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Abstract

Machine translation of user-generated code-
mixed inputs to English is of crucial impor-
tance in applications like web search and tar-
geted advertising. We address the scarcity of
parallel training data for training such models
by designing a strategy of converting existing
non-code-mixed parallel data sources to code-
mixed parallel data. We present an mBERT
based procedure whose core learnable com-
ponent is a ternary sequence labeling model,
that can be trained with a limited code-mixed
corpus alone. We show a 5.8 point increase
in BLEU on heavily code-mixed sentences by
training a translation model using our data aug-
mentation strategy on an Hindi-English code-
mixed translation task.

1 Introduction

Code-mixing (CM), the phenomenon of mixing
words from two languages in a sentence, is get-
ting increasingly commonplace in several bilin-
gual communities1. Recently, much research has
focused on training language models over code-
switched data for tasks like automatic speech recog-
nition (ASR) (Winata et al., 2019; Gonen and Gold-
berg, 2019). In this paper we focus on the less ex-
plored problem of translating code-switched inputs
to a high-resource language like English. This task
is compelling in applications like Web search, tar-
geted advertising, and recommendations, which re-
quire matching user-generated code-mixed queries
to rich English content.

A major challenge in such applications is the
lack of parallel data from code-mixed input to
English. While years of effort have made avail-
able rich parallel datasets for translation, these are
mostly over formal sources like news, which tend
to be less code-mixed. In this paper we show how
to create high-quality parallel data for training a
code-mixed translation model by exploiting three

1https://github.com/gentaiscool/code-switching-papers

types of resources: 1) Parallel data from non-code-
mixed sentences to English, 2) Code-mixed sen-
tences, and 3) Monolingual sentences in English.

Contributions: (1) We present an mBERT (De-
vlin et al., 2019) based procedure for converting
non-CM parallel data to CM parallel data. The
core learnable component of our procedure requires
fine-tuning mBERT for a three-way sequence la-
beling task, and can be easily trained using the
limited code-switched sentences alone. We apply
this model to convert source sentences of the par-
allel data to code-mixed sentences, while keeping
the target English sentences in-tact. We also ex-
tend the existing back-translation method of using
monolingual target data, with our code-switched
augmentation. (2) We experiment on a rich public
code-mixed dataset obtained from a literacy promo-
tion project. We show that with our data augmenta-
tion strategy the translation BLEU improves from
43.9 to 46.4 overall. On sentences that are more
heavily code-mixed our accuracy increases by 5.8
BLEU points, and on an adversarial test set where
the baseline provides poor accuracy we show a 5.4
point BLEU increase. (3) We show that our data
augmentation strategy improves performance for
code-switched test sets while maintaining state of
the art performance on non-code-switched inputs.

2 Related Work

Most prior work on CM has focused on training a
language model (LM) in the context of automatic
speech recognition. The main challenge addressed
in these works is the limited availability of code-
mixed sentences. Gonen and Goldberg (2019) and
Lee and Li (2020) propose different methods of
training LMs for CM sentences without explicitly
creating synthetic CM data, but another popular
strategy is to first create synthetic CM data and
train the LM with such synthetic data. We next
summarize existing approaches to generate syn-
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thetic CM data:
Chang et al. (2019) propose to learn switching

patterns from code-mixed data using a GAN-based
adversarial training. Gao et al. (2019) use BERT as
the generator which is fine-tuned by masking the
English words in a CM corpus using GAN-based
adversarial training. In contrast, ours is a much
simpler sequence labeling formulation. Taneja et al.
(2019) proposes to splice fragments chosen from
monolingual corpus of two languages based on
statistics of length distribution and phone transition.
Pratapa et al. (2018) use Equivalence Constraint
Theory to define rules on top of parse trees of two
sentences to create grammatically valid artificial
CM data. Samanta et al. (2019) use a variational
autoencoder to generate synthetic CS data.

Winata et al. (2019) propose a sequence-to-
sequence model using a copy mechanism that
learns when to switch from one language to an-
other. To train their model they depended on high-
resource commercial translation models for trans-
lating the code-mixed input to monolingual sen-
tences in both English and native language. Since
our goal is to train such a translation model, we did
not want to depend on such resources.

One key difference is that our goal is translation
from code-mixed to English, and not designing a
representative LM for code-mixed data. Since our
final target is English, when designing our data
augmentation strategy we give higher priority to
preserving the distribution of the target-side (En-
glish) than the CM input.

3 Our Approach

Our strategy is to augment the training data by
converting existing non-code-mixed parallel cor-
pus into a parallel corpus with code-mixed source.
Let L,M, E denote the space of non-code-mixed
sentences, code-mixed sentences, and English sen-
tences respectively. We have available a paral-
lel corpus of non-code-mixed and English pairs
(L,E) ⊂ (L, E), a code-mixed corpus M ⊂ M,
and a monolingual corpus EM ⊂ E . Our goal is to
train a translation model from code-mixed input to
English T :M 7→ E .

Our focus is Indic languages such as Hindi that
are often code-mixed with English. The code-
mixed corpus in our case contains three kinds of to-
kens: native tokens in native script e.g. Devanagari,
English tokens in Latin script, and English tokens
transliterated to native script. Figure 1 shows an

Sentence 
अब हमने while लूप के लए कंडशन $i लेस देन ओर इक्वल टू 4 

नदर्दिष्ट कया है।
Translation 

Now, we have specified the condition for while loop as $i  
less than or equal to 4.
English words in Native 
script 
लूप -> loop
कंडशन -> condition
लेस देन ओर इक्वल टू -> less 
than or equal to

Native words in Native 
script
अब हमने -> Now, we have
के लए -> for
नदर्दिष्ट कया है -> specified

Figure 1: An example sentence pair from Spoken Tuto-
rial which illustrates the different token types in code-
mixed source sentences. In addition to Hindi tokens
written in Devanagari script, sentences can contain En-
glish words in Latin script (like while) and English
words written in Devanagari script (like loop and con-
dition).

Dataset En En-Trans
IITB Parallel Train 0.021 0.132
Code-Mixed Test (Hi) 0.121 0.121

Table 1: Fraction of English (En) and English transliter-
ated to Devanagari (En-Trans) tokens in Hi-En parallel
dataset and our code-mixed Hindi test set.

example sentence pair from our code-mixed test
corpus with these different types of tokens. In Ta-
ble 1 we present statistics of tokens of the three
types in a parallel Hindi-English corpus and our
test code-mixed corpus. Given the huge gap in the
fraction of En tokens in the original parallel data,
we propose methods for synthetic data creation
that perturb non-code-mixed source sentences in
the parallel data to a code-mixed sentence. For this
we train a model F : (L, E) 7→ (M, E) for convert-
ing sentences in the native language to their code
mixed forms using the parallel English sentence.

Our model is based on mBERT, and consists
of two phases: the first phase predicts words to
switch in a monolingual sentence, and the second
phase generates the switched words by harnessing
parallel data. We describe these phases next:

3.1 Predict Code-Mixed Patterns in
Monolingual Sentences

We train an m-BERT based sequence-labeling task
that takes as input a monolingual sentence and
predicts tokens that should be translated to the
other language to produce a natural sounding code-
mixed sentence. For training data, we use the small
amount of code-mixed data M ∈ M. These sen-
tences are first labeled with word level Language
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IDs, using Zhang et al. (2018). The langId tool
assigns three types of labels:{En, En-Trans, Na}
where En-Trans refers to English words written in
native script, and Na refers to native words in native
script. We then generate a synthetic monolingual
sentence from each code mixed sentence z ∈ M
by replacing all words in z with the label ‘En’ to
their translations in the source language and script.
Words that are predicted ‘En-Trans’ (English words
written in Native script) are transliterated2 to Latin
and then translated only a fraction f of the time.
Since sentences in L comprising the parallel data
also contain transliterated English words in our cor-
pus, we choose f so as to account for the difference
in transliterated English words between native and
code-mixed. The resulting sentence z′ is treated as
being from L, and thus compatible with the mono-
lingual sentences in L that we wish to code-mix.
In Figure 2 we show an example of this transfor-
mation in the ‘Training’ box. Finally, we fine-tune
m-BERT for a sequence-labeling task of predicting
the language ID tags on z′. Note, if we reapply
the langID tool on z′, the replaced tokens will not
be predicted as English. In contrast, m-BERT can
learn the code-mixing patterns so that it can predict
which tokens in a monolingual sentence are most
natural candidates for expressing in English.

3.2 Generate Switched Words

In the second phase, we use existing alignment li-
braries such as SimAlign (Jalili Sabet et al., 2020)
to align source and target words between sen-
tence pairs (x,y) in the parallel data (L,E). Let
p1, . . . , pn denote the predicted switches on an in-
put non-code-mixed sentence x : x1, . . . , xn by
the m-BERT model above. Then for each token
xi ∈ x that is predicted to switch to English i.e.,
pi ∈ {En, En-Trans} we replace the word with its
aligned word(s) in y if they exist. Additionally, if
pi is En-Trans we transliterate the aligned English
word to the native script. The resulting code-mixed
sentence x′ and y form a parallel pair for train-
ing the translation model. In Figure 2 we show an
example in the ‘Inference’ box.

An advantage of this method of augmenting the
training data is that the target sentence y is not syn-
thetically generated, and thus helps to preserve the
language model of the target sentences. We apply
the above transformation on the given parallel cor-

2We use the IndicTrans (Bhat et al., 2015) library for
transliterating target words.

यह   प्रोग्राम   का   मह्त्वपूणर्ण     भाग    है

यह   प्रोग्राम   का  important    भाग    है
translate

mBERT

Na    En-Trans    Na          En             Na    Na

Training

Source Sent       इस    प्रोग्रामगं    पाठ    में    हम    सीखेंगे

mBERT

Na      En-Trans     En      Na     Na        Na

Target Sent
In this 
programming 
tutorial we will 
learn

Alignments
इस - this
प्रोग्रामगं - programming
पाठ - tutorial     में - In
हम - we     सीखेंगे - learn

Perturbed Source Sent    
इस    प्रोग्रामगं  tutorial  में    हम   सीखेंगे

Inference

copy target and 
transliterate copy target

Figure 2: An illustration of our mBERT based pertur-
bation method through an example. The top left box
shows our method for training the mBERT model with
limited in-domain code-mixed data. The rest of the im-
age shows the inference procedure for creating a code-
mixed to pure English sentence pair starting from a
pure Native to pure English pair.

pus (L,E). Also, for the monolingual English sen-
tence EM we use a back-translation model to trans-
late EM to sentences LM in the native language L.
This gives us pseudo parallel data (LM , EM ). We
transform this corpus also to code-mixed parallel
data using the above process.

4 Experiments

Parallel Corpus For Hi→En experiments, we
use the IIT Bombay English-Hindi Parallel Cor-
pus (Kunchukuttan et al., 2018) as the base parallel
training data for our models. The corpus contains
parallel data from a number of diverse sources and
domains. Test and dev splits are from the WMT
2014 English-Hindi shared task (Bojar et al., 2014).
The training set has about 1.6M sentence pairs,
the dev set has 500 sentences and the test set has
2507 sentences. We also move about 2,000 ran-
domly selected sentences from the training set to
the dev set. For Bn→En, we use 1M parallel sen-
tences from Opus (Tiedemann, 2012) for training
and 2000 randomly selected pairs each for valida-
tion and testing.

Code-Mixed Parallel Test Dataset While code-
mixing is most common in social media and web
search, it is difficult to get parallel data from these
applications. One rare find was a video lectures
website called the Spoken Tutorial Project 3. The
project comprises of transcripts of video lectures
spanning technologies like operating systems, pro-
gramming languages, and popular software in heav-
ily code-mixed Hindi and Bangla (among other

3https://spoken-tutorial.org/
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Indian languages), and also in English. After align-
ing the timestamps and some cleaning we collected
30.6K parallel sentences for code-mixed Hindi, and
28.6K sentences for code-mixed Bengali. 4 Code-
mixing statistics on this dataset is shown in Table 1.

Non-Parallel Code-Mixed We also collect all
source sentences that could not be aligned and
are therefore not a part of the parallel test data.
This dataset of 26.4K sentences for code-mixed
Hindi and 17.4K sentences for code-mixed Bangla,
serves as our limited code-switched corpus M dur-
ing training.

Mononlingual English All English sentences
from the Spoken Tutorial dataset for which there
are no parallel code-mixed sentence in Hindi or
Bangla comprise the monolingual English corpus.
We found around 54K such sentences. This dataset
is used to create back-translated data, and serves to
domain adapt the translation models to the target
distribution. For En→Hi, use the Helsinki-NLP
model 5 from Huggingface for back-translation.
For En→Bn back-translations, we train a model
with the same parallel data from Opus that we use
for forward models.

PHINC Dataset We also evaluate the efficacy of
our data augmentation methods on the recently re-
leased PHINC dataset (Srivastava and Singh, 2020).
The dataset contains roughly 13.5K translated sen-
tence pairs from Twitter. The source texts are al-
most exclusively written in Latin and contain a
mixture of Hindi and English words. Since no
train-test splits are provided by the authors, we
randomly split the dataset into 5000 test sentence
pairs and use 500 sentence pairs for validation. We
separate the remaining 8000 sentence pairs into a
code-mixed corpus and a monolingual English cor-
pus, to match the setup for our other experiments.
All models that we train for this dataset involve a
preliminary step of transliterating the Devanagari
source (in IITB parallel data, and back-translations)
to Latin.

Model and Experiment Setup All models are
trained with the fairseq toolkit (Ott et al., 2019).
For data preparation, we first run tokenization
with IndicNLP (Kunchukuttan, 2020) for source
sentence and Moses tokenizer 6 for target sen-

4Our aligned data is available at
https://github.com/shruikan20/Spoken-Tutorial-Dataset

5https://huggingface.co/Helsinki-NLP/opus-mt-en-hi
6https://github.com/moses-smt/mosesdecoder

tences. For models trained for PHINC data, De-
vanagari source is transliterated to Latin using In-
dicTrans (Bhat et al., 2015). Next, we apply BPE
with code learnt on training set for source and tar-
get jointly, for 20,000 operations. We train with
the transformer architecture with shared source and
target embeddings. We use Adam optimizer with
lr = 5e-4 and 4000 warmup steps, train upto 100
epochs and select the best checkpoint based on
loss on the validation split. Results on Hi→En
Spoken Tutorial dataset are reported by training 3
models with different seeds and averaging BLEU
scores from the best checkpoint for each model.
For other datasets we only train a single model for
each method.

Baselines To evaluate the importance of condi-
tioning on the monolingual sentence, we design
simpler variants that switch tokens based on con-
tent independent code-mixing statistics from the
limited code-mixed data M . These two methods
serve as competitive baselines for our model: Un-
igram Random that switches tokens to En or En-
Trans based on their unigram statistics in M , and
Bigram Random that switches based on bigram
statistics in the LangId of adjacent tokens. We also
compare against Samanta et al. (2019), by training
their model on our limited code switched data, and
then sampling switching patterns to perturb data
similar to the Bigram Random method.

Finally, to tease apart the effect our perturbations
from domain adaptation we also compare against
the As Is baseline where we train models with par-
allel and back-translated in-domain monolingual
English data.

Overall Results In Table 2 we present BLEU for
our code-mixed Hindi translation model on four
test sets: the code-mixed test set (ST-Test), the non-
code-mixed test-set (NewsTest), and two adversar-
ial subsets of ST-Test that we create as follows. The
first, ST-OOV, comprises of sentence pairs where
across source and target, at least two words were
not found in the training data. This check is per-
formed before sub-word tokenization. The second,
ST-Hard, comprising of the 2,000 sentence pairs
on which the sentence-level BLEU from the base
model was the lowest. For code-mixed Bangla, we
have equivalent test sets except the NewsTest. Ta-
ble 3 presents our results for code-mixed Bangla.
In Table 4, we present results on models trained for
the PHINC dataset on the code-mixed test set only.
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Method ST-Test ST-OOV ST-Hard NewsTest
As Is 43.93 (±0.44) 41.37 (±0.46) 18.63 (±0.61) 21.66 (±0.27)
Samanta19 45.42 (±0.37) 43.33 (±0.43) 21.97 (±0.78) 21.86 (±0.11)
Unigram 45.15 (±0.18) 43.08 (±0.31) 21.92 (±0.33) 21.59 (±0.28)
Bigram 45.63 (±0.1) 43.22 (±0.03) 22.27 (±0.2) 21.60 (±0.26)
mBERT 46.40 (±0.38) 44.55 (±0.25) 23.41 (±0.25) 21.67 (±0.19)

Table 2: Average BLEU scores comparing models trained with different perturbation methods for code-mixed
Hindi to English translation. Standard deviation is reported in brackets.

Method ST-Test ST-OOV ST-Hard
As Is 36.4 36.02 16.36
Unigram 36.77 36.61 17.58
Bigram 37.45 37.34 18.39
mBERT 37.43 37.28 17.82

Table 3: BLEU scores on code-mixed Bangla to En-
glish Spoken Tutorial test set.

Method PHINC Test
As Is 25.28
Unigram 29.33
Bigram 29.14
mBERT 29.3

Table 4: BLEU scores on the PHINC test set.

We observe that our mBERT-based method sub-
stantially beats the AsIs method across all test sets
for code-mixed Hindi and Bangla Spoken Tuto-
rial data and PHINC data. The mBERT method
also provides higher gains than the baselines on all
three code-mixed test sets for Hi→En, while not
reducing the accuracy on the original NewsTest.
For Bn→En and PHINC, we observe that the Uni-
gram and Bigram methods perform similar to the
mBERT method showing that these are competitive
methods in themselves. Overall, the effectiveness
of perturbing parallel data is shown clearly in these
experiments.

An interesting observation from Table 2 is that
although our gain was about 2.5 BLEU points on
ST-Test, on the adversarial sets we observed much
higher gains — 3.2 for ST-OOV and 4.8 for ST-
Hard. Our model also outperforms Samanta et al.
(2019) on all code-mixed test sets while maintain-
ing similar performance on NewsTest.

Sensitivity to amount of Code-mixing We in-
vestigate the gains in BLEU achieved by our
method on sentences with varying levels of code
mixing measured as the fraction of En and En-

Figure 3: Improvements in BLEU with mBERT based
model versus baseline across three splits of the test set.

Trans words in source sentences in the code-mixed
Hindi ST-Test set. We split the test set into three
parts — Low (below 0.25), Medium (below 0.5),
and High. Figure 3 shows the BLEU achieved by
our method and the baseline. The biggest gains
of about 5.8 BLEU can be seen in the test sen-
tences with high levels of code-mixing. This shows
that our data augmentation strategy does have the
desired effect of better handling of heavily code-
mixed inputs.

5 Conclusion

Machine translation of code-mixed inputs to En-
glish is an important task for which parallel training
data is scarce. We presented a simple mBERT-
based method of converting existing parallel data
into code-mixed parallel data. Augmenting exist-
ing training data with this synthetic parallel data
leads to substantial gains in BLEU on heavily code-
mixed inputs without worsening accuracy on non-
code-mixed inputs. However, gains are larger for
some language pairs than others. Furthermore,
code-mixed data from informal sources like Twit-
ter presents additional challenges like noisy inputs
stemming from non-canonical transliterations, in-
formal language use, and misspellings. Our ongo-
ing and future work includes evaluating the model
on more languages and handling noisy inputs.
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