, and only the passages that are

predicted as negatives by the cross-encoder MC

with high confidence scores will be selected.
• STEP 4: Construct pseudo training data DU by

using MC to label the top-k passages retrieved by
M

(1)
D from C for each question q ∈ QU , and then

train a dual-encoder M (2)
D on both the manually

labeled training data DL and the automatically aug-
mented training data DU .

Note that the cross-batch negative strategy is
applied through all the steps for training the dual-
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datasets #q in train #q in dev #q in test #p ave. q length ave. p length
MSMARCO 502,939 6,980 6,837 8,841,823 5.97 56.58

NQ 58,812 - 3,610 21,015,324 9.20 100.0

Table 1: The statistics of datasets MSMARCO and Natural Questions. Here, “p” and “q” are the abbreviations of
questions and passages, respectively. The length is in tokens.

encoder. The cross-encoder is used both STEP 3
and STEP 4 with different purposes to promote the
performance of the dual encoder. The implemen-
tation details of denoising hard negatives and data
augmentation can be found in Section 4.

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets
We conduct the experiments on two popular
QA benchmarks: MSMARCO Passage Ranking
(Nguyen et al., 2016) and Natural Questions (NQ)
(Kwiatkowski et al., 2019). The statistics of the
datasets are listed in Table 1.

MSMARCO Passage Ranking MSMARCO is
originally designed for multiple passage MRC,
and its questions were sampled from Bing search
logs. Based on the questions and passages in MS-
MARCO Question Answering, a dataset for pas-
sage ranking was created, namely MSMARCO Pas-
sage Ranking, consisting of about 8.8 million pas-
sages. The goal is to find positive passages that
answer the questions.

Natural Question (NQ) Kwiatkowski et al.
(2019) introduces a large dataset for open-domain
QA. The original dataset contains more than
300, 000 questions collected from Google search
logs. In Karpukhin et al. (2020), around 62, 000
factoid questions are selected, and all the Wikipedia
articles are processed as the collection of passages.
There are more than 21 million passages in the cor-
pus. In our experiments, we reuse the version of
NQ created by Karpukhin et al. (2020). Note that
the dataset used in DPR contains empty negatives,
and we discarded the empty ones.

4.1.2 Evaluation Metrics
Following previous work, we use MRR and Recall
at top k ranks to evaluate the performance of pas-
sage retrieval, and exact match (EM) to measure
the performance of answer extraction.

MRR The Reciprocal Rank (RR) calculates the
reciprocal of the rank at which the first relevant
passage was retrieved. When averaged across ques-
tions, it is called Mean Reciprocal Rank (MRR).

Recall at top k ranks The top-k recall of a re-
triever is defined as the proportion of questions to
which the top k retrieved passages contain answers.

Exact match This metric measures the percent-
age of questions whose predicted answers that
match any one of the reference answers exactly,
after string normalization.

4.1.3 Implementation Details
We conduct all experiments with the deep learning
framework PaddlePaddle (Ma et al., 2019) on up to
eight NVIDIA Tesla V100 GPUs (with 32G RAM).

Pre-trained LMs The dual-encoder is initial-
ized with the parameters of ERNIE 2.0 base (Sun
et al., 2020), and the cross-encoder is initialized
with ERNIE 2.0 large. ERNIE 2.0 has the same
networks as BERT, and it introduces continual pre-
training framework on multiple pre-trained tasks.
We notice previous work use different pre-trained
LMs, and we examine the effects of pre-trained
LMs in Section A.1 in Appendix. Our approach is
effective when using different pre-trained LMs.

Cross-batch negatives 3 The cross-batch neg-
ative sampling is implemented with differentiable
all-gather operation provided in FleetX (Dong,
2020), that is a highly scalable distributed training
engine of PaddlePaddle. The all-gather operator
makes representation of passages across all GPUs
visible on each GPU and thus the cross-batch nega-
tive sampling approach can be applied globally.

Denoised hard negatives and data augmenta-
tion We use the cross-encoder for both denoising
hard negatives and data augmentation. Specifically,
we select the top retrieved passages with scores less
than 0.1 as negatives and those with scores higher
than 0.9 as positives. We manually evaluated the
selected data, and the accuracy was higher than
90%.

The number of positives and negatives When
training the cross-encoders, the ratios of the num-
ber of positives to the number of negatives are 1:4
and 1:1 on MSMARCO and NQ, respectively. The

3When using multi-GPUs, the cross-batch negatives is as
efficient as the in-batch negatives. Because the cross-batch
re-uses the computed embeddings of paragraphs and the com-
munication cost of embeddings across GPUs can be negligible.
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Methods PLMs MSMARCO Dev Natural Questions Test
MRR@10 R@50 R@1000 R@5 R@20 R@100

BM25 (anserini) (Yang et al., 2017) - 18.7 59.2 85.7 - 59.1 73.7
doc2query (Nogueira et al., 2019c) - 21.5 64.4 89.1 - - -

DeepCT (Dai and Callan, 2019) - 24.3 69.0 91.0 - - -
docTTTTTquery (Nogueira et al., 2019a) - 27.7 75.6 94.7 - - -

GAR (Mao et al., 2020) - - - - - 74.4 85.3
DPR (single) (Karpukhin et al., 2020) BERTbase - - - - 78.4 85.4

ANCE (single) (Xiong et al., 2020) RoBERTabase 33.0 - 95.9 - 81.9 87.5
ME-BERT (Luan et al., 2020) BERTlarge 33.8 - - - - -

RocketQA ERNIEbase 37.0 85.5 97.9 74.0 82.7 88.5

Table 2: The performance comparison on passage retrieval. Note that we directly copy the reported numbers from
the original papers and leave the blanks if they were not reported.

negatives used for training cross-encoders are ran-
domly sampled from top-1000 and top-100 pas-
sages retrieved by the dual-encoder M (0)

D on MS-
MARCO and NQ, respectively. When training
the dual-encoders in the last two steps (M (1)

D and
M

(2)
D ), we set the ratios of the number of positives

to the number of hard negatives as 1:4 and 1:1 on
MSMARCO and NQ, respectively.

Batch sizes The dual-encoders are trained with
the batch sizes of 512 × 8 and 512 × 2 on MS-
MARCO and NQ, respectively. The batch size
used on MSMARCO is larger, since the size of
MSMARCO is larger than NQ. The cross-encoders
are trained with the batch sizes of 64× 4 and 64 on
MSMARCO and NQ, respectively. We use the au-
tomatic mixed precision and gradient checkpoint 4

functionality in FleetX, so as we can train the mod-
els using large batch sizes with limited resources.

Training epochs The dual-encoders are trained
on MSMARCO for 40, 10 and 10 epochs in
three steps of RocketQA, respectively. The dual-
encoders are trained on NQ for 30 epochs in all
steps of RocketQA. The cross-encoders are trained
for 2 epochs on both MSMARCO and NQ.

Optimizers We use ADAM optimizer.
Warmup and learning rate The learning rate

of the dual-encoder is set to 3e-5 and the rate of
linear scheduling warm-up is set to 0.1, while the
learning rate of the cross-encoder is set to 1e-5.

Maximal length We set the maximal length of
questions and passages as 32 and 128, respectively.

Unlabeled questions We collect 1.7 million un-
labeled questions from Yahoo! Answers5, ORCAS
(Craswell et al., 2020) and MRQA (Fisch et al.,
2019). We use the questions from Yahoo! Answers,

4The gradient checkpoint (Chen et al., 2016) enables the
trading off computation against memory resulting in sublinear
memory cost, so bigger/deeper nets can be trained with limited
resources.

5http://answers.yahoo.com/

ORCAS and NQ as new questions in the experi-
ments of MSMARCO. We only use the questions
from MRQA as the new questions in the experi-
ments of NQ. Since both NQ and MRQA mainly
contain factoid-questions, while other datasets con-
tain both factoid and non-factoid questions.

4.2 Experimental Results

In our experiments, we first examine the effec-
tiveness of our retriever on MSMARCO and NQ
datasets. Then, we conduct extensive experiments
to examine the effects of the three proposed training
strategies. We also show the performance of end-
to-end QA based on our retriever on NQ dataset.

4.2.1 Dense Passage Retrieval

We first compare RocketQA with the previous
state-of-the-art approaches on passage retrieval.
We consider both sparse and dense passage re-
triever baselines. The sparse retrievers include
the traditional retriever BM25 (Yang et al., 2017),
and four traditional retrievers enhanced by neural
networks, including doc2query (Nogueira et al.,
2019c), DeepCT (Dai and Callan, 2019), docTTTT-
Tquery (Nogueira et al., 2019a) and GAR (Mao
et al., 2020). Both doc2query and docTTTTT-
query employ neural question generation to ex-
pand documents. In contrast, GAR employs neural
generation models to expand questions. Different
from them, DeepCT utilizes BERT to learn the
term weight. The dense passage retrievers include
DPR (Karpukhin et al., 2020), ME-BERT (Luan
et al., 2020) and ANCE (Xiong et al., 2020). Both
DRP and ME-BERT use in-batch random sampling
and hard negative sampling from the results re-
trieved by BM25, while ANCE enhances the hard
negative sampling by using the dense retriever.

Table 2 shows the main experimental results.
We can see that RocketQA significantly outper-
forms all the baselines on both MSMARCO and

http://answers.yahoo.com/
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Strategy MRR@10
In-batch negatives 32.39
Cross-batch negatives (i.e. STEP 1) 33.32
Hard negatives w/o denoising 26.03
Hard negatives w/ denoising (i.e. STEP 3) 36.38
Data augmentation (i.e. STEP 4) 37.02

Table 3: The experiments to examine the effectiveness
of the three proposed training strategies in RocketQA
on MSMARCO Passage Ranking.

Figure 4: The effect of the number of random negatives
paired for a question on MSMARCO dataset. The mod-
els without and with hard negatives are trained with
20K and 5K steps, respectively.

NQ datasets. Another observation is that the dense
retrievers are overall better than the sparse retriev-
ers. Such a finding has also been reported in pre-
vious studies (Karpukhin et al., 2020; Luan et al.,
2020; Xiong et al., 2020), which indicates the ef-
fectiveness of the dense retrieval approach.

4.2.2 The Effectiveness of The Three
Training Strategies in RocketQA

In this part, we conduct the extensive experiments
on MSMARCO dataset to examine the effective-
ness of the three strategies in RocketQA. Results
on NQ dataset has shown the similar findings (see
in Section A.2 in Appendix).

First, we compare cross-batch negatives with in-
batch negatives by using the same experimental
setting (i.e. the number of epochs is 40 and the
batch size is 512 on each single GPU). From the
first two rows in Table 3, we can see that the per-
formance of the dense retriever can be improved
with more negatives by cross-batch negatives. It
is expected that when increasing the number of
random negatives, it will reduce the discrepancy
between training and inference. Furthermore, we
investigate the effect of the number of random neg-
atives. Specifically, we examine the performance
of dual-encoders trained by using different num-
bers of random negatives with a fixed number of
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Figure 5: The ratios of denoised passages at different
ranks on MSMARCO.

steps. From Figure 4, we can see that the model per-
formance increases, when the number of random
negatives becomes larger. After a certain point,
the model performance starts to drop, since a large
batch size may bring difficulty for optimization on
training data with limited size. We say that there
should be a balance between the batch size and the
number of negatives. When increasing the batch
size, we will have more negatives for each ques-
tion. However, when the size of training data is
limited, a large batch size will bring difficulty for
optimization.

Second, we examine the effect of denoised hard
negatives from the top-k passages retrieved by the
dense retriever. As shown in the third row in Ta-
ble 3, the performance of the retriever significantly
decreases by introducing hard negatives without
denoising. We speculate that it is caused by the
fact that there are a large number of unlabeled pos-
itives. Specifically, we manually examine the top-
retrieved passages of 100 questions, that were not
labeled as true positives. We find that about 70%
of them are actually positives or highly relevant.
Hence, it is likely to bring noise if we simply sam-
ple hard negatives from the top-retrieved passages
by the dense retriever, which is a widely adopted
strategy to sample hard negatives in previous stud-
ies (Gillick et al., 2019; Wu et al., 2020; Xiong
et al., 2020). As a comparison, we propose de-
noised hard negatives by a powerful cross-encoder.
From the fourth row in Table 3, we can see that
denoised negatives improve the performance of the
dense retriever. To obtain more insights about de-
noised hard negatives, Table 4 gives the sampled
hard negatives for two questions before and after
denoising. Figure 5 further illustrates the ratio of
filtered passages at different ranks. We can see that
there are more passages filtered (i.e. denoised) at
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Question Label positives Hard negatives w/o denoising (false negatives) Hard negatives w/ denoising

How many kilohertz in a
megahertz

One megahertz (abbreviated: MHz) is
equal to 1,000 kilohertz, or 1,000,000
hertz. It can also be described as one mil-
lion cycles per second. . . .

(Rank 2nd) Kilo means times 1000, mega means
times 1,000,000. So 0.005 megahertz = 5000 Hz
= 5 kiloHz. Hertz (not Herz) is abbreviated to Hz.
. . .

(Rank 14th) . . . megahertz (MHz) and gigahertz
(GHz) are used to measure CPU speed. For exam-
ple, a 1.6 GHz computer processes data internally
. . .

Name of test for achilles
tendon rupture

In a patient with a ruptured Achilles ten-
don, the foot will not move. That is called
a positive Thompson test. The Thomp-
son test is important because. . .

(Rank 1st) . . . The physical examination should in-
clude two or more of the following tests to estab-
lish the diagnosis of acute Achilles tendon rupture:
Clinical Thompson test . . .

(Rank 9th) . . . Methods: Ultrasound was used to mea-
sure Achilles tendon. length and muscle-tendon ar-
chitectural parameters in children. of ages 5 to 12
years. . . .

Table 4: The hard negatives before and after denoising on MSMARCO. The bolded words are the keywords
relevant to questions.
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Figure 6: The effect of the size of augmented data on
MSMARCO dataset.

lower ranks, since it is likely to have more false
negatives at lower ranks.

Finally, when integrated with the data augmenta-
tion strategy (see the fifth row in Table 3), the per-
formance has been further improved. A major merit
of data augmentation is that it does not explicitly
rely on manually-labeled data. Instead, it utilizes
the cross-encoder (having more powerful capability
than the dual-encoder) to generate pseudo training
data for improving the dual-encoder. We further ex-
amine the effect of the size of the augmented data.
As shown in Figure 6, we can see when the size of
the augmented data is increasing, the performance
increases.

4.2.3 Passage Reading with RocketQA
Previous experiments have shown the effective-
ness of RocketQA on passage retrieval. Next, we
verify whether the retrieval results of RocketQA
can improve the performance of passage reading
for extracting correct answers. We implement an
end-to-end QA system in which we have an ex-
tractive reader stacked on our RocketQA retriever.
For a fair comparison, we first re-use the released
model 6 of the extractive reader in DPR (Karpukhin
et al., 2020), and take 100 retrieved passages during
inference (the same setting used in DPR). Besides,

6https://github.com/facebookresearch/
DPR

Model EM
BM25+BERT (Lee et al., 2019) 26.5

HardEM (Min et al., 2019a) 28.1
GraphRetriever (Min et al., 2019b) 34.5

PathRetriever (Asai et al., 2020) 32.6
ORQA (Lee et al., 2019) 33.3

REALM (Guu et al., 2020) 40.4
DPR (Karpukhin et al., 2020) 41.5

GAR (Mao et al., 2020) 41.6
RocketQA + DPR reader 42.0

RocketQA + re-trained DPR reader 42.8

Table 5: The experimental results of passage reading on
NQ dataset. In this paper, we focus on extractive reader,
while the recent generative readers (Lewis et al., 2020;
Izacard and Grave, 2020) can also be applied here and
may lead to better results.

we use the same setting to train a new extractive
reader based on the retrieval results of RocketQA
(except that we choose top 50 passages for training
instead of 100). The motivation is that the reader
should be adapted to the retrieval distribution of
RocketQA.

Table 5 summarizes the the end-to-end QA per-
formance of our approach and a number of compet-
itive methods. From Table 5, we can see that our re-
triever leads to better QA performance. Compared
with prior solutions, our novelty mainly lies in the
passage retrieval component, i.e., the RocketQA ap-
proach. The results have shown that our approach
can provide better passage retrieval results, which
finally improve the final QA performance.

5 Conclusions

In this paper, we have presented an optimized train-
ing approach to improving dense passage retrieval.
We have made three major technical contributions
in RocketQA, namely cross-batch negatives, de-
noised hard negatives and data augmentation. Ex-
tensive experiments have shown the effectiveness
of the proposed approach by incorporating the three
optimization strategies. We also demonstrate that
the performance of end-to-end QA can be improved
based on our RocketQA retriever.

https://github.com/facebookresearch/DPR
https://github.com/facebookresearch/DPR


5844

6 Ethical Considerations

The technique of dense passage retrieval is effec-
tive for question answering, where the majority of
questions are informational queries. Different from
the traditional search, there is usually term mis-
match between questions and answers. The term
mismatch brings barriers for the machine to accu-
rately find the information for people. Hence, we
need dense passage retrieval for semantic match-
ing in the scenario of question answering. Dense
passage retrieval has the potential to empower peo-
ple to find the accurate information more quickly
and achieve more in their daily life and work. Our
technique contributes toward the goal of asking
machines to find the answers to natural language
questions from a large collection of documents.
However, the goal is still far from being achieved,
and more efforts from the community is needed for
us to get there.
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A Appendix

A.1 The Effects of Pre-trained LMs
We notice that previous work use different
pre-trained LMs. As shown in Table 6,
DPR (Karpukhin et al., 2020) uses BERTbase.
ANCE (Xiong et al., 2020) uses RoBERTabase, and
ME-BERT (Luan et al., 2020) uses BERTlarge. We
mainly use ERNIEbase in our experiments. In this
section, we try to examine the effects of pre-trained
LMs for RocketQA. Specifically, we use BERTbase
to replace ERNIEbase, and apply it to the first step
of RocketQA. From Table 6 (see the forth row
and the fifth row), we can observe that the perfor-
mance slightly decreases when using BERTbase. In
other words, comparing to BERTbase, ERNIEbase
brings gains about 0.6 in terms of MRR@10 on
MSMARCO, and 1.6 in terms of R@100 on NQ, re-
spectively. However, RocketQA trained only with
cross-batch negatives is already comparable to pre-
vious work, including DPR, ANCE and ME-BERT
(although they employ better pre-trained LMs). We
conclude that our approach is still effective when
using different pre-trained LMs.

Methods PLMs MSMARCO NQ
MRR@10 R@100

DPR (single) BERTbase - 85.4
ANCE (single) RoBERTabase 33.0 87.5

ME-BERT BERTlarge 33.8 -
RocketQASTEP1 BERTbase 32.7 86.0
RocketQASTEP1 ERNIEbase 33.3 87.6

RocketQA ERNIEbase 37.0 88.5

Table 6: The effects of pre-trained LMs. Note that we
directly copy the reported numbers from the original
papers and leave the blanks if they were not reported.

A.2 The Effectiveness of The Three Training
Strategies on NQ

In this section, we examine the effectiveness of the
three proposed training strategies on NQ dataset.
From Table 7, we can observe that all the three
strategies are effective. The findings are similar to
the results on MSMARCO.

Strategy R@5
In-batch negatives 68.5
Cross-batch negatives (i.e. STEP 1) 68.9
Hard negatives w/o denoising 68.0
Hard negatives w/ denoising (i.e. STEP 3) 73.2
Data augmentation (i.e. STEP 4) 74.0

Table 7: The experiments to examine the effectiveness
of the three proposed training strategies in RocketQA
on NQ.


