
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 5671–5681

June 6–11, 2021. ©2021 Association for Computational Linguistics

5671

RTFE: A Recursive Temporal Fact Embedding Framework for
Temporal Knowledge Graph Completion

Youri Xu, Haihong E∗, Meina Song, wenyu song, Xiaodong Lv, wang haotian, yang jinrui
School of Computer Science, Beijing University of Posts and Telecommunications, China

{youri.xu,ehaihong,mnsong,swy9834,lvxiaodong,haotianwang,yangjinrui}
@bupt.edu.cn

Abstract

Static knowledge graph (SKG) embedding
(SKGE) has been studied intensively in
the past years. Recently, temporal knowl-
edge graph (TKG) embedding (TKGE) has
emerged. In this paper, we propose a Recur-
sive Temporal Fact Embedding (RTFE) frame-
work to transplant SKGE models to TKGs and
to enhance the performance of existing TKGE
models for TKG completion. Different from
previous work which ignores the continuity
of states of TKG in time evolution, we treat
the sequence of graphs as a Markov chain,
which transitions from the previous state to
the next state. RTFE takes the SKGE to ini-
tialize the embeddings of TKG. Then it recur-
sively tracks the state transition of TKG by
passing updated parameters/features between
timestamps. Specifically, at each timestamp,
we approximate the state transition as the gra-
dient update process. Since RTFE learns each
timestamp recursively, it can naturally transit
to future timestamps. Experiments on five
TKG datasets show the effectiveness of RTFE.

1 Introduction

Temporal knowledge graph (TKG) is an extension
of static knowledge graphs (SKGs) which introduce
the time dimension. In SKGs, facts are considered
to be time-invariant (Sil and Cucerzan, 2014). In
reality, facts are not always true. For example,
the triple (Obama, President, United States) was
true only from 2009 to 2016 and (Obama, married,
Mitchell) since 1992. However, SKGs do not re-
flect the change in facts over time. An example of
TKG is shown in Figure 1. Besides, facts on so-
cial networks, e-commerce platforms and trading
platforms also change over time. Therefore, TKGs
have the potential to improve the performance of
question answering, search, recommendation and
prediction based on KGs (Huang et al., 2020; Garg
et al., 2020).

∗∗Corresponding author: Haihong E

TKG can be expressed as a set of quadruples
(subject, relation, object, timestamp). Different
from SKGs which ignore the time attribute of facts,
the facts of TKGs are distributed in timestamps,
which can reflect the dynamic change of entities
and relationships over time. Due to the limited
coverage of KGs, TKGs are also incomplete. By
completing TKG, missing and potential knowledge
under specific timestamps can be found.

In recent years, a lot of work (Bordes et al., 2013;
Wang et al., 2014; Lin et al., 2015; Kazemi and
Poole, 2018; Schlichtkrull et al., 2018; Sun et al.,
2019; Zhang et al., 2020) has focused on KG com-
pletion by methods of graph embedding. These
efforts have yielded good results, but most of them
focused on SKGs and required training in a large
number of triples.

However, the TKG under a certain timestamp is
a sparse multi-relation graph (Esteban et al., 2016),
so it is necessary to absorb information from other
timestamps. What’s more, SKGE methods lacked
the modeling of time attribute of relations, and were
proposed based on the assumption that all facts
occur at the same time. So they cannot reflect the
temporal dependencies of facts. To handle these
two problems, our RTFE passes parameters and
features between timestamps in a recursive manner,
which not only alleviates the sparsity problem of
TKG, but takes advantage of the continuity and
relevance characteristics of the fact as well.

Existing TKG completion methods (Dasgupta
et al., 2018; Goel et al., 2019; Lacroix et al., 2020)
follow the training pattern of SKGE, which shuffles
facts (s, r ,o ,t) of different time randomly and
learns all facts in a chaotic temporal order by mini-
batch gradient descent algorithm. In other words,
they just take time as a parameter but ignore the
correlations in time evolution.

However, the early state may affect the later one
and later facts tend to be dependent on early ones.
In particular, the state at ti directly influences that

5672

1988 1993 2009

Michelle

Obama

locatedIn

Barack

Obama

Harvard

University
Boston

United

States

Michelle

Obama

locatedIn

Barack

Obama

Chicago

University
Chicago

United

States

Michelle

Obama

locatedIn

Barack

Obama

The White

House

Washionton

D.C

United

States

asPresidentOf

………

Figure 1: A toy example of TKG where solid edges represent observed edges and red edges represent new facts
that occurred at that timestamp. Besides, dotted edges represent missing or potential facts.

at ti+1. E.g., (Obama, Campaign, President, 2008)
directly influences (Obama, Inaugurated as, Pres-
ident, 2009). It has been verified that the chrono-
logical order of events can be used to improve the
performance of link prediction (Jiang et al., 2016a;
Jiang et al., 2016b). Based on this, we further find
that the early training state can improve later one if
we train facts in their chronological order. In order
to capture changes in TKG’s state transition, we
think TKG as a sequence of dynamic graphs, not
as a whole graph labeled with time information.

Besides, since new facts of future timestamps
can be added to TKG, TKG is expanding dynami-
cally. And the graphs of new timestamps may still
be incomplete. However, existing TKG completion
methods provide no solution to complete unseen
future graphs. In their training pattern, facts of
all timestamps are trained jointly to complete the
graphs that have appeared. Models may need to
be retrained on facts of all timestamps when a new
timestamp appears. In contrast, our RTFE embeds
and completes TKG’s each timestamp in a recur-
sive way. By using the information of previous
timestamps, RTFE can be naturally extended to
future timestamps during the state transition of pa-
rameters/features. RTFE only needs to be trained
on new emerging facts, which is light and immedi-
ate.

SKGE has been studied for many years while
TKGE is still at birth. Problems encountered in
SKGE (e.g., diverse relation patterns) can also
occur in TKGE. Thus the advantages of SKG re-
searches can be used to accelerate the development
of TKGs if we bridge the gap between them. Our
RTFE provides a way to migrate SKGE methods
to TKGs while preserving their excellent effects.

Further, existing TKG completion methods de-

signed specifically for the characteristics of TKGs
can also be enhanced using the training pattern of
RTFE. To sum up, we have made the following
contributions:

1. We propose a training pattern to bridge the
gap between SKGE and TKGE. Therefore,
state-of-the-art SKGE models can be used to
accelerate the development of TKGE.

2. Existing TKGE models can be further en-
hanced with our framework RTFE, after fin-
ishing their own regular training.

3. To the best of our knowledge, we are the first
to deal with the TKG evolution problem (i.e.,
new future timestamps are added to TKGs) in
the TKG completion task.

4. The experimental results on 5 TKG datasets
show that RTFE preserve SKGE models’ ex-
cellent performance. And the predictive per-
formance of state-of-the-art TKGE models are
further enhanced using RTFE.

2 Problem definition

A temporal knowledge graph (TKG) can be rep-
resented as a sequence of graphs, i.e. G =
{Gt1 , . . . , Gtn} where Gti is a set of quadru-
ples that occured at timestamp ti, i.e. Gti =
{(s, r, o, ti)} where V is the set of G’s entities and
s, o ∈ V ; R is the set of G’s relations and r ∈ R.

We focus on the following task: given a train-
ing TKG Gtrain = {Gt1 , . . . , Gtn} , to infer the
missing quadruples (s, r, o, t) in test set Gtest =
{G′t1 , . . . , G

′
tn} (i.e., assign high scores to true

quadruples and low scores to false ones). As shown
in Figure 1, missing facts with high probability are
dotted.

5673

Boston

…

Chicago

Michelle

…

United States

𝐺𝑡1

𝑋𝑡1
LOSS

Gradient

𝑡1

update

Boston

…

Chicago

Michelle

…

United States

𝐺𝑡2

𝑋𝑡2

Embedding

learner θ
LOSS

𝑡2

update

recursively pass

update update

recursively pass

𝐺𝑠𝑡𝑎𝑡𝑖𝑐

pre-train

recursively pass

recursively pass

…

Gradient

Embedding

learner θ
Embedding

learner θ

Embedding

learner θ

Figure 2: The framework of RTFE. TKG is first transformed to SKG Gstatic. RTFE pre-train embedding learner θ
on Gstatic to obtained the input of the first timestamp. Then features and parameters are recursively passed to next
timestamp after learning the current timestamp.

3 Recursive Temporal Fact Embedding
(RTFE) Framework

The state of TKGs change with the change of enti-
ties and relations over time. SKGE models fail to
capture correlations during state transition. And ex-
isting TKGE models for TKG completion capture
it implicitly. It can be observed that the TKG after
the current change changes on the closest former
state, which is similar to a first order Markov chain
(Given the state at the current moment, the state at
the next moment is independent of the state at the
past moment).

Inspired by Markov analysis, we use the time
granularity of TKGs to discretely divide states.
Then the basic model of RTFE can be expressed as:

Sti+1 = Sti · Pti (1)

where Sti represents the state of Gti and Pti repre-
sents probability transition matrix to transform Sti
to that of ti+1. A typical KG embedding learner
uses its parameters θ and features X to represent
the semantic information of KG. Thus we approxi-
mate state vectors as:

Sti := [θti , Xti] (2)

The idea of RTFE is to dynamically adjust θ
and X as the TKG changes while passing the in-
formation of each timestamp graph. We simply
assume the features and parameters satisfy Markov
Property:

P (Xti+1 , θti+1 |Xt1 , ..., Xti ; θt1 , ..., θti)

= P (Xti+1 , θti+1 |Xti , θti)
(3)

where Xti and θti denote features and parameters
at time ti.

RTFE does not specify a model, but rather a train-
ing method for TKG completion. Existing SKGE
methods and TKGE methods that follow the SKGE
training pattern such as DE-SimplE (Goel et al.,
2019) and TComplEx (Lacroix et al., 2020) can
potentially be utilized as the embedding compo-
nent. The RTFE framework is illustrated in Figure
2. In section 3, we specify that RTFE how to use
SKGE models for TKG completion. In section 4,
we generalize RTFE to existing TKGE models to
enhance their performance.

3.1 Preliminary training for static features

Instead of training from scratch, RTFE uses SKGE
as input to the first timestamp. In order to obtain the
input features, the TKG is transformed into SKG
Gstatic, which is obtained by merging the facts of
each timestamp:

Gstatic : =
n⋃
i=1

Gti

= {(s, r, o)|(s, r, o, ti) ∈ Gti , Gti ∈ G}
(4)

Suppose the SKG embedding learner be θ, which
takes the knowledge graph G (facts of G) and the
feature X (which can be predefined or randomly
initialized) as inputs. Send Gstatic and X to θ, and
then get the updated featureX after training, which
will be the input to the first timestamp.

5674

3.2 Learning each timestamp recursively

In TKGs, parameters θ and features X should
change with time (i.e., with the change of TKG).
We find that, due to the continuity of facts, most
of the facts are the same in the adjacent times-
tamps, while only a small number of facts changed.
For discrete events, they influence the states of
the surrounding entities, leading to the possibility
that these entities may produce new facts. There-
fore, model parameters and features fitting a cer-
tain timestamp provide a good starting point for the
learning of the next timestamp.

Different from most neural network-based
SKGE models (Schlichtkrull et al., 2018; Wu et al.,
2019) which only update θ during training, leaving
the input features X unchanged, we let X be up-
dated as well, to capture the temporal dynamics of
entities and relations.

Therefore, in our framework RTFE, model pa-
rameters θ and input features X are both updated
in the way similar to equation (1) during state tran-
sition: [

θti+1 , Xti+1

]
= [θti , Xti] · Pti (5)

where θti and Xti denote the state vectors of θ and
X at time ti respectively; Pti represent the proba-
bility transition matrix. To transform state vectors
at ti to that at ti+1, we approximate the state transi-
tion Pti as the gradient update process of learning
Gti (i.e., updating according to the gradient of the
loss function for several epochs):

θti+1 = θti − α · ∇θl(θti , Xti , Gti) (6)

Xti+1 = Xti − α · ∇X l(θti , Xti , Gti) (7)

where α is the learning rate; l is the loss function
defined by the specified embedding learner; ∇θ is
the gradient of l with respect to θ.

It must be pointed out that the state transition
matrix in Markov analysis is fixed, so the above
analysis method is generally applicable to short-
term prediction. But the state vectors are different
in different states and the gradient between the
states is also different. Since the state vector is
fixed in a specific state, a model can be established
for each discrete state by the time interval of TKG.
Then the gradient can be updated between states
according to the difference of each state vector, to
continue our framework.

RTFE recursively trains each timestamp accord-
ing to equation (6) and (7) and uses θti and Xti to
test G

′
ti . Since RTFE is trained and tested by times-

tamp, only the latest parameters and features need
to be stored, which shows good scalability for large
TKGs. The framework RTFE is illustrated in Fig-
ure 2 and the overall training and testing algorithm
is shown in Algorithm 1.

4 Transplanting SKGE/TKGE models

4.1 SKGE models

For translation-based methods like TransE (Bordes
et al., 2013), TransD (Ji et al., 2015), RotatE (Sun
et al., 2019) and HAKE (Zhang et al., 2020), they
can be directly used as the embedding learner of
RTFE without change of models.

For Graph neural network-based methods like
RGCN (Schlichtkrull et al., 2018), we make its
input feature do gradient update as well, so that
the input features encode the information of each
timestamp, so as to enhance the information trans-
fer between timestamps. In addition, a residual
connection is added to the network between the
network inputs and outputs of each timestamp.

For RDGCN (Wu et al., 2019) that was designed
for entity alignment, in order to measure the plau-
sibility of a triple (s, r, o) for SKG completion,
we design a distance function consisting of type

5675

distance and semantic distance:

d(s, r, o) = dtype(s, r, o)+λ ·dseman(s, r, o) (8)

dtype(s, r, o) = |
[
X
E
s , X

E
o

]
−XR

r | (9)

dseman(s, r, o) = |(
[
X
E
s , X

E
o

]
−XR

r)[: d]

−(
[
X
E
s , X

E
o

]
−XR

r)[d :]|
(10)

where XE ∈ R|V |×d and XR ∈ R|V |×2d denotes
output entity and relation representations.

4.2 Enhancing TKGE models

Since existing TKGE models such as DE-SimplE
(Goel et al., 2019) and TComplEx (Lacroix et al.,
2020) for TKG completion follow the training pat-
tern of SKGE models (i.e., think of TKG as a whole
graph, not as a sequence of graphs), we can use
them as the embedding leaner of RTFE. Specifi-
cally, we think their own training process as the
preliminary training of RTFE. After TKGE models
finish their own training process, we use the ob-
tained features and parameters as the input to the
learning of the first timestamp. Then RTFE trains
the TKGE model recursively by equation (6) and
equation (7).

4.3 Extensibility for future timestamps

Since RTFE embeds each timestamp recursively,
transforming form current state to the next state,
it provides a way to complete upcoming future
timestamps. Specifically, given a sequence of ob-
served graphs of a TKG: Gobs = {Gt1 , . . . , Gtn}
and a sequence of upcoming future graphs: Gfut =
{Gtn+1 , . . . , Gtn+j}. We pre-train RTFE on Gobs,
then embeds timestamp recursively to obtain the
latest features Xtn and parameters θtn . To com-
plete Gtn+1 , we use equation (6) to equation (7) to
obtain Xtn+1 and θtn+1 similarly. Then graphs of
Gfut can also be completed in this recursive way,
without retraining of Gobs.

5 Experiment

5.1 Experimental setup

Dataset: We evaluated models on two fact
datasets proposed by Hyte (Dasgupta et al.,
2018): YAGO11k and Wikidata12k and three event
datasets ICEWS14, ICEWS05-15 and GDELT

(Goel et al., 2019). The details of the five datasets
are illustrated in appendix.
Evaluation settings and metrics: For entity pre-
diction, we used mean reciprocal rank (MRR) and
Hits@1, Hits@3, Hits@10 as metrics. Hits@n
is defined as:

Hits@n =

∑
fact∈test_set bool(rank(fact) ≤ n)

|test_set|

For relation prediction, we used mean rank
(MR) =

∑
fact∈test_set rank(fact)≤n

#test_set and Hits@1
as metrics since the number of relations is small.
The rank of a test triple is obtained by replacing its
head/tail/relation with remaining negative samples,
and then evaluating the score rank of the original
triple in all the replacement samples. Mean rank
(MR) is the average rank of all test triples. And
Mean reciprocal rank (MRR) is the average of the
reciprocal ranks.

For our RTFE framework, a timestamp-by-
timestamp train-test mode was adopted. The total
test result was a weighted average of all timestamp
test results. For example, the final MRR was cal-
culated as:

MRRall =

∑
i |Gti | ×MRRGti∑

i |Gti |

Baselines: We compared our framework RTFE to
state-of-the-art TKGE models including t-TransE
(Jiang et al., 2016a), Hyte (Dasgupta et al., 2018),
DE-SimplE (Goel et al., 2019), ATiSE (Xu et al.,
2019), TComplEx (Lacroix et al., 2020) for
TKG completion. Then we used several state-
of-the-art SKGE models including TransE (Bor-
des et al., 2013), TransD (Ji et al., 2015), RGCN
(Schlichtkrull et al., 2018), RDGCN (Wu et al.,
2019), RotatE (Sun et al., 2019) and HAKE (Zhang
et al., 2020) as the embedding learner of RTFE to
perform TKG completion as well. And finally we
use TKGE models as the embedding learner of
RTFE to show the gain of performance.

5.2 Entity prediction
Entity prediction is given a quadruple (s, r, o, t), to
perform head entity prediction (i.e., to predict the
plausibility of (?, r ,o, t)) , and performs tail entity
prediction (i.e., to predict the plausibility of (s, r, ?,
t)). The plausibility of (s, r, o, t) is ranked among all
corrupted quadruples, while all true quadruples are
excluded according to TransE’s filtering protocol.
The experimental results are shown in Table 1 and

5676

Dataset Wikidata12k YAGO11k

Metric
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

tail head tail head tail head tail head tail head tail head tail head tail head
t-TransE* 17.2 9.6 18.4 32.9 10.8 2.0 15.0 25.1

Hyte 21.4 14.3 12.0 8.0 23.6 14.5 41.8 26.1 14.7 6.0 2.9 0.2 19.9 9.1 35.0 13.4
ATiSE* 28.0 17.5 31.7 48.1 17.0 11.0 17.1 28.8

TComplEx 44.9 29.5 29.9 21.2 55.8 31.8 67.4 47.6 32.4 18.0 22.7 13.5 35.7 17.1 52.2 27.1
RTFE-TransE 36.4 14.1 20.1 5.6 47.3 13.6 67.6 33.4 19.8 7.6 6.3 0.4 27.0 13.1 42.5 14.6
RTFE-TransD 33.0 7.2 18.1 2.8 45.1 8.0 63.1 18.5 18.9 9.6 3.7 0.5 26.5 14.7 46.2 22.1
RTFE-RGCN 27.6 15.6 20.8 8.6 30.8 17.4 41.2 31.9 20.3 14.8 16.4 12.5 21.2 14.5 28.1 19.0

RTFE-RDGCN 43.5 17.0 36.2 13.2 46.7 18.6 58.1 23.9 20.9 10.0 8.8 2.6 27.1 13.3 43.0 21.5
RTFE-RotatE 44.6 27.8 34.0 19.0 52.7 31.9 63.3 45.9 28.9 18.5 19.8 14.3 32.0 18.1 47.9 27.0
RTFE-HAKE 35.7 27.3 24.7 19.4 43.1 30.0 54.6 42.7 30.8 20.0 20.8 14.6 34.1 19.8 52.3 31.3

RTFE-TComplEx 52.2 38.6 42.6 30.6 59.7 42.0 68.6 55.2 32.9 18.7 23.5 14.1 35.9 17.9 52.7 28.2

Table 1: Entity prediction on continuous fact datasets: YAGO11k and Wikidata12k. Since the relations of these 2
datasets have typical “one-to-many” nature, the performance of tail prediction is better than that of head prediction.

Dataset ICEWS14 ICEWS05-15 GDELT
Metric MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

t-TransE* 25.5 7.4 – 60.1 27.1 8.4 – 61.6 11.5 0.0 16.0 31.8
Hyte* 29.7 10.8 41.6 65.5 31.6 11.6 44.5 68.1 11.8 0.0 16.5 32.6

DE-SimplE 52.6 41.8 59.2 72.5 51.3 39.2 57.8 74.8 23.0 14.1 24.8 40.3
ATiSE* 54.5 42.3 63.2 75.7 51.9 37.8 60.6 79.4 – – – –

TComplEx 54.7 44.5 60.8 73.2 58.3 48.0 65.0 78.7 21.7 12.8 23.1 37.2
RTFE-RotatE 45.1 30.1 55.8 70.8 35.9 12.5 54.0 72.4 35.7 24.8 39.7 57.9
RTFE-HAKE 50.3 40.2 55.7 70.0 47.1 37.0 54.0 64.5 50.2 43.8 52.8 62.0

RTFE-DE-SimplE 57.3 49.4 62.1 71.7 58.7 50.6 63.7 73.0 42.9 35.9 45.5 55.9
RTFE-TComplEx 59.2 50.3 64.6 75.8 64.5 55.3 70.6 81.1 29.7 21.2 31.9 46.4

Table 2: Entity prediction on discrete event datasets: ICEWS14, ICEWS05-15 and GDELT.

Table 2 where results marked (*) are taken from
reported results of Hyte and ATiSE.

Table 1 shows that on continuous fact datasets,
both translation-based and graph neural network-
based methods can be transplanted to RTFE, and
the results are better than Hyte, indicating the gen-
erality and superiority of RTFE. For both TransE-
based approaches, RTFE-TransE outperforms Hyte
on all metrics (e.g., with the improvement of 15.0%
in tail MRR on Wikidata12k) because RTFE takes
advantage of the continuity of facts directly.

RotatE and HAKE are the most advanced
translation-based approaches and RTFE-RotatE or
RTFE-HAKE outperforms other methods, which
demonstrates that our framework can preserve the
excellent results of these methods over SKG. Be-
sides, the performance of state-of-the-art TKGE
model TComplEx is enhanced by RTFE, which
shows the gain from our recursive training pattern.

Table 2 shows that on discrete event datasets,
RTFE also significantly improves the performance
of TKGE models. Besides, on a dense dataset (i.e.,
with a small number of entities and a large number
of facts) like GDELT, RTFE can take advantage of
SKGE models such as HAKE.

5.3 Relation prediction

Relation prediction is given a quadruple (s, r, o,
t), to evaluate the plausibility of (s, ?, o, t). The
experimental results are shown in Table 3. RTFE-
RDGCNtype outperforms Hyte on YAGO11k that
has only 10 relations (e.g., with the improvement of
12.5% in Hits@1), which implies that type infor-
mation plays an important role in this task. Since
the number of relations between these two datasets
is relatively small (10 and 24), the performance
improvement is not obvious after adding semantic
information (e.g., with the improvement of 1.3% in
Hits@1).

Hyte performed well on Wikdata12k. This may
be attributed to its SKGE training pattern, which
helped to capture applicable relation types between
two entities from all the facts. In contrast, the
timestamp of RTFE is trained by time, so only the
facts of the current timestamp and information of
last timestamp are directly utilized. To provide
RTFE-RDGCN with more training data about re-
lations, we added additional 30% negative sam-
ples obtained by replacing relations of quadruples
into the negative sample set: {(s, r′ , o)|(s, r, o) ∈

5677

21.6

26.1

23.2

26
24.1

26
24.6

25.8

0

5

10

15

20

25

30

RTFE-RotatE RTFE-TComplEX

M
R

R
YAGO11k

[0, 30) [0, 40) [0, 50) [0, 60)

36.8

42.9

37.5

43.3

37.2

44.5

36.6

45.4

0

5

10

15

20

25

30

35

40

45

50

RTFE-RotatE RTFE-TComplEX

M
R

R

Wikidata12k
[0, 47) [0, 57) [0, 67) [0, 77)

44.7

56.8

45.1

57.8

44.9

58.4

45.1

59.2

0

10

20

30

40

50

60

70

RTFE-RotatE RTFE-TComplEX

M
R

R

ICEWS14
[0, 100) [0, 200) [0, 300) [0, 365)

36

63.8

35.7

64.6

35.8

64.6

35.9

64.5

0

10

20

30

40

50

60

70

RTFE-RotatE RTFE-TComplEX

M
R

R

ICEWS05-15
[0, 1000) [0, 2000) [0, 3000) [0, 4016)

35.8

29.8

35.6

29.9

35.6

30.8

35.7
33.2

0

5

10

15

20

25

30

35

40

RTFE-RotatE RTFE-TComplEX

M
R

R

GDELT
[0, 100) [0, 200) [0, 300) [0, 365)

YAGO11k
Pre-train

time
[0, 30) [0, 40) [0, 50) [0, 60)

#facts 3941 6281 9059 12036

Wikidata
12kz

Pre-train
time

[0, 47) [0, 57) [0, 67) [0, 77)

#facts 5826 7813 12257 16372

ICEWS14
Pre-train

time
[0, 100) [0, 200) [0, 300) [0, 365)

#facts 13299 25028 35794 42690

ICEWS
05-15

Pre-train
time

[0,
1000)

[0,
2000)

[0,
3000)

[0,
4016)

#facts 47611 83971 110859 142771

GDELT
Pre-train

time
[0, 100) [0, 200) [0, 300) [0, 365)

#facts 288609 470970 602006 687326

Figure 3: Extensibility validation experiment. Using equation (4) to convert TKG to SKG, different time intervals
of TKG are used for pre-training. Then all timestamps are trained and tested to validate the extensibility for
timestamps unseen during pre-training. The horizontal axis represents the time interval for pre-training and the
ordinate represents the MRR of test results for all timestamps.

Dataset YAGO11k Wikidata12k
Metric MR Hits@1 MR Hits@1

TransE* 1.70 78.4 1.35 88.4
TransH* 1.53 76.1 1.40 88.1
HoIE* 2.57 69.3 2.23 84.0

t-TransE* 1.66 75.5 1.97 74.2
Hyte* 1.23 81.2 1.13 92.6

RTFE-TransE 1.43 84.1 1.88 73.7
RTFE-RDGCNtype 1.19 93.7 1.77 82.9

RTFE-RDGCN 1.11 95.0 1.36 83.2
RTFE-RDGCNrel 1.10 96.4 1.20 92.3

Table 3: Relation prediction. For RTFE-RDGCNtype,
λ is set to 0, which only considered type distance. For
RTFE-RDGCN, λ is set to 0.2.

Gt, (s, r
′
, o) /∈ G}. We call this variant RTFE-

RDGCNrel, which improves the performance of
relation prediction on Wikidata12k compared with
RTFE-RDGCN (with the improvement of 9.1% in
Hits@1).

5.4 Extensibility validation

In order to verify the influence of pre-trained static
features on RTFE’s entire TKG completion, we
divide timestamps into four time intervals and per-
form pre-training of RTFE on them respectively.
Then the pre-trained static features of these time

intervals are used as inputs to RTFE to test the
performance of entity prediction at all timestamps.

The experimental results are presented in Figure
3. Although a complete SKG is not provided for
pre-training, RTFE still remains a similar perfor-
mance, which verifies the framework’s extensibility
for future timestamps. So RTFE can be extended
to future timestamps to some extent, without the re-
training of former timestamps, which shows good
lightness and immediacy.

5.5 Ablation study

In this subsection, we explore the effects of pre-
liminary training and recursive training. w/o pre-
train refers to RTFE without preliminary training
for static futures (i.e., only recursive training). As
shown in Table 4, RTFE generally outperforms w/o
pre-train, which verfies the significance of prelim-
inary training. For TKGE models, w/o pre-train is
generally competitive with them. With preliminary
training, RTFE gets a good starting point. So RTFE
outperforms the original TKGE models.

However, it’s interesting to find that on GDELT
w/o pre-trains outperform RTFE-DE-SimpleE and
RTFE-TComplEx. This can be attributed to the
special denseness of this dataset. RTFE can fit each
timestamp well with its enough facts and recursive

5678

Dataset Wikidata12k YAGO11k ICEWS14 ICEWS05-15 GDELT
Metric MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1

RTFE-RotatE 36.2 22.1 23.7 17.1 45.1 30.1 35.9 12.5 35.7 24.8
w/o pre-train 27.5 21.2 20.1 16.4 33.0 17.6 35.7 16.0 32.5 20.3

DE-SimplE - - - - 52.6 41.8 51.3 39.2 23.0 14.1
RTFE-DE-SimplE - - - - 57.3 49.4 58.7 50.6 42.9 35.9

w/o pre-train - - - - 48.5 42.6 53.1 46.8 44.7 37.9
TComplEx 37.2 26.6 25.2 18.1 54.7 44.5 58.3 48.0 21.7 12.8

RTFE-TComplEx 45.4 36.6 25.8 18.8 59.2 50.3 64.5 55.3 29.7 21.2
w/o pre-train 41.9 34.4 26.5 20.0 54.4 41.6 63.2 54.1 34.2 25.9

Table 4: Ablation study. w/o pre-train refers to RTFE without preliminary training for static futures.

training. Pre-training provides a local optimum of
all timestamps. In this case, it’s not as good as the
random initialization of the first timestamp

6 Related work

There are two kinds of facts in the TKGs: contin-
uous facts and discrete events. Continuous facts
have temporal attributes (since. . . is true, until. . .
ends) like (Obama, President, United States, 2009-
2016). And discrete events have temporal attributes
(happens at. . .) like (Obama, Inaugurated as, Pres-
ident, 2009).

In recent years, some work (Jiang et al., 2016a;
Esteban et al., 2016; Tresp et al., 2017; Trivedi
et al., 2017; García-Durán et al., 2018; Jain et al.,
2020; Ma et al., 2019; Xu et al., 2019; Jin et al.,
2019; Liu et al., 2019; Wang and Li, 2019; Tang
et al., 2020; Goel et al., 2019; Xu et al., 2020; Jain
et al., 2020; Lacroix et al., 2020;) began to use the
time information to improve the KG completion
or directly complete the TKG. Based on the fact
or event they dealt with, we state representative
TKGE methods as follows.

(1) Event completion: DE (Goel et al., 2019)
made the entity embedding into a function DEEMB
that takes the time point as a variable. While DE
transplanted SKG embedding methods to TKGs, it
didn’t involve recent GNN-based SKG embedding
methods. TComplEx (Lacroix et al., 2020) pre-
sented an extension of Complex (Trouillon et al.,
2016) by adding timestamp embedding into de-
composition of tensors of order 4. ATiSE (Xu
et al., 2019) incorporated time information into
entity/relation representations by using Additive
Time Series decomposition.

(2) Event prediction: (Esteban et al., 2016)
trained an event prediction model by using back-
ground information provided by KG and recent
events. RE-NET (Jin et al., 2019) models the event

sequence as a temporal joint probability distribu-
tion. The method is trained on historical data and
then, by sampling from the probability distribution,
predicts the events of the future timestamp graph.
GHNN (Han et al., 2020) used Hawkes process to
capture the dynamic of evolving graph sequences.
Glean (Deng et al., 2020) incorporated both re-
lational and world contexts to capture historical
information.

(3) Continuous fact completion: (Jiang et al.,
2016a; Jiang et al., 2016b) used the order of rela-
tions and temporal consistency constraints to im-
prove completion but did not make the embedding
space directly contain time information. (García-
Durán et al., 2018) used RNN to learn the represen-
tation of temporal relations, but did not consider
that the embedding of entities should also change
over time. Hyte (Dasgupta et al., 2018) represented
timestamps as hyperplanes, and projected the en-
tities and relations onto these hyperplanes. Then,
the facts of all timestamps are learned jointly using
a translation-based score function.

7 Conclusion

We propose a framework RTFE for TKG com-
pletion. We have transplanted SKGE models to
TKGs and enhance the performance of existing
TKGE models. Experiments show that on five
TKG datasets RTFE outperformed baselines and is
extensible for future timestamps to some extent.

In the future, we will further deal with discrete
events. Since events with adjacent timestamps are
correlated, we plan to modify RTFE so that it can
learn correlations (especially causality) of events.
By modeling spatio-temporal dependency of TKG,
events in future timestamps can be forecasted. Be-
sides, we plan to deal with the task of predicting
time validity of facts (Leblay and Chekol, 2018).

5679

Acknowledgements

This work was supported in part by the Na-
tional Science Foundation of China (Grant No.
61902034); Engineering Research Center of In-
formation Networks, Ministry of Education.

References
Antoine Bordes, Nicolas Usunier, Alberto Garcia-

Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787–2795.

Shib Sankar Dasgupta, Swayambhu Nath Ray, and
Partha Talukdar. 2018. Hyte: Hyperplane-based
temporally aware knowledge graph embedding. In
Proceedings of the 2018 conference on empiri-
cal methods in natural language processing, pages
2001–2011.

Songgaojun Deng, Huzefa Rangwala, and Yue Ning.
2020. Dynamic knowledge graph based multi-
event forecasting. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1585–1595.

Cristóbal Esteban, Volker Tresp, Yinchong Yang,
Stephan Baier, and Denis Krompaß. 2016. Predict-
ing the co-evolution of event and knowledge graphs.
In 2016 19th International Conference on Informa-
tion Fusion (FUSION), pages 98–105. IEEE.

Alberto García-Durán, Sebastijan Dumančić, and
Mathias Niepert. 2018. Learning sequence encoders
for temporal knowledge graph completion. arXiv
preprint arXiv:1809.03202.

Sankalp Garg, Navodita Sharma, Woojeong Jin, and Xi-
ang Ren. 2020. Temporal attribute prediction via
joint modeling of multi-relational structure evolu-
tion. arXiv preprint arXiv:2003.03919.

Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker,
and Pascal Poupart. 2019. Diachronic embedding
for temporal knowledge graph completion. arXiv
preprint arXiv:1907.03143.

Zhen Han, Yunpu Ma, Yuyi Wang, Stephan Günne-
mann, and Volker Tresp. 2020. Graph hawkes neu-
ral network for forecasting on temporal knowledge
graphs. In 8th Automated Knowledge Base Con-
struction (AKBC).

Jinjing Huang, Wei Chen, An Liu, Weiqing Wang,
Hongzhi Yin, and Lei Zhao. 2020. Cluster query:
a new query pattern on temporal knowledge graph.
World Wide Web, 23(2):755–779.

Prachi Jain, Sushant Rathi, Soumen Chakrabarti, et al.
2020. Temporal knowledge base completion: New
algorithms and evaluation protocols. arXiv preprint
arXiv:2005.05035.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun
Zhao. 2015. Knowledge graph embedding via dy-
namic mapping matrix. In Proceedings of the 53rd
annual meeting of the association for computational
linguistics and the 7th international joint conference
on natural language processing (volume 1: Long pa-
pers), pages 687–696.

Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Baobao
Chang, Sujian Li, and Zhifang Sui. 2016a. Towards
time-aware knowledge graph completion. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 1715–1724.

Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Sujian Li,
Baobao Chang, and Zhifang Sui. 2016b. Encoding
temporal information for time-aware link prediction.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2350–2354.

Woojeong Jin, He Jiang, Meng Qu, Tong Chen,
Changlin Zhang, Pedro Szekely, and Xiang Ren.
2019. Recurrent event network: Global structure
inference over temporal knowledge graph. arXiv
preprint arXiv:1904.05530.

Seyed Mehran Kazemi and David Poole. 2018. Simple
embedding for link prediction in knowledge graphs.
In Advances in neural information processing sys-
tems, pages 4284–4295.

Timothée Lacroix, Guillaume Obozinski, and Nico-
las Usunier. 2020. Tensor decompositions for tem-
poral knowledge base completion. arXiv preprint
arXiv:2004.04926.

Julien Leblay and Melisachew Wudage Chekol. 2018.
Deriving validity time in knowledge graph. In
Companion Proceedings of the The Web Conference
2018, pages 1771–1776.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Y Liu, and
X Zhu. 2015. Learning entity and relation em-
beddings for knowledge graph completion, 2015.
Google Scholar Google Scholar Digital Library Dig-
ital Library.

Yu Liu, Wen Hua, Kexuan Xin, and Xiaofang Zhou.
2019. Context-aware temporal knowledge graph
embedding. In International Conference on Web
Information Systems Engineering, pages 583–598.
Springer.

Yunpu Ma, Volker Tresp, and Erik A Daxberger. 2019.
Embedding models for episodic knowledge graphs.
Journal of Web Semantics, 59:100490.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European Semantic Web Confer-
ence, pages 593–607. Springer.

5680

Avirup Sil and Silviu Cucerzan. 2014. Towards tem-
poral scoping of relational facts based on wikipedia
data. In Proceedings of the Eighteenth Confer-
ence on Computational Natural Language Learning,
pages 109–118.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embed-
ding by relational rotation in complex space. arXiv
preprint arXiv:1902.10197.

Xiaoli Tang, Rui Yuan, Qianyu Li, Tengyun Wang,
Haizhi Yang, Yundong Cai, and Hengjie Song. 2020.
Timespan-aware dynamic knowledge graph embed-
ding by incorporating temporal evolution. IEEE Ac-
cess, 8:6849–6860.

Volker Tresp, Yunpu Ma, Stephan Baier, and Yinchong
Yang. 2017. Embedding learning for declarative
memories. In European Semantic Web Conference,
pages 202–216. Springer.

Rakshit Trivedi, Hanjun Dai, Yichen Wang, and
Le Song. 2017. Know-evolve: Deep temporal
reasoning for dynamic knowledge graphs. arXiv
preprint arXiv:1705.05742.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. International
Conference on Machine Learning (ICML).

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Aaai, volume 14, pages
1112–1119. Citeseer.

Zhihao Wang and Xin Li. 2019. Hybrid-te: Hybrid
translation-based temporal knowledge graph embed-
ding. In 2019 IEEE 31st International Conference
on Tools with Artificial Intelligence (ICTAI), pages
1446–1451. IEEE.

Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Rui
Yan, and Dongyan Zhao. 2019. Relation-aware en-
tity alignment for heterogeneous knowledge graphs.
arXiv preprint arXiv:1908.08210.

Chengjin Xu, Mojtaba Nayyeri, Fouad Alkhoury, Jens
Lehmann, and Hamed Shariat Yazdi. 2019. Tem-
poral knowledge graph embedding model based on
additive time series decomposition. arXiv preprint
arXiv:1911.07893.

Chengjin Xu, Mojtaba Nayyeri, Fouad Alkhoury,
Hamed Shariat Yazdi, and Jens Lehmann. 2020.
Tero: A time-aware knowledge graph embed-
ding via temporal rotation. arXiv preprint
arXiv:2010.01029.

Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie
Wang. 2020. Learning hierarchy-aware knowledge
graph embeddings for link prediction. In AAAI,
pages 3065–3072.

5681

Type Dataset #Entity #Relation #Timestamp #Train #Validation #Test

Fact
YAGO11k 10623 10 60 203858 21763 21159
Wikida12k 12554 24 77 239928 18633 17616

Event
ICEWS14 7128 230 365 72826 8941 8963

ICEWS05-15 10488 251 4017 368962 46275 46092
GDELT 500 20 366 2735685 341961 341961

Table 5: Statistics on YAGO11k, Wikidata12k, ICEWS14, ICEWS05-15, and GDELT.

Model Entity dim Relation dim Batchsize Neg ratio Leanring rate Pre-train epochs Epochs per time
TransE 300 300 #triplets/100 1 0.01 ≤ 1000 ≤ 200
TransD 50 50 200 1 0.0001 5000 200
RGCN 500 500× 500 1400 10 0.001 ≤ 6000 ≈ 2000

RDGCN 150 300 Full batch 10;50 0.001 1000 100;200
RotatE 2000 1000 1024 256 0.0001 6000 300

DE-SimplE 100 100 512 500 0.001 500 100
TComplEx 256 256 1000 0 0.01 50 20

Table 6: Parameter settings of embedding models.

A Details of datasets

In YAGO11k and Wikidata12k, each fact was for-
matted as (s, r, o, start_date, end_date). Follow-
ing the step of Hyte to divide the timestamps, we
used a year with more than 300 occurrences as the
timestamp boundary. So the timestamp could be
formatted as (year, the next year with more than
300 occurrences). Then, the facts were divided into
these timestamps to get the set of quadruples (s, r,
o, t), where t represents the timestamp of the fact
(A original fact can appear in multiple adjacent
timestamps after decomposition). The statistics of
the five datasets are illustrated in Table 5.

B Examples of feature X in RTFE

Feature X refers to the input vectors of en-
tites/relations. E.g., for RGCN (Schlichtkrull et al.,
2018), feature X refers to the input hidden state
h(0) at layer 0; For TransE (Bordes et al., 2013),
feature X refers to the embeddings.

C Parameter settings

The same parameters are used for the SKGE
method and its corresponding RTFE version. Their
main parameters are shown in Table 6. Besides,
for TransE, the number of batches is set to 100.
For RGCN, dropout ratio is set to 0.2; the number
of GCN layer is set 2 and a res-net layer is added
between the two RGCN layers. For RDGCN, λ is
set to 0.2.

