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Abstract
We present a simple yet effective Targeted
Adversarial Training (TAT) algorithm to im-
prove adversarial training for natural language
understanding. The key idea is to intro-
spect current mistakes and prioritize adversar-
ial training steps to where the model errs the
most. Experiments show that TAT can sig-
nificantly improve accuracy over standard ad-
versarial training on GLUE and attain new
state-of-the-art zero-shot results on XNLI. Our
code will be released at: https://github.
com/namisan/mt-dnn.

1 Introduction

Adversarial training has proven effective in improv-
ing model generalization and robustness in com-
puter vision (Madry et al., 2017; Goodfellow et al.,
2014) and natural language processing (NLP) (Zhu
et al., 2019; Jiang et al., 2019; Cheng et al., 2019;
Liu et al., 2020a; Pereira et al., 2020; Cheng et al.,
2020). It works by augmenting the input with a
small perturbation to steer the current model pre-
diction away from the correct label, thus forcing
subsequent training to make the model more robust
and generalizable. Aside from some prior work in
computer vision (Dong et al., 2018; Tramèr et al.,
2017), most adversarial training approaches adopt
non-targeted attacks, where the model prediction
is not driven towards a specific incorrect label. In
NLP, the cutting-edge research in adversarial train-
ing tends to focus on making adversarial training
less expensive (e.g., by reusing backward steps in
FreeLB (Zhu et al., 2019)) or regularizing rather
than replacing the standard training objective (e.g.,
in virtual adversarial training (VAT) (Jiang et al.,
2019)).

By contrast, in this paper, we investigate an or-
thogonal direction by augmenting adversarial train-
ing with introspection capability and adopting tar-
geted attacks to focus on where the model errs the

∗Equal contribution.

(a) BERT with standard fine-tuning

(b) BERT with TAT fine-tuning

Figure 1: Comparison of confusion matrices on MNLI
development set (in-domain). X-axis and Y-axis repre-
sent the predicted and gold labels, respectively. TAT
produces an accuracy gain of 1.7 absolute points.

most. We observe that in many NLP applications,
the error patterns are non-uniform. For example,
in the MNLI development set (in-domain), stan-
dard fine-tuned BERT model tends to misclassify a
non-neutral instance as “neutral” more often than
the opposite label (Figure 1 top). We thus propose
Targeted Adversarial Training (TAT), a simple yet
effective algorithm for adversarial training. For
each instance, instead of taking adversarial steps
away from the gold label, TAT samples an incor-
rect label proportional to how often the current

https://github.com/namisan/mt-dnn
https://github.com/namisan/mt-dnn
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model makes the same error in general, and takes
adversarial steps towards the chosen incorrect la-
bel. To our knowledge, this is the first attempt to
apply targeted adversarial training to NLP tasks. In
our experiments, this leads to significant improve-
ment over standard non-adversarial and adversarial
training alike. For example, in the MNLI develop-
ment set, TAT produced an accuracy gain of 1.7
absolute points (Figure 1 bottom). On the overall
GLUE benchmark, TAT outperforms state-of-the-
art non-targeted adversarial training methods such
as FreeLB and VAT, and enables the BERTBASE
model to perform comparably to the BERTLARGE
model with standard training. The benefit of TAT
is particularly pronounced in out-domain settings,
such as in zero-shot learning in natural language in-
ference, attaining new state-of-the-art cross-lingual
results on XNLI.

2 Targeted Adversarial Training (TAT)

In this paper, we focus on fine-tuning BERT models
(Devlin et al., 2018) in our investigation of targeted
adversarial training, as this approach has proven
very effective for a wide range of NLP tasks.

The training algorithm seeks to learn a function
f(x; θ) : x→ C as parametrized by θ, where C is
the class label set. Given a training dataset D of
input-output pairs (x, y) and the loss function l(., .)
(e.g., cross entropy), the standard training objective
would minimize the empirical risk:

min
θ

E(x,y)∼D[l(f(x; θ), y)].

By contrast, in adversarial training, as pioneered
in computer vision (Goodfellow et al., 2014; Hsieh
et al., 2019; Madry et al., 2017; Jin et al., 2019),
the input would be augmented with a small pertur-
bation that maximize the adversarial loss:

min
θ

E(x,y)∼D[max
δ
l(f(x+ δ; θ), y)],

where the inner maximization can be solved by
projected gradient descent (Madry et al., 2017).

Recently, adversarial training has been success-
fully applied to NLP as well (Zhu et al., 2019;
Jiang et al., 2019; Pereira et al., 2020). In partic-
ular, FreeLB (Zhu et al., 2019) leverages the free
adversarial training idea (Shafahi et al., 2019) by
reusing the backward pass in gradient computation
to carry out inner ascent and outer descent steps si-
multaneously. SMART (Jiang et al., 2019) instead

Algorithm 1 TAT
Input: T : the total number of iterations, X =
{(x1, y1), ..., (xn, yn)}: the dataset, f(x; θ):
the machine learning model parametrized by θ,
σ2: the variance of the random initialization of
perturbation δ, ε: perturbation bound, K: the
number of iterations for perturbation estima-
tion, η: the step size for updating perturbation,
τ : the global learning rate, α: the smoothing
proportion of adversarial training in the aug-
mented learning objective, Π: the projection
operation and C: the classes.

1: for t = 1, .., T do
2: for (x, y) ∈ X do
3: δ ∼ N (0, σ2I)
4: yt = sample(C\y)
5: for m = 1, ..,K do
6: gadv ← ∇δl(f(x+ δ; θ), yt)
7: δ ← Π‖δ‖∞≤ε(δ − ηgadv)
8: end for
9: gθ ← ∇θl(f(x; θ), y)

+α∇θl(f(x; θ), f(x+ δ; θ))
10: θ ← θ − τgθ
11: end for
12: end for
Output: θ

regularizes the standard training objective using
virtual adversarial training (Miyato et al., 2018):

min
θ

E(x,y)∼D[l(f(x; θ), y)+

αmax
δ
l(f(x+ δ; θ), f(x; θ))]

(1)

Effectively, the adversarial term encourages
smoothness in the input neighborhood, and α is a
hyperparameter that controls the trade-off between
standard errors and adversarial errors.

In standard adversarial training, the algorithm
simply tries to perturb the input x away from the
gold label y given the current parameters θ. It is
agnostic to which incorrect label f(x) might be
steered towards. By contrast, in Targeted Adver-
sarial Training (TAT), we would explicitly pick a
target yt 6= y and try to steer the model towards
yt. Intuitively, we would like to focus training on
where the model currently errs the most. We ac-
complish this by keeping a running tally of e(y, yt),
which is the current expected error of predicting
yt when the gold label is y, and sample yt from
C\y = C − {y} in proportion to e(y, yt). See Al-
gorithm 1 for details. TAT can be applied to the
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Methods MNLI-m/mm QQP RTE QNLI MRPC CoLA SST STS-B Average
Acc Acc/F1 Acc Acc Acc/F1 Mcc Acc P/S Corr Score

Standard (BERT LARGE)dev 86.3/86.2 91.3/88.4 71.1 92.4 85.8/89.5 61.8 93.5 89.6/89.3 84.0
Standard (BERTLARGE)test 86.7/85.9 72.1/89.3 70.1 92.7 85.4/89.3 60.5 94.9 87.6/86.5 82.4
Standarddev 84.5/84.4 90.9/88.3 63.5 91.1 84.1/89.0 54.7 92.9 89.2/88.8 81.5
FreeLBdev 85.4/85.5 91.4/88.4 70.4 91.5 86.2/90.3 59.1 93.2 89.7/89.1 83.5
VATdev 85.5/85.7 91.5/88.5 71.2 91.7 87.7/91.3 58.2 93.3 90.0/89.4 83.7
TATdev 86.2/85.9 91.8/89.1 72.6 92.2 88.2/91.5 58.5 93.6 90.8/89.6 84.2
Standardtest 84.6/83.4 71.2/89.2 66.4 90.5 84.8/88.9 52.1 93.5 87.1/85.8 80.0
TATtest 85.8/84.8 72.8/89.6 69.7 92.4 88.2/91.1 59.8 94.5 89.7/89.0 82.8

Table 1: Comparison of standard and adversarial training methods on GLUE. All rows except the top two use
standard BERTBASE model. The GLUE test results are scored using the GLUE evaluation server. Note that the test
results of Standard including BERTBASE and BERTLARGE are taken from https://gluebenchmark.com/leaderboard.

original adversarial training or virtual adversarial
training alike. In this paper, we focus on adapt-
ing virtual adversarial training (VAT) (Jiang et al.,
2019). The two lines in blue color are the only
change from VAT. We initialize e(y, yt) with uni-
form distribution and update them in each epoch.
We conducted an oracle experiment where e(y, yt)
was taken from the confusion matrix from standard
training and found that it performed similarly as
our online version.

It is more challenging to apply TAT to regression
tasks, as we would need to keep track of a contin-
uous error distribution. To address this problem,
we quantize the value range into ten bins and apply
TAT similarly as in the classification setting (once a
bin is chosen, a value is sampled uniformly within).

3 Experiments

We compare targeted adversarial training (TAT)
with standard training and state-of-the-art adver-
sarial training methods such as FreeLB (Zhu et al.,
2019) and VAT (Miyato et al., 2018; Jiang et al.,
2019). We use the standard uncased BERTBASE
model (Devlin et al., 2018), unless noted other-
wise. Due to the additional overhead incurred dur-
ing training, adversarial methods are somewhat
slower than standard training. Like VAT, TAT re-
quires an additional K adversarial steps compared
to standard training. In practice, K = 1 suffices
for TAT and VAT, so they are just slightly slower
(roughly 2 times compared to standard training).
FreeLB, by contrast, typically requires 2-5 steps to
attain good performance, so is significantly slower.

3.1 Implementation Details

Our implementation is based on the MT-DNN
toolkit (Liu et al., 2020b). We follow the default
hyperparameters used for fine-tuning the uncased
BERT base model (Devlin et al., 2018; Liu et al.,
2020b). Specifically, we use 0.1 for the dropout
rate except 0.2 for MNLI, 0.01 for the weight de-
cay rate and the Adamax (Kingma and Ba, 2014)
optimizer with the default Lookahead (Zhang et al.,
2019) to stabilize training. We select the learning
rate from {5e−5, 1e−4} for all the models. The
maximum training epoch is set to 6, and the we fol-
low (Jiang et al., 2019) to set adversarial training
hyperparameters: ε = 1e−5 and η = 1e−4. In our
experiments, we simply set α = 1 in Eq 1.

3.2 Standard GLUE Evaluation

We first compare adversarial training methods on
the standard GLUE benchmark (Wang et al., 2018).
See Table 1 for the results 1. TAT consistently
outperforms both standard training and the state-of-
the-art adversarial training methods of FreeLB and
VAT. Remarkably, BERTBASE with targeted adver-
sarial training performs on par with BERTLARGE
with standard training overall, and outperforms
the latter by a large margin on tasks with smaller
datasets such as RTE, MRPC and STS-B, which
illustrates the benefit of TAT in improving model
generalizability.

1Due to restriction on the number of submissions by the
GLUE organizers, we only compared TAT with the published
results from (Devlin et al., 2018) on the test set.
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Method HANS SNLI SciTail MedNLI
Acc Acc Acc Acc

Standard 55.4 80.1 77.3 43.2
FreeLB 62.0 80.5 78.6 56.8
VAT 62.5 80.8 78.5 58.1
TAT 65.8 81.0 78.8 60.6

Table 2: Comparison of standard and adversarial train-
ing in zero-shot evaluation on various natural language
inference datasets, where the standard BERTBASE
model is fine-tuned on the MNLI training data.

3.3 Zero-Shot Learning on Natural
Language Inference

Next, we compare standard and adversarial training
in generalizability to out-domain datasets. Specifi-
cally, we fine-tune BERTBASE on the MNLI train-
ing data and evaluate it on various natural language
inference test sets: HANS (McCoy et al., 2019),
SNLI (Bowman et al., 2015), SciTail (Khot et al.,
2018), MeNLI (Romanov and Shivade, 2018). See
Table 2 for the results. TAT substantially outper-
forms standard training and state-of-the-art adver-
sarial training methods. Interestingly, the gains are
particularly pronounced on the two hardest datasets,
HANS and MedNLI. HANS used heuristic rules
to identify easy instances for MNLI-trained BERT
models and introduced modifications to make them
harder. MedNLI is from the biomedical domain,
which is substantially different from the general do-
main of MNLI. This provides additional evidence
that targeted adversarial training is especially effec-
tive in enhancing generalizability in out domains.

3.4 Zero-Shot Learning on Cross-Lingual
Natural Language Inference

We also conducted zero-shot evaluation in the cross-
lingual setting by comparing standard and adver-
sarial training on XNLI (Conneau et al., 2018).
Specifically, a cross-lingual language model is fine-
tuned using the English NLI dataset and then tested
on datasets of other languages. Following Conneau
et al. (2019), we used the pre-trained XLM-R large
model in our experiments, and compare targeted
adversarial training (XLM-R+TAT) with state-of-
the-art systems that use standard training (XLM-
R) and adversarial training (XLM-R+R3F/R4F)
(Aghajanyan et al., 2020), as well as another state-
of-the-art language model InfoXLM (Chi et al.,
2020). To ensure fair comparison, we also report
the results from our reimplementation of XLM-R

(Conneau et al., 2018) (XLM-RReprod). See Table 3
for the results. Targeted adversarial training (TAT)
demonstrates a clear advantage in improving zero-
shot transfer learning across languages, especially
for languages most different from English, such as
Urdu. Overall, TAT produces a new state-of-the-art
result of 81.7% over 15 languages on XNLI.

3.5 Analysis

(a) MNLI Development (in-domain)

(b) MNLI Development (out-domain)

Figure 2: Comparison of standard and targeted adver-
sarial training on MNLI, subdivided per agreement.

As we have seen in Figure 1 earlier, TAT reduces
the errors across the board on MNLI development
set. To understand how TAT improves performance,
we conducted a more detailed analysis by subdi-
viding the dataset based on the degree of human
agreement. Here, there are three label classes and
each sample instance has 5 human annotations. The
samples can be divided into four categories: 5-0-
0, 4-1-0, 3-2-0, 3-1-1. E.g., 3-1-1 signifies that
there are three votes for one label and one for each
of the other two labels. In Figure 2, we see that
TAT outperforms the baseline consistently over all
categories, with higher improvement on the more
ambiguous samples, especially for out-domain sam-
ples. This suggests that TAT is most helpful for the
challenging instances that exhibit higher ambiguity
and are more different from training examples.

We also visualize the loss landscape of both the
standard training and TAT, shown in Figure 3. TAT
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Model en fr es de el bg ru tr ar vi th zh hi sw ur Avg.

XLM-R 89.1 84.1 85.1 83.9 82.9 84.0 81.2 79.6 79.8 80.8 78.1 80.2 76.9 73.9 73.8 80.9
XLM-RReprod 88.1 83.6 84.1 83.0 82.6 83.8 81.7 80.7 80.4 80.7 78.9 80.1 77.8 74.2 74.0 80.9
XLM-R+R3F 89.4 84.2 85.1 83.7 83.6 84.6 82.3 80.7 80.6 81.1 79.4 80.1 77.3 72.6 74.2 81.2
XLM-R+R4F 89.6 84.7 85.2 84.2 83.6 84.6 82.5 80.3 80.5 80.9 79.2 80.6 78.2 72.7 73.9 81.4
InfoXLM 89.7 84.5 85.5 84.1 83.4 84.2 81.3 80.9 80.4 80.8 78.9 80.9 77.9 74.8 73.7 81.4
XLM-R+TAT 89.3 84.2 85.7 83.9 83.7 85.0 82.1 81.0 80.7 81.3 79.7 81.0 78.4 74.1 75.1 81.7

Table 3: Comparison of targeted adversarial training (TAT) and prior state of the art in zero-shot cross-lingual
learning on the XNLI test set.
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Figure 3: Training loss surfaces of traditional training
vs TAT on MNLI.

has a wider and flatter loss surface, which gen-
erally indicates better generalization (Hochreiter
and Schmidhuber, 1997; Hao et al., 2019; Li et al.,
2018).

4 Conclusion

We present the first study to apply targeted attacks
in adversarial training for natural language under-

standing. Our TAT algorithm is simple yet effec-
tive in improving model generalizability for various
NLP tasks, especially in zero-shot learning and for
out-domain data. Future directions include: apply-
ing TAT in pretraining and other NLP tasks e.g., se-
quence labeling, exploring alternative approaches
for target sampling.
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A NLU Benchmarks

The NLU benchmarks used in our experiments, i.e.
GLUE benchmark (Wang et al., 2018), SNLI (Bow-
man et al., 2015), SciTail (Khot et al., 2018), HANS
(McCoy et al., 2019), MedNLI (Romanov and Shiv-
ade, 2018) and XNLI (Conneau et al., 2018), are
briefly introduced in the following sections. Ta-
ble 4 summarizes the information of these tasks.
In the experiments, GLUE is used for the normal
setting, while the other datasets are used for the
zero-shot setting.
• GLUE. The General Language Understanding
Evaluation (GLUE) benchmark is a collection of
nine natural language understanding (NLU) tasks.
As shown in Table 4, it includes question an-
swering (Rajpurkar et al., 2016), linguistic accept-
ability (Warstadt et al., 2018), sentiment analy-
sis (Socher et al., 2013), text similarity (Cer et al.,
2017), paraphrase detection (Dolan and Brockett,
2005), and natural language inference (NLI) (Da-
gan et al., 2006; Bar-Haim et al., 2006; Giampic-
colo et al., 2007; Bentivogli et al., 2009; Levesque
et al., 2012; Williams et al., 2018). The diversity of
the tasks makes GLUE very suitable for evaluating
the generalization and robustness of NLU models.
• SNLI. The Stanford Natural Language Inference
(SNLI) dataset contains 570k human annotated sen-
tence pairs, in which the premises are drawn from
the captions of the Flickr30 corpus and hypothe-
ses are manually annotated (Bowman et al., 2015).
This is the most widely used entailment dataset for
NLI.
• SciTail. This is a textual entailment dataset de-
rived from a science question answering (SciQ)
dataset (Khot et al., 2018). The task involves as-
sessing whether a given premise entails a given
hypothesis. In contrast to other entailment datasets
mentioned previously, the hypotheses in SciTail
are created from science questions while the cor-
responding answer candidates and premises come
from relevant web sentences retrieved from a large
corpus. As a result, these sentences are linguis-
tically challenging and the lexical similarity of
premise and hypothesis is often high, thus mak-
ing SciTail particularly difficult.
•MedNLI. This is a textual entailment dataset in
the clinical domain. It was derived from medical
history of patients and annotated by doctors. The
task involves assessing whether a given premise en-
tails a given hypothesis. The hypothesis sentences
in this dataset were generated by clinicians, while

corresponding answer candidates and premises
come from MIMIC-III v1.3 (Johnson et al., 2016),
a database containing 2,078,705 clinical notes writ-
ten by healthcare professionals. Its specialized do-
main nature makes MedNLI a challenging dataset.
• HANS. This is an NLI evaluation set that tests
three hypotheses about invalid heuristics that NLI
models are likely to learn: lexical overlap (assume
that a premise entails all hypotheses constructed
from words in the premise), subsequence (assume
that a premise entails all of its contiguous subse-
quences), and constituent. HANS is a challenging
dataset that aims to test how much models are vul-
nerable to such heuristics, and standard training of-
ten results in models failing catastrophically, even
models such as BERT (McCoy et al., 2019).
• XNLI. This is a cross-lingual natural language
inference dataset built by extending the develop-
ment and test sets of the Multi-Genre Natural Lan-
guage Inference Corpus (Williams et al., 2018) to
15 languages, including low-resource languages
such as Swahili. This corpus was designed to eval-
uate cross-language sentence understanding, where
models are supposed to be trained in one language
and tested in different ones. Validation and test
sets are translated from English to 14 languages
by professional translators, making results across
different languages directly comparable (Artetxe
and Schwenk, 2019).
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Corpus Task #Train #Dev #Test #Label Metrics
Single-Sentence Classification (GLUE)

CoLA Acceptability 8.5k 1k 1k 2 Matthews corr
SST Sentiment 67k 872 1.8k 2 Accuracy

Pairwise Text Classification (GLUE)
MNLI NLI 393k 20k 20k 3 Accuracy
RTE NLI 2.5k 276 3k 2 Accuracy
WNLI NLI 634 71 146 2 Accuracy
QQP Paraphrase 364k 40k 391k 2 Accuracy/F1
MRPC Paraphrase 3.7k 408 1.7k 2 Accuracy/F1
QNLI QA/NLI 108k 5.7k 5.7k 2 Accuracy

Text Similarity (GLUE)
STS-B Similarity 7k 1.5k 1.4k 1 Pearson/Spearman corr

Pairwise Text Classification for the Zero-shot setting
SNLI NLI - - 9.8k 3 Accuracy
SciTail NLI - - 2.1k 2 Accuracy
HANS NLI - - 3k 2 Accuracy
MedNLI NLI - - 1.4k 3 Accuracy
XNLI NLI - - 75k 3 Accuracy

Table 4: Summary information of the NLU benchmarks.


