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Abstract

Detecting out-of-domain (OOD) intents is cru-
cial for the deployed task-oriented dialogue
system. Previous unsupervised OOD detec-
tion methods only extract discriminative fea-
tures of different in-domain intents while su-
pervised counterparts can directly distinguish
OOD and in-domain intents but require ex-
tensive labeled OOD data. To combine the
benefits of both types, we propose a self-
supervised contrastive learning framework to
model discriminative semantic features of both
in-domain intents and OOD intents from unla-
beled data. Besides, we introduce an adversar-
ial augmentation neural module to improve the
efficiency and robustness of contrastive learn-
ing. Experiments on two public benchmark
datasets show that our method can consistently
outperform the baselines with a statistically
significant margin.1

1 Introduction

Task-oriented dialog systems (Sarikaya, 2017;
Akasaki and Kaji, 2017; Gnewuch et al., 2017;
Shum et al., 2018; Tulshan and Dhage, 2018) such
as Google’s DialogFlow or Amazon’s Lex have
become ubiquitous to make people interact with
machines using natural language. In the architec-
ture of a dialogue system, detecting unknown or
OOD (Out-of-Domain) intents from user queries is
an essential component that aims to know when a
user query falls outside their range of predefined
supported intents. Different from traditional intent
detection tasks, we do not know the exact num-
ber of unknown intents in practical scenarios and
can barely annotate extensive OOD samples. Lack
of real OOD examples always leads to poor prior
knowledge about these unknown intents, making it

∗Weiran Xu is the corresponding author.
1Our code is available at https://github.com/p

arZival27/Adversarial-Self-Supervised-Ou
t-of-Domain-Detection.

challenging to identify OOD samples in the task-
oriented dialog system.

Previous methods of detecting OOD intents can
be generally classified into two types: unsuper-
vised and supervised OOD detection. Unsuper-
vised OOD detection (Breunig et al., 2000; Bendale
and Boult, 2016; Hendrycks and Gimpel, 2017; Shu
et al., 2017; Lee et al., 2018; Ren et al., 2019a; Lin
and Xu, 2019; Snell et al., 2017; Finn et al., 2017;
Xu et al., 2020) means no labeled OOD samples
except for labeled in-domain data. By contrast, su-
pervised OOD detection (Scheirer et al., 2013; Fei
and Liu, 2016; Kim and Kim, 2018; Larson et al.,
2019; He et al., 2020b; Zheng et al., 2020) repre-
sents that there are extensive labeled OOD samples
in the training data.

Most of unsupervised OOD detection methods
follow a two-stage framework: training and de-
tecting. They first train an in-domain intent clas-
sifier to extract intent representations, then detect
whether the test query belongs to OOD by estimat-
ing its probability density. For example, Hendrycks
and Gimpel (2017); Shu et al. (2017) simply use a
threshold on the in-domain classifier’s probability
estimate. Lin and Xu (2019) employs an unsuper-
vised density-based novelty detection algorithm,
local outlier factor (LOF) to detect unseen intents.
However, such neural models can only extract dis-
criminative features of different in-domain intents
since they are trained on the in-domain data without
access to OOD data. Therefore, these methods are
known to produce highly overconfident posterior
distributions even for such abnormal OOD samples
(Guo et al., 2017; Liang et al., 2017, 2018). For
supervised OOD detection, classical methods such
as (Fei and Liu, 2016; Larson et al., 2019), form
a (N + 1)-class classification problem where the
(N + 1)-th class represents the unseen intents. Fur-
ther, Zheng et al. (2020) uses labeled OOD data to
generate an entropy regularization term to enforce
the predicted distribution of OOD inputs closer

https://github.com/parZival27/Adversarial-Self-Supervised-Out-of-Domain-Detection
https://github.com/parZival27/Adversarial-Self-Supervised-Out-of-Domain-Detection
https://github.com/parZival27/Adversarial-Self-Supervised-Out-of-Domain-Detection
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Figure 1: The overall architecture of our proposed framework. We first train an intent representation extractor using
two kinds of objectives: supervised cross-entropy loss on the in-domain data and self-supervised contrastive loss
on the unlabeled data. Then we extract the representation of the test query to detect OOD using MSP (Maximum
Softmax Probability) (Hendrycks and Gimpel, 2017), LOF (Lin and Xu, 2019) or GDA (Xu et al., 2020).

to the uniform distribution. However, collecting
large-scale labeled OOD data is usually difficult
and expensive. These drawbacks limit the broad
application of supervised OOD detection. In this
paper, we aim to capitalize on the benefits of both
self-supervised and supervised OOD detection: (1)
simultaneously modeling semantic features of both
in-domain and OOD data; (2) inducing no labor-
intensive OOD annotation.

In this paper, we propose a self-supervised con-
trastive learning framework to model discrimina-
tive semantic features of both in-domain intents and
OOD intents from unlabeled data. Without access
to labeled OOD data, our method aims to learn rep-
resentations that discriminate between all unlabeled
intents in the instance level. When combined with
supervised in-domain training, our method learns
features that are both rich and semantically dis-
criminative. Besides, to replace the stochastic data
augmentation mechanisms like random cropping,
random color distortions in the image processing
field (Chen et al., 2020a), we propose an adver-
sarial augmentation neural module to improve the
diversity and complexity of pre-defined transfor-
mation functions. Specifically, we compute model-
agnostic adversarial worst-case perturbations to the
inputs in the direction that significantly increases
the original contrastive loss. Intuitively, adversarial
learning can generate pseudo hard positive pairs
thus improve the efficiency and robustness of con-
trastive learning. Our contributions are three-fold:
(1) We propose a self-supervised learning frame-
work to simultaneously modeling semantic features
of both in-domain and OOD data. (2) We apply an

adversarial augmentation mechanism to improve
the efficiency and robustness of self-supervised
learning. (3) Experiments conducted on two bench-
mark OOD datasets show the effectiveness of our
proposed method.

2 Approach

Overall Architecture Fig 1(a) shows the overall
architecture of our proposed two-stage framework.
We first train an in-domain intent classifier to ex-
tract intent representations using two objectives
then use the detection algorithms MSP (Hendrycks
and Gimpel, 2017), LOF (Lin and Xu, 2019) or
GDA (Xu et al., 2020) to detect OOD. In the train-
ing stage, we first train a BiLSTM in-domain in-
tent classifier similar to Lin and Xu (2019) using
labeled in-domain data. Then we apply an adver-
sarial contrastive objective to continue training on
the unlabeled data.

Self-Supervised Contrastive Learning To si-
multaneously model semantic features of both
in-domain and OOD data, we propose a self-
supervised contrastive learning framework to uti-
lize unlabeled data. Following (Chen et al., 2020a;
He et al., 2020a; Chen et al., 2020b; Winkens et al.,
2020; Jiang et al., 2020), we formulate the con-
trastive loss for a positive pair of examples (i, j)
as:

`i,j = − log
exp (sim (zi, zj) /τ)∑2N

k=1 1[k 6=i] exp (sim (zi, zk) /τ)
(1)

where zi represents the feature vector of i-th sen-
tence sample extracted by concatenating the first
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and final hidden states of BiLSTM, and 1[k 6=i] ∈
{0, 1} is an indicator function evaluating to 1 if
k 6= i. τ denotes a temperature parameter. The
final loss is computed across all positive pairs, both
(i, j) and (j, i) in a mini-batch of N examples.
Here we use back-translation as data augmentation
to generate positive pairs. Previous work (Chen
et al., 2020a) has shown the necessity of more data
augmentations, thus we propose an adversarial neu-
ral augmentation as follows.

Adversarial Neural Augmentation To im-
prove the diversity of data augmentation and avoid
handcrafted engineering, we apply adversarial at-
tack (Goodfellow et al., 2015; Kurakin et al., 2016;
Miyato et al., 2016; Jia and Liang, 2017; Zhang
et al., 2019; Ren et al., 2019b) to generate pseudo
positive samples. It should be noted that samples
obtained by adversarial attack is in the form of em-
bedding to ensure end-to-end training. Specifically,
we need to compute the worst-case perturbation
δ that maximizes the original contrastive loss L:
δ = argmax

‖δ′‖≤ε
L
(
θ,x+ δ′

)
, where θ represents

the parameters of a model and x denotes a given
sample. ε is the norm bound of the perturbation δ.
In practical implementation, we apply Fast Gradi-
ent Value (FGV) (Rozsa et al., 2016) to approxi-
mate the perturbation δ:

δ = ε
g

||g||
;where g = ∇(xi,xj)L(f(xi,xj ;θ))

(2)
where (xi,xj) represents the original positive pair
generated by back-translation. We perform normal-
ization to g and then use a small ε to ensure the ap-
proximate is reasonable. Finally, we can obtain the
pseudo adversarial sample xadvi = xi+δ as well as
xadvj . Therefore, we get (xi,xj ,xadvi ,xadvj ) from
the original positive pair (xi,xj). We implement
four different contrastive settings: (1) Standard-
to-Standard (S2S): the original contrastive loss us-
ing (xi,xj); (2) Adversarial-to-Adversarial (A2A):
the adversarial contrastive loss using (xadvi ,xadvj );
(3) Standard-to-Adversarial (S2A): the mixed con-
trastive loss using (xi,x

adv
i ) or (xj ,x

adv
j ); (4)

Dual Stream (DS): combining S2S and A2A as
Fig 1(c) shows. Experiment 3.4 shows that the last
setting works best. We argue that DS capture better
feature alignment in the latent space. 2 Besides, we
find only applying the contrastive loss leads to the
worse in-domain intent detection metrics, therefore

2We leave the comprehensive theoretical analysis to future
work.

we mix up the two kinds of objectives during train-
ing to avoid catastrophic forgetting (Kirkpatrick
et al., 2017). We present an Algorithm section in
the appendix.

3 Experiments

3.1 Setup

CLINC OOS+ Small
Avg utterance length 9 9
Intents 150 150
Training set size 15250 7600
Development set size 3100 3100
Testing Set Size 5500 5500

Table 1: Full statistics of the datasets.

Datasets We perform experiments on two vari-
ants of the OOD benchmark dataset CLINC3

(Larson et al., 2019), namely CLINC-OOS+ and
CLINC-Small. Table 1 shows the detailed statistics
of two datasets. They both contain 150 in-domain
intents across 10 domains where CLINC-OOS+
contains 100 samples for each intent and CLINC-
Small has 50 training samples for each intent. Be-
sides, CLINC-OOS+ has 250 OOD examples in
training set, while CLINC-Small contains 100.

To construct the unlabeled data, we mix up 10%
of in-domain data and all of the OOD data in the
training set. The total amount of unlabeled data is
equal to 1500 in CLINC-OOS+ and 750 in CLINC-
Small, where the number of OOD data is 250
and 100, respectively. Note that during the self-
supervised learning phase, we don’t utilize label
information of the unlabeled data and only perform
contrastive learning at the instance-level. During
the supervised learning phase, we use the other
in-domain training data for cross-entropy loss.
Metrics We report both in-domain metrics: Ac-
curacy(ACC) and F1-score(F1), and OOD metrics:
Recall and F1-score(F1). OOD Recall and F1-score
are the main metrics in this paper.

3.2 Baseline Details
We compare our proposed self-supervised methods
to two types of OOD detection methods, which
are supervised and fully unsupervised. The former
applies a supervised OOD entropy regularization.
We use this setting as the reference upper bound
for OOD detection results. The latter represents
that we train the sentence feature extractor using
only in-domain data. We treat this setting as the

3https://github.com/clinc/oos-eval
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CLINC-OOS+ CLINC-Small
Model in-domain OOD in-domain OOD

ACC F1 Recall F1 ACC F1 Recall F1
N+1 88.6 91.46 19.12 32.00 85.23 88.58 17.46 29.99

Supervised Entropy+MSP(oracle) 87.38 85.71 44.82 57.48 84.52 84.07 27.23 36.81
OOD Entropy+LOF(oracle) 84.08 85.12 60.44 61.89 82.16 82.83 60.72 61.39

Entropy+GDA(oracle) 86.53 87.57 70.20 71.22 84.56 84.68 66.98 67.07
MSP 83.61 84.05 24.28 36.57 81.84 82.20 19.12 29.79
MSP+S2S(w/o adv) 84.11 84.93 37.36 45.52 83.98 83.65 22.40 33.06
MSP+DS(ours) 84.85 84.91 41.76* 47.62* 83.93 83.21 25.62* 34.82*

Self-Supervised LOF 84.20 85.08 57.40 58.78 82.22 82.73 57.20 58.10
OOD LOF+S2S(w/o adv) 85.62 85.99 59.12 59.41 82.84 83.67 57.92 59.04

LOF+DS(ours) 85.87 86.06 59.96* 61.20* 82.89 83.85 59.68* 60.77*
GDA 86.34 87.73 63.70 65.23 84.24 84.30 60.40 61.07
GDA+S2S(w/o adv) 88.56 88.10 64.92 67.22 85.76 86.20 62.80 64.20
GDA+DS(ours) 88.71 88.98 67.24* 69.17* 85.78 86.69 64.52* 65.55*

Table 2: Performance comparison between our method and baselines on CLINIC-OSS+ and CLINIC-Small
datasets. * indicates significant improvements over the corresponding baselines (p <0.05).

reference lower bound. For each training method,
we use different OOD detection models to verify
its performance. Therefore, the model proposed in
this paper can be divided into two stages. Firstly,
the feature extractor training is completed in the
training stage, and then the OOD detection is con-
ducted by using different models in detection stage.
Training Stage On the basis of fully unsupervised
setting, our proposed four types of adversarial
self-supervised learning settings are added, respec-
tively. Standard-to-Standard (S2S): Original set-
ting. The contrastive loss is computed between
origin and augmented data. The adversarial at-
tack is not involved. Adversarial-to-Adversarial
(A2A): The setting injecting two adversarial attacks
to origin data and augmented data first, then com-
pute contrastive loss between them. Standard-to-
Adversarial (S2A): This setting divide contrastive
loss into two parts. One uses origin data with ad-
versarial attack and augmented data, the other uses
augmented data with adversarial attack and origin
data. Dual Stream (DS): The setting combining
S2S and A2A. The contrastive loss contains two
parts. One uses origin data and augmented data,
the other uses corresponding data with adversarial
attacks.
Detection Stage As mentioned above, we com-
pare three OOD detection models: MSP (Maxi-
mum Softmax Probability)(Hendrycks and Gimpel,
2017) applies a threshold on the maximum softmax
probability where the threshold is set as 0.5. LOF
(Local Outlier Factor)(Lin and Xu, 2019) uses the
local outlier factor to detect unknown intents. GDA
(Gaussian Discriminant Analysis)(Xu et al., 2020)
is a generative distance-based classifier for out-of-
domain detection with Euclidean and Mahalanobis

distances.
In this paper, the experiments and analysis are

mainly conducted around the training stage. Differ-
ent detection models are used to verify the general-
ization of our proposed method.

3.3 Main Results

Table 2 displays the experiment results. Our
method consistently outperforms all the unsu-
pervised baselines in all settings, even close to
the supervised oracles. Under the GDA setting,
our proposed method outperforms the unsuper-
vised method by 3.94%(OOD F1), 3.54%(OOD
Recall) in CLINC-OOS+ and 4.48%(OOD F1),
4.12%(OOD Recall) in CLINC-Small. We also
observe similar improvements on the MSP and
LOF settings. The results confirm the effective-
ness of our self-supervised learning method. Con-
sidering the effect of adversarial augmentation,
our GDA+DS outperforms the standard contrastive
learning (GDA+S2S(w/o adv)) by 1.95%(OOD
F1), 2.32%(OOD Recall) in CLINC-OOS+ and
1.35%(OOD F1), 1.72%(OOD Recall) in CLINC-
Small. The results demonstrate that adversarial
attack can improve the efficiency and robustness
of contrastive learning. For in-domain ACC and
F1, our method also achieves slightly better per-
formance, even close to N+1 which suffers from a
severe drop in OOD metrics for unbalanced data.

3.4 Qualitative Analysis

Effect of Unlabeled Data Size. Fig 2 shows the
effect of different sizes of unlabeled data for con-
trastive learning. We extract each subsets of the
total CLINC-OOS+ unlabeled dataset through ran-
dom sampling, so that the expectation of OOD
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Figure 2: Relation between unlabeled data size and
OOD detection F1-score.
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Figure 3: Relation between unlabeled data size and rel-
ative increment of OOD detection F1-score.

proportion in every subset is close to the full set
(16.67%). We choose LOF and GDA for compari-
son. The lower bound and upper bound respectively
represent unsupervised and supervised OOD. Our
method achieves superior performance along with
the increase of unlabeled data under two settings.
It confirms that our proposed method can learn
rich and semantically discriminative features via
unlabeled data to facilitate OOD detection.

Fig 3 shows the relative increment of the F1-
score during the uniform increase of unlabeled data.
Specifically, the difference between the current F1-
score and the previous state F1-score is recorded
for every 300 samples added. As the amount of
data increases uniformly, the extent of increment
of OOD F1-score decrease. It confirms that our
proposed method can optimize the performance
of OOD detection by taking full advantage of un-
labeled data and achieve impressive performance
with only a small amount of data. Generally, our
proposed methods have strong robustness and gen-
eralization capability.
Ablation Study of Contrastive Learning Set-

Model in-domain OOD
Acc F1 Recall F1

S2S 88.56 88.10 64.92 67.22
S2A 88.21 87.90 65.00 67.63
A2A 87.78 87.41 66.40 68.53
DS 88.71 88.98 67.24 69.17

Table 3: Ablation study of contrastive learning settings.
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Figure 4: Effect of norm ε of adversarial perturbation.

tings. Table 3 shows the results of different con-
trastive learning setting on CLINC-OOS+. DS
achieves the best performance in both in-Domain
and OOD metrics. Comparing A2A and S2A
to S2S, we observe adversarial augmentation im-
proves OOD performance but decreases in-domain
metrics. Therefore, by combining S2S and A2A,
our DS can get the benefits of OOD and in-domain
improvements from both settings.
Analysis of Norm of Adversarial Perturbation.
Fig 4 displays the effect of norm ε of adversarial
noise. ε controls the range of adversarial pertur-
bation δ. In both LOF and GDA, ε ∈ (1.0, 1.5)
achieves better performances. A smaller or larger
value both impair the capability of contrastive learn-
ing. We argue that small noise can not improve the
complexity of augmentation and large noise may
hurt the alignment of positive example pairs.

4 Conclusion

In this paper, we focus on combining the benefits
of both unsupervised and supervised OOD detec-
tion: simultaneously modeling semantic features
of both in-domain and OOD data without requir-
ing labor-intensive OOD annotation. We propose
a self-supervised contrastive learning framework
to learn rich and semantically discriminative rep-
resentations from unlabeled data. Besides, we pro-
pose an adaptive end-to-end adversarial augmen-
tation neural module to improve the diversity and
complexity of pre-defined transformation functions.
Experiments show that our method achieves bet-
ter performance than unsupervised OOD baselines,
even close to supervised OOD oracles.
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5 Broader Impact

Task-oriented dialog systems have demonstrated
remarkable performance across a wide range of
applications, with the promise of a significant pos-
itive impact on human production mode and life-
way. However, in scenarios where information
is complex and rapidly changing, models usually
face input that is meaningfully different from typi-
cal examples encountered during training. Current
models are prone to make unfounded but overcon-
fident predictions on these inputs, which may af-
fect human judgment and thus impair the safety of
models in practical applications. In domains with
the greatest potential for societal impacts, such as
navigation or medical diagnosis, models should
be able to detect potentially agnostic OOD and
be robust to high-entropy inputs to avoid catas-
trophic errors. This work proposes a new adver-
sarial self-supervised learning method for OOD
detection. The overall robustness of the model is
significantly improved by making full use of unla-
beled data with potential threats through contrastive
learning and adversarial attacks, which takes a step
towards the ultimate goal of enabling the safe real-
world deployment of task-oriented dialog systems
in safety-critical domains. The experimental results
have been reported on standard benchmark datasets
for considerations of reproducible research.
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A Appendix

A.1 Implementation Details
We sample the augmentation data proportional to
the size of the training set of each dataset. We
use public APIs from multiple platforms to com-
plete the back-translation process. Considering the
availability of augmented data obtained through
the back-translation process, we only sample back
translated sequences that are more than 70% and
less than 90% similar to the origin text in words
overlapping. The total amount of data we sam-
pled is equal to 10% of the volume of in-domain
training data. We use the pre-trained GloVe em-
beddings (Pennington et al., 2014) as the word
embedding matrix. For the BiLSTM encoder, we
set the dimension of hidden states to 128 and use
a dropout rate of 0.5. We use Adam optimizer
(Kingma and Ba, 2014) to train our model and use
a learning rate of 0.001. In the training stage, 20
epochs of supervised training are first conducted
on in-domain labeled data, and then 200 epochs
of alternate training are conducted by adding the
process of contrastive learning on unlabeled data.
The alternate training stage has an early stop set-
ting with patience equalling 20. The algorithm of
our proposed training process can be found in the
Algorithm.1. We use the best F1-scores on the
validation set to calculate the GDA threshold adap-
tively. Each result of the experiments is tested 5
times under the same setting and gets the average
value. The amplitude of adversarial perturbation
is obtained by the heuristic method in the range
of 0 to 1E-2 (2.5/250), in which MSP and LOF
are 4E-3 (1.0/250) and GDA is 6E-3 (1.5/250). In
order to fairly compare with other settings, we set
the weights of two losses equal in DS (α = 1 in Al-
gorithm.1) and S2A (β = 0.5 in Algorithm.1). The
training stage of our model lasts about 15 minutes
on a single Tesla T4 GPU(16 Gb of memory). The
average value of the model parameters is 2.52M.
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Algorithm 1 Algorithm of Proposed Two-Stage Training

Input: A set of clean sentences x and corresponding ground truth label t for labeled data; Feature
Extractor g; Similarity algorithm f ; LNT represent contrastive loss; LCE represent cross entropy loss

Output: Model parameters θ
for number of in-domain pretraining epochs do

for in-domain mini-batch (x, t) do
Li = LCE(g(x, θ), t)
Update parameters θ to minimize Li

end for
end for
for number of mix-up training epochs do

for sampled unlabeled mini-batch x do
augment xi to be xj with back translate augmentation
Generate the corresponding adverasial mini-batch (xi + δi, xj + δj)

δi, δj = argmax
||δ′i||≤ε,||δ′j ||≤ε

LNT (f(xi + δ′i, xj + δ′j , θ))

if mode == S2S then
Lm = LNT (f(xi, xj , θ))

end if
if mode == A2A then
Lm = LNT (f(xi + δi, xj + δj , θ))

end if
if mode == S2A then
Lm = βLNT (f(xi, xj + δj , θ)) + (1− β)LNT (f(xi + δi, xj , θ))

end if
if mode == DS then
Lm = LNT (f(xi, xj , θ)) + αLNT (g(xi + δi, xj + δj , θ))

end if
Update parameters θ to minimize Lm

end for
for in-domain mini-batch (x, t) do
Li = LCE(g(x, θ), t)
Update parameters θ to minimize Li

end for
end for


