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Abstract

Generative models for dialog systems have
gained much interest because of the recent
success of RNN and Transformer based mod-
els in tasks like question answering and sum-
marization. Although the task of dialog re-
sponse generation is generally seen as a se-
quence to sequence (Seq2Seq) problem, re-
searchers in the past have found it challeng-
ing to train dialog systems using the standard
Seq2Seq models. Therefore, to help the model
learn meaningful utterance and conversation
level features, Sordoni et al. (2015b); Serban
et al. (2016) proposed Hierarchical RNN ar-
chitecture, which was later adopted by sev-
eral other RNN based dialog systems. With
the transformer-based models dominating the
seq2seq problems lately, the natural question
to ask is the applicability of the notion of hi-
erarchy in transformer based dialog systems.
In this paper, we propose a generalized frame-
work for Hierarchical Transformer Encoders
and show how a standard transformer can be
morphed into any hierarchical encoder, includ-
ing HRED and HIBERT like models, by us-
ing specially designed attention masks and po-
sitional encodings. We demonstrate that Hi-
erarchical Encoding helps achieve better nat-
ural language understanding of the contexts in
transformer-based models for task-oriented di-
alog systems through a wide range of experi-
ments. The code and data for all experiments
in this paper has been open-sourced1 2.

1 Introduction

Dialog systems are concerned with replicating the
human ability to make conversation. In a genera-
tive dialog system, the model aims at generating
coherent and informative responses given a dialog

∗Equal Contributions
1Experiments in this paper: https://github.com/

bsantraigi/HIER
2PyTorch implementation of Hierarchical Transformer

Encoder: https://github.com/bsantraigi/
hier-transformer-pytorch

context and, optionally, some external information
through knowledge bases (Wen et al., 2017) or an-
notations e.g. belief states, dialog acts etc. (Chen
et al., 2019; Zhao et al., 2017).

A dialog is usually represented as a series of ut-
terances. However, it is not sufficient to view each
utterance independently for engaging in a conver-
sation. In a dialogue between humans, the speakers
communicate both utterance level and dialog level
information. E.g., dialog intent often cannot be de-
tected by looking at a single utterance, whereas di-
alog acts are specific to each utterance and change
throughout a conversation. Intuitively, we can in-
struct the model to achieve both utterance level
and dialog level understanding separately through
a hierarchical encoder (Serban et al., 2016).

There has been a lot of interest in the past
towards using the Hierarchical Encoder-Decoder
(HRED) model for encoding utterances in many
RNN based dialog systems. However, since the
rise of Transformers and self-attention (Vaswani
et al., 2017), the use of hierarchy has not been ex-
plored further for transformer-based dialog models.
Past research and user-studies have also shown that
hierarchy is an important aspect of human conver-
sation (Jurafsky, 2000). But, most previous works
based on transformer have focused on training mod-
els either as language models (Budzianowski and
Vulić, 2019; Zhang et al., 2020b) or as standard
(non-hierarchical) Seq2Seq models (Chen et al.,
2019; Zhang et al., 2020a; Wang et al., 2020) with
certain task specific extensions. Although arguably,
the self-attention mechanism might automatically
learn such a scheme during the training process,
our empirical results show that forcing this induc-
tive bias by manual design as proposed here leads
to better performing models.

This paper bridges these two popular approaches
of transformers and hierarchical encoding for di-
alogs systems to propose a family of Hierarchical
Transformer Encoders. Although arguably, the self-

https://github.com/bsantraigi/HIER
https://github.com/bsantraigi/HIER
https://github.com/bsantraigi/hier-transformer-pytorch
https://github.com/bsantraigi/hier-transformer-pytorch
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attention mechanism of standard encoders might
automatically learn such a scheme during the train-
ing process, our empirical results show that forcing
this inductive bias by manual design as proposed
here leads to better performing models. Our contri-
butions in this paper include:

• We propose a generalized framework for hier-
archical encoders in transformer based mod-
els that covers a broader range of architec-
tures including existing encoding schemes
like HRED/HIBERT (Zhang et al., 2019) and
possibly other novel variants. We call mem-
bers of this family of hierarchical transformer
encoders as an HT-Encoder.

• Then, we formulate a straightforward algo-
rithm for converting an implementation of
standard transformer encoder into an HT-
Encoder by changing the attention mask and
the positional encoding.

• Building upon that, we show how an
HRED/HIBERT like hierarchical encoder
(HIER-CLS) can be implemented using our
HT-Encoder framework.

• We also showcase a novel HT-Encoder based
model, called HIER, with a context encod-
ing mechanism different from HRED. We
show that these simple HT-Encoder based
baselines achieve at par or better performance
than many recent models with more sophis-
ticated architectures or training procedures.
We make a thorough comparison with many
recently proposed models in four different ex-
perimental settings for dialog response gener-
ation task.

• We further apply HT-Encoder to a state-of-the-
art model, Marco (Wang et al., 2020), for task-
oriented dialog systems and obtain improved
results.

2 Models

Formally, the task of a dialog system is to pre-
dict a coherent response, r, given a dialog con-
text c. In case of a goal oriented dialog sys-
tem, context c might consist of dialog history,
Ct = [U1, S1, ..., Ut], and optionally a belief state
(dialog act, slot values, intent etc.) bt, when avail-
able. Here, Ui, Si represent the user and system
utterances at turn i, respectively. The actual target
response following Ct is the system utterance St.

Global
Positional
Encoding

+ + + + + +

Local
Positional
Encoding

+

Shared
Encoders

+ + +

Context
Encoder

Contextual	Embedding	for	all	tokens
in	context

+

Figure 1: Detailed architecture for a Hierarchical
Transformer Encoder or HT-Encoder: The main in-
ductive bias incorporated in this model is to encode the
full dialog context hierarchically in two stages. This
is done by the two encoders, 1) Shared Utterance En-
coder (M layers) and 2) Context Encoder (N layers), as
shown in the figure. Shared encoder first encodes each
utterance (u1, u2, . . . , ut) individually to extract the ut-
terance level features. The same parameterized Shared
Encoder is used for encoding all utterances in the con-
text. In the second Context Encoder the full context
is encoded using a single transformer encoder for ex-
tracting dialog level features. The attention mask in
context encoder decides how the context encoding is
done and is a choice of the user. This one depicted
in the figure is for the HIER model described in Sec-
tion 2.3. Only the final utterance in the Context En-
coder gets to attend over all the previous utterances as
shown. This allows the model to have access to both
utterance level features and dialog level features till the
last layer of the encoding process. Notation: Utterance
i, ui = [wi1, . . . , wi|ui|], wij is the word embedding
for jth word in ith utterance.

2.1 Hierarchical Transformer Encoders
(HT-Encoder)

Like the original HRED architecture, HT-Encoder
also has two basic components, a shared utterance
encoder and the context encoder. Shared utterance
encoder, or the Shared Encoder in short, is the
first phase of the encoding process where each ut-
terance is processed independently to obtain utter-
ance level representations. In the second phase, the
Context Encoder is used to process the full con-
text together. These context level representations
are then used for the tasks like dialog state tracking
or response generation. We propose two different
types of Hierarchical Encoding schemes for the
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transformer model.

1. HIER-CLS: When Serban et al. (2016) em-
ployed a hierarchical encoder for dialog contexts,
they obtained a single representative embedding,
usually the final hidden state of an RNN, for each
utterance. Similarly, in HIER-CLS, the context en-
coder utilizes only a single utterance embedding
for each utterance. We do this by taking the con-
textual embedding of the first token (often termed
as the “CLS” token in transformer based models)
of each utterance.

2. HIER: Recent works have shown the impor-
tance of contextual word embeddings. In HIER,
we consider contextual embedding of all utterance
tokens as input to the context encoder. We sim-
ply concatenate the whole sequence of contextual
embeddings and forward it to the context encoder.

2.2 Conversion Algorithm: Standard
Encoder to HT-Encoder

In this section, we show how the two-step process
of hierarchical encoding can be achieved using a
single standard transformer encoder. If we want to
have an M layer utterance encoder followed by an
N layer context encoder, we start with an (M+N)
layer standard encoder. Then by applying two sep-
arate masks as designed below, we convert the stan-
dard encoder into an HT-encoder. First, we need
to encode the utterances independently. Within
the self-attention mechanism of a transformer en-
coder, which token gets to attend to which other
tokens is controlled by the attention mask. If we
apply a block-diagonal mask, each block of size
same as the length of utterances (as shown in Fig-
ure 2 bottom-left), to the concatenated sequence
of tokenized utterances, we effectively achieve the
same process of utterance encoding. We call this
block-diagonal mask for utterance encoding the
UT-mask.

Similarly, another attention mask (CT-Mask)
can explain the context encoding phase that allows
tokens to attend beyond the respective utterance
boundaries. See the two matrices on Figure 2’s
right for examples of such CT-Masks. From here,
it can be quickly concluded that if we apply the
UT-Mask for the first few layers of the encoder and
the CT-Mask in the remaining few layers, we effec-
tively have a hierarchical encoder. The CT-Mask
also gives us more freedom on what kind of global
attention we want to allow during context encod-
ing. Positional encoding is applied once before

utterance encoder (local PE) and once more before
context encoder (global PE).

UT-Mask CT-Mask (HIER)

CT-Mask (HIER-CLS)

Figure 2: Example of UT-Mask (A for the given CI )
and CT-Masks. Blue cells: 1, White cells: 0. Bottom
left is the UT-Mask and on the right are CT-Masks for
HIER-CLS(top) and HIER(bottom). In this example,
the context comprises of three utterances of lengths 0, 1
and 2, respectively. CI indicates which utterance each
of the tokens belongs to. The entries in PI denotes the
relative position of each token with respect to utterance
corresponding to it.

UT-Mask and Local Positional Encoding The
steps for obtaining the UT-Mask and positional en-
coding for the utterance encoder are given below
and is accompanied by Figure 2. C is the dialog
context to be encoded. wij is the jth token of ith ut-
terance. In CI , each index i is repeated |ui| (length
of ui) times. And CIR is a square matrix created
by repeating CI . PI has the same dimensions as
CI , and it stores the position of each token wij in
context C, relative to utterance ui. P : I 7→ Rd is
the positional encoding function that takes an in-
dex (or indices) and returns their d-dim positional
embedding. A is the UT-Mask for the given con-
text C and their utterance indices CI . An example
instance of this process is given in Figure 2. 1(.) is
an indicator function that returns true when the in-
put logic holds, and is applied to a matrix or vector
element-wise.

C = [w11, w12, ..., wT lT ]

CI = [0, . . . , 0, 1, . . . , 1, . . . , T ]

PI = [0, 1, . . . , l1 − 1, 0, . . . , l2 − 1, . . . , lT − 1]

CIR = repeat(CI , len(CI), 0)

A = 1
(
2CIR == (CT

IR + CIR)
)

Pc = P[PI , :]
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Figure 3: The proposed architecture for the hierarchical
transformer: (a) HIER: when the belief states are not
available and (b) HIER++: when the belief states are
available.

CT-Masks for Models The attention masks for
context encoding depends on the choice for model
architecture. We provide the details of the architec-
tures and their attention masks used in our exper-
iments in the subsequent section. There are other
masks possible, but these are the ones we found to
be working best in their respective settings.

2.3 Model Architectures

We propose several model architectures to test the
effectiveness of the proposed HIER-Encoder in var-
ious experimental settings. These architectures are
designed to fit well with the four experimental set-
tings (see Section 3.1) of the response generation
task of the MultiWOZ dataset in terms of input and
output.

The tested model architectures are as follows.
Using the HIER encoding scheme described in
Section 2.1, we test two model architectures for
response generation, namely HIER and HIER++.

HIER: HIER is the most straightforward model
architecture with an HT-Encoder replacing the en-
coder in a Transformer Seq2Seq. The working of
the model is shown in Figure 3a. First, in the ut-
terance encoding phase, each utterance is encoded
independently with the help of the UT-Mask. In the
second half of the encoder, we apply a CT-Mask
as depicted by the figure’s block attention matrix.

Block Bij is a matrix which, if all ones, means that
utterance i can attend to utterance j’s contextual
token embeddings. The local and global positional
encodings are applied, as explained in Section 2.2.
A standard transformer decoder follows the HT-
Encoder for generating the response.

The CT-Mask for HIER was experimentally ob-
tained after trying a few other variants. The intu-
ition behind this mask was that the model should re-
ply to the last user utterance in the context. Hence,
we design the attention mask to apply cross atten-
tion between all the utterances and the last utter-
ance (see Figure 3a).

HIER++: HIER++ is the extended version of the
HIER model, as shown in Figure 3b, that also takes
the dialog act label as input. The dialog act repre-
sentation proposed in Chen et al. (2019) consists
of the domain, act, and slot values. A linear feed-
forward layer (FFN) acts as the embedding layer
for converting their 44-dimension multi-hot dia-
log act representation. The output embedding is
added to the input token embeddings of the de-
coder in HIER++ model. Similar to HDSA, we
also use ground truth dialog acts during training,
and predictions from a fine-tuned BERT model
during validation and testing. HIER++ is applied
to the Context-to-Response generation task of the
MultiWOZ dataset.

HIER-CLS: As described in Section 2.1, the en-
coding scheme of HIER-CLS is more akin to the
HRED (Chen et al., 2019) and HIBERT (Zhang
et al., 2019) models. It differs from HIER++ only
with respect to the CT-Mask.

Ablations To understand the individual impact
of UT-Mask and CT-Mask, we ran the same experi-
ments with the following model ablations.

1. SET: HIER without the context encoder. Each
utterance is encoded independently. It shows
the importance of context encoding. Effec-
tively, this model is only the shared utterance
encoder (SET) applied to each utterance inde-
pendently.

2. MAT: HIER without the utterance encoder.
This model only uses the context encoder as
per the context attention mask of Figure 3a.
As this is equivalent to a simple transformer
encoder with a special attention mask, we call
it the Masked Attention Transformer or MAT.
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3. SET++: An alternative version of SET with
dialog-act input to the decoder similar to
HIER++.

HIER-Joint: Finally, we propose the HIER-
Joint model3 suitable for the end-to-end response
generation task of the MultiWOZ dataset. The
HIER-Joint model comprises an HT-Encoder and
three transformer decoders for decoding belief state
sequence, dialog act sequence, and response. It is
jointly trained to predict all three sequences simul-
taneously. As belief state labels can help dialog-act
generation, and similarly, both belief and act labels
can assist response generation, we pass the token
embedding from the belief decoder and act decoder
to the response decoder. Act decoder receives mean
token embedding from the belief decoder too.

Model L H A E
SET 6/-/3 100 4 100
MAT -/4/6 200 5 100
HIER 3/3/3 100 4 100

SET++ 4/-/3 91 7 175
HIER++ 4/6/3 91 7 175

Table 1: Best Hyper-parameters: L: a/b/c = number of
layers in shared encoder/ Context Encoder / decoder, H
= hidden size, A = attention heads, E = embedding size.

3 Experimenal Framework

Our implementation is based on the PyTorch li-
brary. All the models use a vocabulary of size
1,505. We generate responses using beam search4

with beam width 5. The model optimizes a cross
entropy loss. Full details of model parameters are
given in suplementary material.

Dataset We use MultiWOZ5 (Budzianowski
et al., 2018), a multi-domain task-oriented dataset.
It contains a total of 10,400 English dialogs di-
vided into training (8,400), validation (1,000) and
test (1,000). Each turn in the dialog is considered
as a prediction problem with all utterances upto
that turn as the context.6

3Block diagram for HIER-Joint model has been provided
in supplementary material.

4https://github.com/OpenNMT/
OpenNMT-py/tree/master/onmt/translate

5MultiWOZ v2.0 https://github.com/
budzianowski/multiwoz/blob/master/data/
MultiWOZ_2.0.zip

6See supplementary for more details.

Baselines To fully grasp the effectiveness of our
proposed approaches, we consider several base-
line3 models with varying complexity and archi-
tectures. Token-MoE (Pei et al., 2019) is a token
level mixture-of-experts (MoE) model. It builds
upon the base architecture of LSTM-Seq2Seq with
soft attention. In the decoding phase, they employ
k expert decoders and a chair decoder network
which combines the outputs from the experts. Attn-
LSTM (Budzianowski et al., 2018) uses an LSTM
Seq2Seq model with attention on encoded context
utterance, oracle belief state and DB search results.
HRED (Serban et al., 2017) model is based on
the same idea of hierarchical encoding in RNN
Seq2Seq networks (results source: Peng et al.,
2019, 2020b). The transformer based baseline
(Vaswani et al., 2017) concatenates the utterances
in dialog context to obtain a single source sequence
and treats the task as a sequence transduction prob-
lem. HDSA (Chen et al., 2019) uses a dialog act
graph to control the state of the attention heads of
a Seq2Seq transformer model. Zhang et al. (2020a)
proposes to augment the training dataset by build-
ing up a one-to-many state-to-action map, so that
the system can learn a more balanced distribution
for the action prediction task. Using this method
they train a domain-aware multi-decoder (DAMD)
network for predicting belief, action and response,
jointly. As each agent response may cover multi-
ple domains, acts or slots at the same time, Marco
(Wang et al., 2020) learns to generate the response
by attending over the predicted dialog act sequence
at every step of decoding. SimpleTOD (Hosseini-
Asl et al., 2020) and SOLOIST (Peng et al., 2020a)
are both based on the GPT-2 (Radford et al., 2019)
architecture. The main difference between these
two architectures is that SOLOIST further pretrains
the GPT-2 model on two more dialog corpus before
fine-tuning on MultiWOZ dataset.

3.1 Task Settings:

Following the literature (Zhang et al., 2020a; Peng
et al., 2020a), we now consider four different set-
tings for evaluating the strength of hierarchical en-
coding.

1. No Annotations First, to simply gauge the
benefit of using a Hierarchical encoder in a Trans-
former Seq2Seq model, we compare the perfor-
mance of HIER to other baselines including HRED
and vanilla Transformer without any belief states
and dialog act annotations.

https://github.com/OpenNMT/OpenNMT-py/tree/master/onmt/translate
https://github.com/OpenNMT/OpenNMT-py/tree/master/onmt/translate
https://github.com/budzianowski/multiwoz/blob/master/data/MultiWOZ_2.0.zip
https://github.com/budzianowski/multiwoz/blob/master/data/MultiWOZ_2.0.zip
https://github.com/budzianowski/multiwoz/blob/master/data/MultiWOZ_2.0.zip
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2. Oracle Policy In this setting, several recently
proposed model architectures for the response gen-
eration task of MultiWOZ are compared against
each other in presence of ground truth belief state
and dialog act annotations. This experiment helps
us understand the models’ capabilities towards gen-
erating good responses (BLEU score) when true be-
lief state and(or) dialog acts are available to them.

3. Context-to-Response The model is given true
belief states and DB search results in this experi-
ment, but they need to generate the dialog act and
response during inference. Some of the baselines
generate dialog act as an intermediate step in their
architecture whereas others use a fine-tuned BERT
model.

4. End-to-End This is the most realistic evalu-
ation scheme where a model has to predict both
belief states and dialog act (or one of these as per
the models input requirement) for searching DB or
generating response.

3.2 Evaluation Metrics

We used the official evaluation metrics7 re-
leased by the authors of the MultiWOZ dataset
(Budzianowski et al., 2018): Delexicalized-BLUE
score, INFORM rate (measures how often the en-
tities provided by the system are correct), SUC-
CESS rate (reflects how often the system is able
to answer all the requested attributes), Entity-
F1 score (Wen et al., 2017) (measures the entity
coverage accuracy), and Combined Score (S =
BLEU+0.5×(Inform+Success)) to measure
the overall quality.

Training Cross-entropy losses over the ground
truth response and/or belief and act sequences are
used for the training the models. We did hyper-
parameter search using the Optuna library (Akiba
et al., 2019) by training the model upto 5 epochs.
Final models were trained 8 upto 30 epochs with
early stopping.

4 Results

For the four different experimental settings dis-
cussed in Section 3.1, we showcase results from
those experiments in Tables 2 through 5. Table 2
shows the results from our experiments when no

7https://github.com/budzianowski/
multiwoz

8A system with two Tesla P100 GPUs were used for train-
ing.

oracle is present. By comparing the performance of
Transformer, SET and MAT baselines against that
of HIER we can see that in each case HIER is able
to improve in terms of BLEU, Success and over-
all Score. HIER being better than SET and MAT
implies that only the UT-Mask or the CT-Mask is
not sufficient, the full scheme of HT-Encoder is
necessary for the improvement. The exception in
the improvements is the SET model which has the
highest inform score of 76.80. Although, we ob-
serve that it is the combination of the BLEU and
Inform score that depicts the real quality of the re-
sponses. As BLEU measures precision of n-grams
and inform measures recall of task related entities,
only when both metrics increase we get a better
performing model. This is reflected upto some ex-
tent in Entity-F1 score (H-Mean of entity recall
and precision), but it too ignores tokens other than
task related entities. So SET only having a higher
inform score may mean that it is over-predicting
some entities leading to improved recall.

In the Context-to-Response generation task with
oracle policy (Table 3), our HIER++ and HIER-
CLS models show very strong performance and
beat the HDSA model (in terms of Inform and Suc-
cess rates) and even the GPT-2 based baseline Sim-
pleTOD (in terms of BLEU and Success rate). This
shows that without the intricacies of the baselines,
just by applying a hierarchical encoder based model
we are able to perform almost at the level of the
state-of-the-art model. Compared to HIER, Sim-
pleTOD utilizes GPT-2’s pretraining, and DAMD
uses attention over previous belief states and action
sequences. Whereas, HIER’s access to oracle pol-
icy is only through the average embedding of its
tokens.

Further in Table 5, we compare end-to-end gen-
eration performance of HIER-Joint with baseline
models that can perform belief-state and/or dialog
act generation. In terms of BLEU and combined
score HIER-Joint is able to perform better than the
baselines. With respect to inform and success the
model outperforms the DAMD baseline.

While the above experiments focus on proving
the base performance of the proposed response
generation models (HIER, HIER++, HIER-CLS,
and ablations), HT-Encoder can be applied to any
model that uses a standard transformer encoder.
Hence, in a final experiment (Table 6), we integrate
HT-Encoder with an existing state-of-the-art model
Marco. We replace the standard transformer in

https://github.com/budzianowski/multiwoz
https://github.com/budzianowski/multiwoz
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Models
Evaluation Metrics

BLEU Entity-F1 Inform Success Score

HRED 17.50 - 70.7 60.9 83.3
TokenMoE 16.81 - 75.30 59.70 84.31
Transformer 19.1 55.1 71.1 59.9 84.60
SET 18.67 51.61 76.80 57.69 85.92
MAT 18.86 54.89 71.9 52.5 81.06
HIER 20.91 54.45 73.60 60.10 87.76

Table 2: Simplest Baselines in absence of both Belief or Policy / Dialog Act annotations

Models Pretraining
Annotations Evaluation Metrics

Belief DB Policy BLEU Entity-F1 Inform Success Score

SimpleTOD GPT-2 Oracle Oracle Oracle 17.78 - 93.4 83.2 106.08
SimpleTOD GPT-2 Oracle - Oracle 18.61 - 92.3 85.8 107.66
HDSA - Oracle Oracle Oracle 30.4 86.2 87.9 78.0 113.4
DAMD - Oracle Oracle Oracle 27.3 - 95.4 87.2 118.5
SET++ - - - Oracle 25.56 82.27 85.7 74.3 105.56
HIER++ - - - Oracle 29.54 85.01 88.3 85.4 116.39
HIER-CLS - - - Oracle 29.29 84.23 88.3 85.9 116.39

Table 3: Context-to-Response generation with Oracle Policy. Superior Performance of DAMD: DAMD always
receives an extra input of Bt−1 annotation, while predicting for Bt or response Rt, which helps in NLU of the
subsequent utterances. This is not available in any other models.

Models Pretraining
Annotations Evaluation Metrics

Belief DB Policy BLEU Entity-F1 Inform Success Score

AttLSTM - Oracle Oracle - 18.80 54.8 71.2 60.2 84.50
SimpleTOD GPT-2 Oracle Oracle Gen 16.9 - 84 72.8 94.5
HDSA - Oracle Oracle BERT 23.6 68.9 82.9 68.9 99.50
DAMD - Oracle Oracle Gen 18.60 - 89.20 77.90 102.15
SOLOIST GPT-2, DC Oracle Oracle - 18.03 - 89.60 79.30 102.49
Marco - Oracle Oracle Gen 19.45 - 90.30 75.20 102.20
Marco-BERT - Oracle Oracle BERT 20.02 59.99 92.3 78.6 105.47
SET++ - Oracle Oracle BERT 22.08 65.33 86.2 76.3 103.33
HIER++ - Oracle Oracle BERT 23.04 64.15 86.5 76.6 104.59
HIER-CLS - Oracle Oracle BERT 22.89 64.57 85.2 76.8 103.89

Table 4: Context-to-Response: For this experiment only belief-states are given. GPT-2,DC means a second pre-
training phase using extra dialog corpus (DC) starting from GPT-2 model parameters.

Marco with an HT-Encoder and rerun the context-
to-response generation experiment. Introducing
HT-Encoder into Marco helps improve in terms of
inform (minor), success and the combined score
metric. The results of this experiment show that
HT-Encoder is suitable for any model architecture.

Overall, our experiments show how useful the
proposed HT-Encoder module can be for dialog sys-

tems built upon transformer encoder-decoder archi-
tecture. It is also applicable to tasks where the input
sequence can be split into an abstract set of sub-
units (e.g., search history in Sordoni’s application).
We believe that our proposed approach for hierar-
chical encoding in transformers and the algorithm
for converting the standard transformer encoder
makes it an invaluable but accessible resource for
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Models Pretraining
Annotations Evaluation Metrics

Belief DB Policy BLEU Entity-F1 Inform Success Score

DAMD - Gen* Oracle Gen 16.60 - 76.40 60.40 85.00
SimpleTOD GPT-2 Gen - Gen 15.01 - 84.4 70.1 92.26
SOLOIST GPT-2, DC Gen Gen - 16.54 - 85.50 72.90 95.74
HIER-Joint - Gen - Gen 19.74 53.94 80.5 71.7 95.84

Table 5: End-to-End: Belief State predicted by model itself. *In the End-to-End setting also, DAMD will need to
use the oracle Bt−1 for predicting the current belief Bt.

Models
Act Prediction Response Generation

Precision Recall F1 BLEU Inform Success Score

Marco 72.61 74.98 73.72 19.16 88.45 73.5 100.14
Marco + HTEncoder 73.23 74.11 73.68 19.05 91.72 75.8 102.81

Marco-BERT - - - 19.82 90.86 76.66 103.58
Marco-BERT + HTEncoder - - - 19.53 90.99 78.41 104.23

Table 6: Comparison between vanilla Marco model and Marco + HT-Encoder with proposed HT-Encoder. Bold-
faced results denote statistically significant improvement with p < 0.05. We didn’t observe any significant im-
provement in act-prediction F1-Score or BLEU scores for response generation. The numbers given in the table are
means of 10 different runs of each algorithm.

future researchers working on dialog systems or
similar problem statements with transformer-based
architectures.

5 Related Works

Task Oriented Dialog Systems Researchers
identify four different subtasks for any task-
oriented dialog system (Wen et al., 2017), natural
language understanding (NLU), dialog state track-
ing (DST), dialog act or policy generation, and
Natural Language Generation (NLG). Before the
advent of large scale Seq2Seq models, researchers
focused on building feature-rich models with rule-
based pipelines for both natural language under-
standing and generation. It usually required sepa-
rate utterance-level and dialog-level NLU feature
extraction modules. These NLU features decide
the next dialog act that the system should follow.
This act is then converted into a natural language re-
sponse using the NLG module. Young et al. (2013)
modeled this problem as a Markov Decision Pro-
cess whose state comprised of various utterance
and dialog features detected by an NLU module.
However, such models had the usual drawback of
any pipelined approaches, error propagation. Wen
et al. (2017) proposed using neural networks for ex-
tracting features like intent, belief states, etc. and

training the NLU and NLG modules end-to-end
using a single loss function. Marco (Wang et al.,
2020) and HDSA (Chen et al., 2019) used a fine-
tuned BERT model as their act predictor as it often
triumphs other ways to train the dialog policy net-
work (even joint learning). HDSA is a transformer
Seq2Seq model with act-controllable self-attention
heads (in the decoder) to disentangle the individual
tasks and domains within the network. Marco uses
a soft-attention over the act sequence during the
response generation process.

Hierarchical Encoders The concept of Hierar-
chical Encoders have been used in many different
context in the past. It has been most well known in
the area of dialog response generation as the HRED
model. Many open domain dialog systems have
used the hierarchical recurrent encoding scheme
of HRED for various tasks and architectures. Hi-
erarchical Encoder was first proposed by (Sordoni
et al., 2015a) for using in a query suggestion sys-
tem. They used it encode the user history compris-
ing multiple queries using an Hierarchical LSTM
network. Serban et al. (2016) extended this work to
open domain dialog generation problems and pro-
posed the HRED network. HRED captures the high
level features of the conversation in a context RNN.
Several models have adopted this approach later on,
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e.g. VHRED (Serban et al., 2017), CVAE (Zhao
et al., 2017), DialogWAE (Gu et al., 2018), etc.
Another area in which researchers have proposed
the use of hierarchical encoder is for processing
of paragraph or long documents. Li et al. (2015)
used a hierarchical LSTM network for training an
autoencoder that can encode and decode long para-
graphs and documents. Zhang et al. (2019) pro-
posed HIBERT where they introduced hierarchy
into the BERT architecture to remove the limitation
on length of input sequence. HIBERT samples a
single vector for each sentence or document seg-
ment (usually contextual embedding of CLS or
EOS token) from the sentence encoder to be passed
onto the higher level transformer encoder. Liu and
Lapata (2019) applies a similar approach for encod-
ing documents in a multi-document summarization
task.

6 Conclusion

This paper explored the use of hierarchy in
transformer-based models for task-oriented dialog
system. We started by proposing a generalized
framework for Hierarchical Transformer Encoders
(HT-Encoders). Using that, we implemented two
models, one new model called HIER, and another
HIER-CLS model by adapting the existing HIB-
ERT architecture into our framework. We thor-
oughly experimented with these models in four
different response generation tasks of the Multi-
WOZ dataset. We compared the proposed mod-
els with an exhaustive set of recent state-of-the-art
models to thoroughly analyze the effectiveness of
HT-Encoders. We empirically show that the basic
transformer seq2seq architecture, when equipped
with an HT-Encoder, outperforms many of the state-
of-the-art models in each experiment. We further
prove its usefulness by applying it to an existing
model Marco. This work opens up a new direction
on hierarchical transformers in dialogue systems
where complex dependencies exist between the ut-
terances. It would also be beneficial to explore the
effectiveness of the proposed HT-Encoder when
applied for various other tasks.
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