
Limitations of Autoregressive Models and Their Alternatives

Chu-Cheng Lin♯∗ Aaron Jaech♭ Xin Li♯ Matthew R. Gormley♮ Jason Eisner♯
♯Department of Computer Science, Johns Hopkins University

♭Facebook AI
♮Machine Learning Department, Carnegie Mellon University

{kitsing,lixints,jason}@cs.jhu.edu ajaech@fb.com mgormley@cs.cmu.edu

Abstract

Standard autoregressive language models per-
form only polynomial-time computation to
compute the probability of the next symbol.
While this is attractive, it means they cannot
model distributions whose next-symbol prob-
ability is hard to compute. Indeed, they can-
not even model them well enough to solve
associated easy decision problems for which
an engineer might want to consult a language
model. These limitations apply no matter how
much computation and data are used to train
the model, unless the model is given access to
oracle parameters that grow superpolynomially
in sequence length.

Thus, simply training larger autoregressive lan-
guage models is not a panacea for NLP. Al-
ternatives include energy-basedmodels (which
give up efficient sampling) and latent-variable
autoregressive models (which give up efficient
scoring of a given string). Both are powerful
enough to escape the above limitations.

1 Introduction

Sequence modeling is a core NLP problem. Many
sequence models ?̃ are efficient at scoring strings:
given a string x, its score ?̃(x) can be computed in
$ (poly(|x|)). For example, an RNN (Mikolov et al.,
2011) scores x in time $ (|x|) while a Transformer
(Vaswani et al., 2017) does so in time $ (|x|2). The
score may be an unnormalized probability, and can
be used to rank candidate strings.
Many sequence models also make it easy to

compute marginal properties of ?̃. They support
efficient sampling of strings x (which allows unbiased
approximation of marginal expectations). And they
support efficient computation of the normalizing
constant / =

∑
x ?̃(x) (or simply guarantee / = 1)

for any value of the model parameters.
How about training? Briefly: If a sequence model

can efficiently compute ?̃(x) (and its derivatives
∗Part of this work was done at Facebook AI.

Figure 1: Valid answers to hard natural language inference
problems can be hard to find (Munroe, 2009), but in many cases
can be checked efficiently (e.g. the Knapsack problem in the
comic). Given a large enough parametric autoregressive model
with correct parameters, we can efficiently solve all problem
instances with input length =, and efficiently verify the solutions—
but the required model size can grow superpolynomially in
=. (This allows the model to store precomputed results that
we can look up in $ (=) at test time.) A main observation of
this paper is that assuming NP * P/poly, then without such a
superpolynomial growth in model size, autoregressive models
cannot even be used to verify answers to some problems where
polynomial-time verification algorithms do exist.

with respect to model parameters), then it is efficient
to compute parameter updates for noise-contrastive
estimation (Gutmann and Hyvärinen, 2010; Gutmann
and Hyvärinen, 2012) or score-matching (Hyvärinen,
2005). If sampling x or computing / (and its deriva-
tives) is also efficient, then it is efficient to compute
parameter updates for ordinary MLE training.
Finally, popular sequence models are compact.

Usually a fixed-size model is used to score strings x
of all lengths. More generally, it might be reasonable
to use an$ (poly(=))-sized parameter vector)= when
x has length =, at least if parameter vectors can be
obtained (perhaps from an oracle) for all needed
lengths. In this paper, we investigate what can and
cannot be achieved with models that are compact
in this sense. This setup allows us to discuss the
asymptotic behavior of model families.
Standard autoregressive models have the form

?(x) = ∏
C ?(GC | x<C)1 where each factor is efficient

1In this paper we use the shorthand x<C , G1 . . . GC−1.

Model family Compact
parameters?

Efficient
scoring?

Efficient sampling
and normalization? Support can be . . .

ELN/ELNCP: Autoregressive models (§3.1) 3 3 3 some but not all ! ∈ P
EC/ECCP: Energy-based models (§4.1) 3 3 7 all ! ∈ P but no ! ∈ NPC
Lightly marginalized ELNCP: Latent-variable autoregressive models (§4.2) 3 7 3 all ! ∈ NP
Lookup models (§4.3) 7 3 3 anything

Table 1: A feature matrix of parametric model families discussed in this paper. Also see Figure 2 in the appendices.

to compute from a fixed parameter vector. These
models satisfy all three of the desiderata above. By
using flexible neural network architectures, standard
autoregressive models have achieved stellar empiri-
cal results in many applications (Oord et al., 2016;
Child et al., 2019; Zellers et al., 2019; Brown et al.,
2020). However there are still tasks that they have
not mastered: e.g., it is reported that they struggle at
deep logical structure, even when initialized to huge
pretrained models (Wang et al., 2019a).

We point out that, unfortunately, there are certain
sequence distributions whose unnormalized string
probabilities ?̃(x) are easy to compute individually,
yet whose autoregressive factors ?(GC | x<C) are
NP-hard to compute or even approximate, or are
even uncomputable. Thus, standard autoregressive
models are misspecified for these distributions (can-
not fit them). It does not help much to focus on
strings of bounded length, or to enlarge the model:
under the common complexity-theoretic assumption
NP * P/poly, the parameter size |)= | must grow
superpolynomially in = to efficiently approximate the
probabilities of all strings of length up to =.

Indeed, one of our main findings is that there exist
unweighted languages ! ∈ P for which no standard
autoregressive model has ! as its support, i.e., assigns
weight > 0 to just the strings x ∈ !. This is downright
depressing, considering the costs invested in training
huge parametric autoregressive models (Bender et al.,
2021). Since ! ∈ P, it is trivial to build an efficient
scoring function ?̃(x) with fixed parameters that has
! as its support— just not an autoregressive one. The
problem holds for all standard autoregressive models,
regardless of how much computation and training
data are used to learn the model parameters.

That is, for an NP-hard problem, scoring a string x
under a standard autoregressive model ?(x) cannot be
used to verify a witness. Nor can finding a witness be
solved by prompting such a model with a description
of a problem instance and sampling a continuation x
of that string. Such problems are abundant in NLP: for
example, surface realization under Optimality Theory
(Idsardi, 2006), decoding text from an AMR parse
(Cai and Knight, 2013), phrase alignment between two

sentences (DeNero and Klein, 2008), and in general
inference for propositional logic (Cook, 1971), which
underlies the NP-hardness of general natural language
inference, as in Figure 1. In other words, our results
imply that standard autoregressive models do not
have the right structure to capture important linguistic
regularities: e.g., that observed sequences were in fact
constructed to be phonologically optimal, expressive
of a semantic form, or logically coherent!

Our work is also relevant to autoregressive models
of fixed-dimensional vectors, such as NADE (Uria
et al., 2016). These can be extended to arbitrary =-
dimensional vectors by providing separate parameters
)= for each =. Our constructions imply that for some
distributions, |)= | must grow superpolynomially in
=, even though this would be not be necessary if the
models were not autoregressive.

In the remainder of this paper, we formalize our
three desiderata for sequence models. We formalize
compact autoregressive models and describe some
limitations on their expressiveness. We then show
that it can help to choose an alternative model family
that relaxes any one of the three desiderata (Table 1).

2 Background

2.1 Weighted languages
An unweighted language ! ⊆ +∗ is a set of strings
x over a finite alphabet+ . Aweighted language ?̃ is
a function ?̃ : +∗ → R≥0. It may be regarded as spec-
ifying an unweighted language ! = support(?̃) ,
{x : ?̃(x) ≠ 0} along with positive weights for the
strings in !. We say that a weighted language ?̃ is
normalizable if its global normalizing constant
/ ,

∑
x∈+ ∗ ?̃(x) is finite and strictly positive. When

?̃ is normalizable, ?(x) , ?̃(x)// is a probability
distribution over !. A distribution is any weighted
language whose global normalizing constant is 1.
Let x̂ � x mean that x̂ is a prefix of x ∈ +∗ (not

necessarily a strict prefix). If ?̃ is normalizable, then
/ (x̂) , ∑

x∈+ ∗:x̂�x ?̃(x) is ≤ / for any x̂ ∈ +∗,
yielding a marginal prefix probability / (x̂)// . If
the prefix x̂ has positive prefix probability, then it
admits a local conditional probability ?(G | x̂) ,
/ (x̂ G)// (x̂) for each symbol G ∈ + , where the

denominator is interpreted as a local normalizing
constant. This is the conditional probability that
if a random string starts with the prefix x̂, the next
symbol is G. There is also a probability ?($ | x̂) ,
1 −∑

G∈+ ?(G | x̂) = ?̃(x̂)// (x̂) ≥ 0 that the string
ends immediately after x̂; the special symbol $ ∉ +
represents “end of string.”

2.2 Computation for weighted languages
We define a weighted language ?̃ to be computable
if it is defined by a Turing machine (also called ?̃)
that maps any x ∈ +∗ to ?̃(x) ∈ Q≥0 in finite time.
The Turing machine does not have to compute / .

While the computable weighted languages allow
any computable function as ?̃, most architectures for
defining weighted languages (e.g., RNNs or Trans-
formers) do only a bounded or linear amount of work
per input symbol. As a result, they compute ?̃(x) in
time $ (poly(|x|)) (that is, ?̃ ∈ FP). We refer to such
weighted languages as efficiently computable (EC).
This does not imply that the normalized version ? is
efficiently computable, since finding the denominator
/ requires summing over all of +∗.
If we tried to construct the same normalized dis-

tribution ? as in the previous paragraph using a
standard autoregressive model, we would model
it as a product of local conditional probabilities,
?(x) = (∏ |x |

C=1 ?(GC | x<C))?($ | x). Most such ar-
chitectures again do only a bounded or linear amount
of work per input symbol. Yet one suspects that this
may not always be enough work to do the job: the
local conditional probabilities of the original ?̃ are
expensive to compute (unless ?̃ has some special
structure making / (x̂) tractable).

Indeed, the observation of this paper is that for
some efficiently computable weighted languages ?̃,
the local conditional probabilities are expensive to
compute or even to approximate well. More precisely,
autoregressive models cannot fit the local conditional
probabilities unless they are superpolynomial in either
their runtime or in their number of parameters (where
the parameters may be precomputed at training time).
We now explain how to formalize these notions.

2.3 Non-uniform computation
In the machine learning approach to sequence model-
ing, we usually do not manually design the Turing
machine behind ?̃. Rather, we design a model " with
parameters) . " is a Turing machine that reads) and
outputs a specialized Turing machine ?̃) , " ())
that can score strings x and hence defines a weighted
language. Without loss of generality, we will express

) as a string in B∗ (where B , {0, 1}). For each) ,
we obtain a potentially different weighted language.

Strings vary in length, and accurate modeling of
longer strings may sometimes require more complex
computations with more parameters. For example,
when + is a natural language alphabet, a recurrent
neural network may require more hidden units to
model sentences of the language rather than individual
words, and even more units to model whole documents.
To accommodate this, we allow an infinite sequence
of parameter vectors, � = {)= ∈ B∗ | = ∈ N},
which yields an infinite sequence of Turing machines
{ ?̃= | = ∈ N} via ?̃= , " ()=). We then define
?̃�(x) , ?̃ |x | (x), so a string of length = is scored
by the ?̃= machine. This is known as non-uniform
computation. Of course, it is legal (and common)
for all of the)= to be equal, or empty, but if desired,
we can obtain more power by allowing the number of
parameters to grow with = if needed.

We can now consider how rapidly the parametric
and runtime complexity may grow.
• If |)= | is permitted to grow exponentially, then
one can fit any weighted language ?̃ (even an
uncomputable one).2 Simply use)= to encode a
trie with $ (|+ |=+1) nodes that maps x ↦→ ?̃(x) for
any |x| of length =, and design " such that the
Turing machine ?̃= = " ()=) has a (large) state
transition table that mirrors the structure of this
trie. The resulting collection of Turing machines
{ ?̃= | = ∈ N} can then compute ?̃(x) exactly for
any x, with only linear runtime $ (|x|) (which is
used to traverse the trie).

• Separately, if unbounded runtime is permitted for" ,
then one can exactly fit any computable weighted
language ?̃. Simply have " , when run on)=,
compute and return the large trie-structured ?̃= that
was mentioned above. In this case, " need not
even use the parameters)=, except to determine =.

• Finally, if unbounded runtime is permitted for ?̃=,
then again one can exactly fit any computable
weighted language ?̃. In this case, " trivially
returns ?̃= = ?̃ for all =.

• However, if the parameters � are “compact” in
the sense that |)= | grows only as $ (poly(=)), and
also ?̃= = " ()=) is constructed by " in time
$ (poly(=)), and ?̃= scores any x of length = in
time $ (poly(=)), then we say that the resulting
weighted language ?̃ is efficiently computable
with compact parameters (ECCP).3 We refer

2See our remark on computability in Appendix A.
3Since we require " to run in polytime, it can only look at a

polynomial-sized portion of)=. Hence it is not really crucial for

to " paired with a parameter space of possible
compact values for � as an ECCP model.
Neural models of weighted languages are typically

ECCP models. The construction and execution of
the neural network ?̃= may perform a polynomial
amount of total computation to score the string x.
This computation may involve parameters that were
precomputed using any amount of effort (e.g., training
on data) or even obtained from an oracle (they need
not be computable). However, the exponentially many
strings of length = must share a polynomial-size
parameter vector)=, which prevents the solution
given in the first bullet point above.

In practice one takes)= =) for all = and obtains
) ∈ R3 by training. However, we do not consider
whether such parameters are easy to estimate or
even computable. We simply ask, for a given target
language ?̃, whether there exists a polynomially
growing sequence � of “good” parameter vectors
for any parametric model " . When not, there can
be no scheme for estimating arbitrarily long finite
prefixes of such a sequence. So for any polynomial 5 ,
any training scheme that purports to return a trained
model of size 5 (=) that works “well” for strings of
length ≤ = must fail for large enough =—even if
unlimited data, computation, and oracles are allowed
at training time.

2.4 P, P/poly, and NP/poly
The phrase “efficiently computable with compact
parameters” means that without access to those pa-
rameters, the ECCP weighted language may no longer
be efficiently computable. Indeed, it need not be
computable at all, if the parameter vectors store the
outputs of some uncomputable function.

Our definitions above of EC and ECCP weighted
languages are weighted generalizations of complex-
ity classes P and P/poly, respectively,4 and their
supports are always unweighted languages in P and
P/poly, respectively. An unweighted language ! is
in P iff there is a deterministic Turing machine that
decides in $ (poly(|x|)) time whether x ∈ !. And an
unweighted language ! ′ is in P/poly iff5 there exist

the parameters)p
= to be compact, but we nonetheless include

this intuitive condition, without loss of generality.
4Namely the nonnegative functions in FP and FP/poly.
5Our presentation of P/poly is a variant of Arora and Barak

(2009, §6), in which inputs x of length = are evaluated by a
polytime function " that is given an advice string)= as an
auxiliary argument. This corresponds to a neural architecture
" that can consult trained parameters)= at runtime. We have
replaced the standard call" ()=, x) with the “curried” expression
" ()=) (x), which we still require to execute in polynomial total
time. Here the intermediate result"= = " ()=) corresponds to a

Turing machines {"= : = ∈ N} such that "= decides
in $ (poly(=)) time whether x of length = is in ! ′,
where each "= can be constructed in $ (poly(=))
time as " ()=), for some Turing machine " and
some sequence of polynomially-sized advice strings
� = {)= | = ∈ N} with |)= | ∈ $ (poly(=)). We de-
fine the language class NP/poly similarly to P/poly:
the only difference is the family {"= : = ∈ N}
consists of nondeterministic Turing machines.

Naturally, P ⊆ P/poly. But P/poly is larger than
P: it contains all sparse languages, regardless of their
hardness—even sparse undecidable languages—
as well as many dense languages. The extra power
of P/poly comes from its access to compact advice
strings that do not have to be recursively enumerable,
let alone efficient to find. This corresponds to
statistical modeling, where the trained model has
a computationally efficient architecture plus access to
parameters that might have taken a long time to find.

2.5 NP-completeness and Sat
NP-complete decision problems have solutions that
are efficient to validate but inefficient to find (assuming
P ≠ NP). One of the most well-known NP-complete
problems is the boolean satisfiability problem (Sat)
(Cook, 1971). Given a boolean formula q,Sat accepts
q iff q can be satisfied by some value assignment. For
example, the formula (�1∨¬�2∨ �3) ∧ (�1∨¬�4)
is in Sat, since there is a satisfying assignment
�1...4 = 1101. We denote the number of satisfying
assignments to q as #(q).

It is widely believed that noNP-complete languages
are in P/poly. Otherwise we would have all of NP ⊆
P/poly and the polynomial hierarchy would collapse
at the second level (Karp and Lipton, 1980).

A capacity limitation of EC/ECCP weighted lan-
guages naturally follows from this belief:6
Lemma 1. For any ! ∈ P, there exists an EC
weighted language with support !. For any ! ∈
P/poly, there exists an ECCP languagewith support !.
But for any ! ∈ NP-complete, there exists no ECCP
language with support ! (assuming NP * P/poly).
In addition to not capturing the support of NP-

complete languages, ECCP weighted languages can-

trained runtime model for inputs of length =. Our Turing machines
"= have size polynomial in = (because they are constructed by
" in polynomial time). They correspond to the polynomial-sized
boolean circuits "= that are used to evaluate inputs of length
= under the classical definition of P/poly (Ladner, 1975). We
exposed these intermediate results "= only to observe in §2.3
and §4.3 that if we had allowed the "= to grow exponentially,
they would have been able to encode the answers in tries.

6All omitted proofs are in Appendix A.

not help solve other NP-hard problems, either. For
example, many structured prediction problems in
NLP can be formulated as argmaxx:x̂�x ?̃(x): we are
given a prefix x̂ as input and look for its optimal
continuation under ?̃. But if this problem is NP-hard
for a particular ?̃, then it is not in P/poly (assuming
NP * P/poly), so it cannot be accomplished by any
polytime algorithm that queries an ECCP model.

3 Autoregressive ECCP models (ELNCP
models) have reduced capacity

In this section we formally define autoregressive
ECCP models, and prove that they have strictly less
capacity than general ECCP models or even just EC
models. Our proofs rely on the construction of a
EC model ?̃ where computing the local conditional
probabilities ?(G | x̂) is NP-hard, so they cannot be
computed with compact parameters, if NP * P/poly.

3.1 ELN and ELNCP models
Many parameter estimation techniques and inference
methods specifically work with local conditional
probabilities ?(G | x̂). Thus, it is common to use
parametric models where such quantities can be com-
puted in time $ (poly(|x̂|)) (given the parameters).7
These are the “standard autoregressive models” we
discussed in §1. We say that the resulting distributions
are efficiently locally normalizable, or ELN.

We may again generalize ELNs to allow the use of
compact parameters. For any weighted language ?̃, the
Turing machine "q efficiently locally normalizes
?̃ with compact parameters�q = {)q

= | = ∈ N} if
• the parameter size |)q

= | grows only as $ (poly(=))
• "q()q

=) returns a Turing machine @= (similar to
?̃= in §2.3) in time $ (poly(=))

• ?̃ is normalizable (so ? exists)
• @= maps x̂G ↦→ ?(G | x̂) for all G ∈ + ∪ {$} and
all prefixes x̂ ∈ +∗ with |x̂| ≤ = and / (x̂) > 0
7An autoregressive model architecture generally defines ?(x)

as an efficiently computable (§2.2) product of local conditional
probabilities. However, the parametrization usually ensures only
that ∑G∈+ ?) (G | x̂) = 1 for all prefixes x̂. Some parameter
settings may give rise to inconsistent distributions where / ,∑

x∈+ ∗ ?) (x) < 1 because the generative process terminates
with probability < 1 (Chen et al., 2018). In this case, the factors
?) (G | x̂) defined by the autoregressive model are not actually
the conditional probabilities of the weighted language (as defined
by §2.1). It is true that training) with a likelihood objective does
encourage finding a weighted language whose generative process
always terminates (hence / = 1), since this is the behavior
observed in the training corpus (Chi and Geman, 1998; Chen
et al., 2018; Welleck et al., 2020). Our definitions of ELN(CP)
models require the actual conditional probabilities to be efficiently
computable. Autoregressive models that do not sum to 1, whose
normalized probabilities can be uncomputable, are not ruled out
by our theorems that concern ELN(CP).

• @= runs on those inputs x̂G in time $ (poly(=))
If there is "q that efficiently locally normalizes
a weighted language ?̃ with compact parameters
�q, we say ?̃ is efficiently locally normalizable
with compact parameters, or ELNCP. Note that
this is a property of the weighted language itself.
In this case, it is obvious that ?̃ is ECCP:

Lemma 2. An ELNCP model ?̃ is also ECCP. Like-
wise, an ELN model is also EC.

If we define ELNCP models analogously to ECCP
models, Lemma 2 means that locally normalized mod-
els do not provide any extra power. Their distributions
can always be captured by globally normalizedmodels
(of an appropriate architecture that we used in the
proof). But we will see in Theorem 1 that the converse
is likely not true: provided thatNP * P/poly, there are
efficiently computable weighted languages that cannot
be efficiently locally normalized, even with the help
of compact parameters. That is, they are EC (hence
ECCP), yet they are not ELNCP (hence not ELN).

3.2 ELNCP models cannot exactly capture all
EC (or ECCP) distributions

We reducing Sat to computing certain local condi-
tional probabilities of ?̃ (as defined in §2.1). Each
decision Sat(q) (where q ranges over formulas)
corresponds to a particular local conditional prob-
ability, implying that there is no polytime scheme
for computing all of these probabilities, even with
polynomially sized advice strings (i.e., parameters).

Without loss of generality, we consider only for-
mulae q such that the set of variables mentioned
at least once in q is {�1, . . . , � 9} for some 9 ∈ N;
we use |q | to denote the number of variables 9
in q. We say that a satisfies q if a ∈ B |q | and
(�1 = 01, . . . , � |q | = 0 |q |) is a satisfying assign-
ment. Finally, let boldface 5 ∈ B∗ denote enc(q)
where enc is a prefix-free encoding function. We
can now define the unweighted language ! = {5a |
q is a formula and a ∈ B |q | and a satisfies q} over
alphabetB, which contains each possible Sat problem
concatenated to each of its solutions.8
We now convert ! to a weighted language ?̃,

defined by ?̃(x) = ?̃(5, a) = (13)
|x |+1 for x ∈ ! (oth-

erwise ?̃(x) = 0). ?̃ is normalizable since / is both
finite (/ =

∑
x∈B∗ ?̃(x) ≤

∑
x∈B∗ (13)

|x |+1 = 1) and
positive (/ > 0 because the example string in foot-
note 8 has weight > 0). The conditional distribution

8For example, ! contains the string 5a where 5 = enc((�1∨
¬�2 ∨ �3) ∧ (�1 ∨ ¬�4)) and a = 1101.

?(a | 5) is uniform over the satisfying assignments
a of 5, as they all have the same length |q|.
?̃ is efficiently computable, and so is ? = ?̃// .9Yet

deciding whether the local conditional probabilities of
?̃ are greater than 0 is NP-hard. In particular, we show
that Sat can be reduced to deciding whether certain
local probabilities are greater than 0, namely the ones
that condition on prefixes x̂ that consist only of a
formula: x̂ = 5 for some q. This implies, assuming
NP * P/poly, that no ("q,�q) can efficiently locally
normalize ?̃ with compact parameters. Granted, the
restriction of ?̃ to the finite set {x ∈ B∗ : |x| ≤ =}
can be locally normalized by some polytime Turing
machine @=, using the same trie trick sketched in §2.3.
But such tries have sizes growing exponentially in =,
and it is not possible to produce a sequence of such
machines, {@= : = ∈ N}, via a single master Turing
machine "q that runs in $ (poly(=)) on)q

=. That is:
Theorem 1. Assuming NP * P/poly, there exists
an efficiently computable normalizable weighted
language ?̃ that is not ELNCP.

Proof sketch. Take ?̃ to be the weighted language we
defined earlier in this section. ?̃ is clearly efficiently
computable. We will show that if it is ELNCP via
("q,�q), then the NP-complete problem Sat is in
P/poly, contradicting the assumption. We must give a
method for using ("q,�q) to decide Sat in polytime
and with compact parameters�. Given q, our method
constructs a simple related formula q′ such that

• q′ has at least one satisfying assignment (so
/ (5′) > 0 and thus ?(1 | 5′) is defined)

• q′ has satisfying assignments with �1 = 1 (i.e.,
?(1 | 5′) > 0) if and only if q is satisfiable

Our construction also provides a polynomial function
5 such that |5′ | is guaranteed to be ≤ 5 (|5 |). We
now define � by)= =)

q
5 (=) (∀=). When our Sat

algorithm with compact parameters � is given 5 of
length =, it can use the polynomial-size advice string
)= to ask ("q,�q) in polynomial time for ?(1 | 5′).
Sat(5) returns true iff that probability is > 0.10 �

3.3 ELNCP models cannot even capture all
EC (or ECCP) supports or rankings

We can strengthen Theorem 1 as follows:
Theorem 2. Assuming NP * P/poly, there exists
an efficiently computable normalizable weighted

9Almost. This / couldbe irrational,but at least it is computable
to any desired precision. For any rational /̂ ≈ / , we can say
?̂ = ?̃//̂ ≈ ? is EC, via a Turing machine " ?̂ that stores /̂ .
Further remarks on irrationality appear in Appendix A.

10See also the remark on implications for seq2seq models
following the proof in Appendix A.

language ?̃ where there is no ELNCP @̃ such that
support(?̃) = support(@̃).

Proof. Observe that for any two weighted languages
?̃ and @̃ with the same support, ∀x̂ ∈ +∗, / ?̃ (x̂) >
0 ⇐⇒ /@̃ (x̂) > 0 (where / ?̃ and /@̃ return the
prefix probabilities of ?̃ and @̃ respectively). Thus, for
any x̂ with / ?̃ (x̂) > 0, ?(1 | x̂) , / ?̃ (x̂1)// ?̃ (x̂)
and @(1 | x̂) , /@̃ (x̂1)//@̃ (x̂) are well-defined and
?(1 | x̂) > 0 ⇐⇒ @(1 | x̂) > 0. If @̃ is ELNCP,
then all such probabilities @(1 | x̂) can be computed
in polytime with compact parameters, so it is likewise
efficient to determine whether ?(1 | x̂) > 0. But this
cannot be the case when ?̃ is the weighted language
used in the proof of Theorem 1, since that would
suffice to establish that Sat ∈ P/poly, following the
proof of that theorem. �

To put this another way, there exists an unweighted
language in P (namely support(?̃)) that is not the
support of any ELNCP distribution.
If they have different support, normalizable lan-

guages also differ in their ranking of strings:
Lemma 3. Let ?̃, @̃ be normalizable weighted lan-
guages with support(?̃) ≠ support(@̃). Then ∃x1,

x2 ∈ +∗ such that ?̃(x1) < ?̃(x2) but @̃(x1) ≥ @̃(x2).
Therefore, no ELNCP @̃ captures the string ranking

of ?̃ from Theorem 2. And for some ?̃, any ELNCP
@̃ misranks even string pairs of “similar” lengths:
Theorem 3. Assuming NP * P/poly, there exists
an efficiently computable normalizable weighted lan-
guage ?̃ such that no ELNCP @̃ with support(@̃) ⊇
support(?̃) has ?̃(x1) < ?̃(x2) ⇒ @̃(x1) < @̃(x2)
for all x1, x2 ∈ +∗. Indeed, any such @̃ has a coun-
terexample where ?̃(x1) = 0. Moreover, there is a
polynomial 5@̃ : N→ N such that a counterexample
exists for every x1 such that ?̃(x1) = 0 and @̃(x1) > 0,
where the x2 in this counterexample always satisfies
|x2 | ≤ 5@̃ (|x1 |).

Theorem 3 is relevant if one wishes to train a model
@̃ to rerank strings that are proposed by anothermethod
(e.g., beam search on @̃, or exact :-best decoding
from a more tractable distribution). If the desired
rankings are given by Theorem 3’s ?̃, any smoothed11
ELNCP model @̃ will misrank some sets of candidate
strings, even sets all of whose strings are “close” in
length, by failing to rank an impossible string (x1 with
?̃(x1) = 0) below a possible one (x2 with ?̃(x2) > 0).

11Smoothing is used to avoid ever incorrectly predicting 0
(a “false negative”) by ensuring support(@̃) ⊇ support(?̃). E.g.,
autoregressive language models often define @(G | x̂) using a
softmax over + ∪ {$}, ensuring that @(x) > 0 for all x ∈ +∗.

3.4 ELNCP models cannot even approximate
EC (or ECCP) distributions

Theorem 2 implies that there exists ?̃ whose local
probabilities ?(G | x̂) are not approximated by any
ELNCP @ to within any constant factor _, since that
would perfectly distinguish zeroes from non-zeroes
and the resulting support sets would be equal.12

However, this demonstration hinges on the difficulty
of multiplicative approximation of zeroes—whereas
real-world distributions may lack zeroes. Below we
further show that it is hard even to approximate the
non-zero local conditional probabilities (even with
the additional help of randomness).

Theorem 4. Assuming NP * P/poly, there exists
an efficiently computable weighted language ?̃ :
+∗ → R≥0 such that there is no ("q,�q) where
�q = {)q

= | = ∈ N} that satisfies all of the following
properties (similar to §3.1):
• the parameter size |)q

= | grows only as $ (poly(=))
• "q()q

=) returns a probabilistic Turing machine @=
in time $ (poly(=))

• there exists _ ≥ 1 such that for each G ∈ + ∪ {$}
and x̂ ∈ +∗ with |x̂| ≤ = and ?(G | x̂) > 0, the
probabilistic computation @= (x̂G) has probability
> 2/3 of approximating ?(G | x̂) to within a factor
of _ (that is, @= (x̂G)/?(G | x̂) ∈ [1/_, _])

• @= runs on those inputs x̂G in time $ (poly(=))
Moreover, the statement above remains true
(a) when the approximation guarantee is only re-

quired to hold for prefixes x̂where {x : x̂ � x} is
finite (so ?(G | x̂) is computable by brute force)

(b) or, when support(?̃) = +∗

3.5 ELN models are unconditionally weak
Our above results rely on the NP-hardness of com-
puting or approximating an EC distribution’s autore-
gressive factors ?(· | x<C). In Appendix A, we show
that these factors can even be uncomputable. In such
cases, the distribution cannot be ELN (Theorem 5),
though sometimes it is still ELNCP (Theorem 6). This
result does not assume P ≠ NP or NP * P/poly.

4 Alternative model families

We now discuss alternative families of sequence
distributions that trade away efficiency or compactness
in exchange for greater capacity, as shown in Table 1.

12Dropping the normalization requirement on the approximated
local probabilities (so that possibly ∑

G∈+ @(G | x̂) ≠ 1) does
not help. Otherwise, again, Sat could be solved in polynomial
time (with the help of polysize advice strings) by using @(1 | 5′)
to determine in the proof of Theorem 1 whether ?(1 | 5′) > 0.

4.1 Energy-based models (EBMs)
Energy-based models (LeCun et al., 2006) of dis-
crete sequences (Rosenfeld et al., 2001; Sandbank,
2008; Huang et al., 2018) traditionally refer to the EC
models of §2.2. Only the unnormalized probabilities
?̃) (x) are required to be efficiently computable. Lem-
mas 1 and 2 showed that this model family contains
all ELN languages and can achieve any support in P.
Theorem 1 shows that it also contains languages that
are not ELN or even ELNCP: intuitively, the reason
is that the sums / (x̂) needed to compute the local
normalizing constants (see §2.1) can be intractable.

If we generalize energy-based sequence models to
include all ECCP models— that is, we allow non-
uniform computation with compact parameters—
then Lemmas 1 and 2 guarantee that they can capture
all ELNCP languages and furthermore all languages
in P/poly (though still not NP-complete languages).

Experiments on different parameterizations.
Maximum-likelihood parameter estimation (MLE)
can be expensive in an EBM because the likeli-
hood formula involves the expensive summation
/ =

∑
x∈+ ∗ ?̃) (x). This forces us in practice to use al-

ternative estimators that do not require computing nor-
malized probabilities, such as noise-contrastive estima-
tion (NCE) or score matching (§1), which are less sta-
tistically efficient. In pilot experiments we found that
both RNN- and Transformer-based EBMs trained with
NCE achieved worse held-out perplexity than compa-
rable locally normalized models trained with MLE.13

Fortunately, it is possible to infuse a globally
normalized architecture with the inductive bias of a
locally normalized one, which empirically yields good
results. Residual energy-based models (REBMs)
(Bakhtin et al., 2021) are a simple hybrid architecture:

?) (x) ∝ ?̃) (x) , ?0(x) · exp 6) (x)

This simply multiplies our previous weight by a new
factor ?0(x). The base model ?0 : ! → (0, 1] is
a locally normalized neural sequence model (ELN
model) that was pretrained on the same distribution.
6) : +∗ → R is a learnable function (with parameters
)) that is used to adjust ?0, yielding a weighted lan-
guage ?̃) with the same support !. We implemented

13This might be due to a capacity limitation of the specific
globally normalized architectures (i.e., no parameters work well),
or excess capacity (i.e., too many parameters work well on the
finite sample), or statistical inefficiency of the estimator (the
NCE objective on the finite sample, with the noise distribution
we chose, does not distinguish among parameters as well as MLE
does), or an optimization difficulty caused by local optima in the
NCE optimization landscape.

REBMs, again with NCE training, and evaluated
them on two different neural architectures (GRU- and
Transformer-based) and 3 datasets (WikiText (Merity
et al., 2017), Yelp (Yelp), and RealNews (Zellers et al.,
2019)). In each setting we tried, the REBM slightly
but significantly improved the perplexity of the base
model ?0 (? < 0.05).14

4.2 Latent-variable models

Autoregressive models have / = 1 for any setting of
the parameters (or at least any setting that guarantees
consistency: see footnote 7). Clearly / = 1 ensures
that / is both finite and tractable. Can we find a
model family that retains this convenience (unlike
EBMs), while still being expressive enough to have
any non-empty language in P as support?

Autoregressive latent-variable models form such a
family. As in directed graphical models, the use of
latent variables provides a natural way to model partial
observations of an underlying stochastic sequence
of events. We will model an observed sequence
x of length = as a function of a latent string z of
length$ (poly(=)). As in EBMs, the probability ?(x)
can be computationally intractable, allowing these
models to break the expressivity bottleneck of ordinary
autoregressive models. However, the intractability no
longer comes from exponentially many summands
in the denominator / , but rather from exponentially
many summands in the numerator—namely, the
summation over all latent z that could have produced
x. Notice that as a result, even unnormalized string
weights are now hard to compute, although once
computed they are already normalized.

Formally, we define marginalized weighted lan-
guages. We say that ?̃ is a marginalization of
the weighted language Ã if it can be expressed as
?̃(x) = ∑

z:` (z)=x Ã (z), where ` : (→ +∗ is some
function (themarginalization operator). We say it
is a light marginalization if |z| ∈ $ (poly(|`(z) |))
and ` runs in time $ (poly(|z|)).15 Typically `(z)
extracts a subsequence of z; it can be regarded as
keeping the observed symbols while throwing away a
polynomially bounded number of latent symbols.

Light marginalizations of ELN distributions are a

14We independently conceived of and implemented the REBM
idea proposed in Bakhtin et al. (2021). Details of neural archi-
tecture choice, model parameter sizes, training regimen, and
evaluation (Appendices B–D) differ between our work and
theirs, which also reported positive empirical results (on different
datasets). We regard the two independent positive findings as a
strong indication that the REBM design is effective.

15WLOG, ` can be required to run in linear time $ (|z|), as it
does in our constructions below.

reasonable formalization of latent-variable autore-
gressive models. They are more powerful than ELN
distributions, and even include some distributions
that (by Lemma 1) are not even ELNCP or ECCP:
Theorem 7. There exists a light marginalization ?
of an ELN distribution, such that support(?) is an
NP-complete language.

Our proof of Theorem 7 relies on special structure
of a certain NP-complete language (Sat) and does
not evidently generalize to all languages in NP.

However, light marginalizations of ELNCP distri-
butions are more powerful still,16 and can have any
language ∈ NP or even NP/poly (§2.4) as support:
Theorem 8. The following statements are equivalent
for any nonempty ! ⊆ +∗:
(a) ! ∈ NP/poly.
(b) ! is the support of a light marginalization of an

ELNCP distribution.
(c) ! is the support of a light marginalization of an

ECCP weighted language.
Theorems 7 and 8 make use of unrestricted latent-

variable autoregressive models. There exist more
practical restricted families of such models that admit
tractable computation of ?(x) (Lafferty et al., 2001;
Rastogi et al., 2016; Wu et al., 2018; Buys and
Blunsom, 2018). Such models are EC (and indeed,
typically ELN)—but this limits their expressivity,
by Theorem 1. Both Lin et al. (2019) and Buys and
Blunsom (2018) observed that such models yield
worse empirical results than models that do not have
tractable exact inference methods. The tractability
requirement is dropped in “self-talk” (blixt, 2020;
Gontier et al., 2020; Shwartz et al., 2020), where
a neural autoregressive language model generates
an analysis of the prefix x̂ via latent intermediate
symbols before predicting the next output symbol.17

We remark that for autoregressive models, the posi-
tion of the latent variables is significant. Marginalizing
out latent variables at the end of the string adds no
power. More precisely, if an ELNCP distribution is
over strings z of the form x#y, then its marginalization

16The capacity established by Theorem 8 does not need the full
power of marginalization. We could similarly define light max-
imizations of ELNCP distributions, ?̃(x) = maxz:` (z)=x Ã (z).
Replacing sum by max does not change the support.

17Here the marginal distribution of the next observed symbol
can require superpolynomial time to compute (if #P ≠ FP, which
follows from NP * P/poly). Theorem 1 could likewise be evaded
by other autoregressive approaches that invest superpolynomial
computation in predicting the next symbol (Graves, 2016). Each
autoregressive stepmight explicitly invoke lookahead or reasoning
algorithms, just as feed-forward network layers can invoke
optimizers or solvers (Amos andKolter, 2017;Wang et al., 2019b).

via `(x#y) = x can be expressed more simply as an
ELNCP language. Thus, by Theorem 2, marginal-
izations of such distributions cannot have arbitrary
NP languages as support. Our proofs of Theorems 7
and 8 instead use latent strings of the form y#x, where
all latent variables precede all observed ones (as in
Kingma and Welling, 2014). (This simple design can
always be used without loss of generality.) Trying to
reorder those latent strings as x#y while preserving
their weights would have yielded a non-ELNCP distri-
bution ?(x#y) (because if it were ELNCP, then ?(x)
would be ELNCP also, and we know from Lemma 1
that it cannot be for any distribution whose support is
an NP-complete language).

How about lightly marginalizing ECCP languages
instead of ELNCP ones? This cannot model any
additional unweighted languages, by Theorem 8. But
it may be able to model more probability distributions.
One can easily construct a light marginalization ?
of an ECCP distribution such that #(q) = 2= · ?(5),
where #(q) is the number of satisfying assignments
of q and the constant 2= depends only on = = |5 |.
We conjecture that this is not possible with lightly
marginalized ELNCP distributions.

4.3 Lookup models
§2.3 noted that with exponential growth in stored
parameters, it is possible to fit any weighted language
up to length =, with local probabilities computed in
only $ (=) time by lookup. Of course this rapidly
becomes impractical as = increases, even if the amount
of training data increases accordingly. However, there
has been some recent movement toward storage-heavy
models. Such models are typically semiparametric:
they use a parametric neural model, such as an autore-
gressive model, together with an external knowledge
base of text strings or factoids that are not memorized
in the layer weights. The neural model generates
queries against the knowledge base and combines
their results. Examples include :NNLMs (Khandel-
wal et al., 2020) and semiparametric LMs (Yogatama
et al., 2021). The knowledge base grows linearly with
the training data rather than compressing the data
into a smaller parameter vector. It is in fact a copy
of the training data, indexed to allow fast lookup
(Indyk and Motwani, 1998). (Preparing the index is
much cheaper than neural network training.) Access
to the large knowledge base may reduce the amount
of computation needed to find the local conditional
probabilities, much as in the trie construction of §2.3.

5 Related work

Chen et al. (2018) show that it is hard to map RNN pa-
rameters to properties of the resulting autoregressive
weighted language, such as consistency (/ = 1). We
focus on cases where the RNN parameters are already
known to be consistent, so the RNN efficiently maps
a string x̂ to its local conditional distribution ?(· | x̂).
Our point is that for some weighted languages, this
is not possible (even allowing polynomially larger
RNNs for longer strings), so consistent RNNs and
their ilk cannot be used to describe such languages.

In a Bayes network—which is really just an autore-
gressive model of fixed-length strings— approximate
marginal inference isNP-hard (Roth,1996). Assuming
NP * P/poly and the grid-minor hypothesis, Chan-
drasekaran et al. (2008, Theorem 5.6) further showed
that for any infinite sequence of graphs �1, �2, . . .

where �= has treewidth =, there is no sequence of
algorithms "1, "2, . . . such that "= performs ap-
proximate marginal inference in time $ (poly(=)) on
graphical models of structure �=. This remarkable
negative result says that in any graph sequence of
unbounded treewidth, approximating the normalizing
constant for�= given arbitrary parameters is hard (not
$ (poly(=))), even with advice strings. Our negative
result (Theorem 4) focuses on one particular infinite
weighted language, showing that approximating local
conditional probabilities given an arbitrary length-=
prefix is hard in the sameway. (So this language cannot
be captured by an RNN, even with advice strings.)

6 Conclusion and future work

Autoregressive models are suited to those probability
distributions whose prefix probabilities are efficiently
computable. This efficiency is convenient for training
and sampling. But unless we sacrifice it and allow run-
time or parameter size to grow superpolynomially in
input length, autoregressive models are less expressive
than models whose prefix probabilities expensively
marginalize over suffixes or latent variables.

All model families we have discussed in this paper
can be seen as making compromises between different
desiderata (Table 1). Natural follow-up questions
include ‘Are there model families that win on all
fronts?’ ‘What are other modeling desiderata?’

While some languages ∈ P cannot be supports of
ELNCPs, we do not know if the same can be said for
most languages ∈ P. This problem seems to be closely
related to the average complexity of NP-complete
languages, where most questions remain open (Levin,
1986; Bogdanov and Trevisan, 2006).

Acknowledgements

We thank the anonymous reviewers for their com-
ments. We also thank our colleagues at Johns Hopkins
University, Facebook, and Carnegie Mellon Univer-
sity for their comments on earlier versions of the
manuscript. This material is based upon work at
Johns Hopkins University supported by the National
Science Foundation under Grant No. 1718846. It
does not represent the views of Microsoft (where Dr.
Eisner is also a paid employee, in an arrangement
that has been reviewed and approved by the Johns
Hopkins University in accordance with its conflict of
interest policies).

References
Brandon Amos and J. Zico Kolter. 2017. OptNet: Dif-

ferentiable optimization as a layer in neural networks.
In ICML.

Sanjeev Arora and Boaz Barak. 2009. Computational
Complexity: a Modern Approach. Cambridge Uni-
versity Press.

Anton Bakhtin, Yuntian Deng, Sam Gross, Myle Ott,
Marc’Aurelio Ranzato, and Arthur Szlam. 2021.
Residual energy-based models for text generation.
JMLR, 22(40):1–41.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? . In FAccT.

blixt. 2020. Re: Teaching gpt-3 to identify non-
sense. https://news.ycombinator.com/item?
id=23990902. Online (accessed Oct 23, 2020).

Andrej Bogdanov and Luca Trevisan. 2006. Average-
case complexity. Foundations and Trends in Theo-
retical Computer Science, 2(1):1–106.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers.

Jan Buys and Phil Blunsom. 2018. Neural syntactic
generative models with exact marginalization. In
NAACL.

ShuCai andKevinKnight. 2013. Smatch: an evaluation
metric for semantic feature structures. In ACL.

Venkat Chandrasekaran, Nathan Srebro, and Prahladh
Harsha. 2008. Complexity of inference in graphical
models. In UAI.

Yining Chen, Sorcha Gilroy, Andreas Maletti, Jonathan
May, and Kevin Knight. 2018. Recurrent neural net-
works as weighted language recognizers. In NAACL.

Zhiyi Chi and Stuart Geman. 1998. Estimation of prob-
abilistic context-free grammars. Computational Lin-
guistics, 24(2):299–305.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers. ArXiv, abs/1904.10509.

Stephen A. Cook. 1971. The complexity of theorem-
proving procedures. In STOC.

John DeNero and D. Klein. 2008. The complexity of
phrase alignment problems. In ACL.

Nicolas Gontier, Koustuv Sinha, Siva Reddy, and C. Pal.
2020. Measuring systematic generalization in neural
proof generation with transformers. In NeurIPS.

A. Graves. 2016. Adaptive computation time for recur-
rent neural networks. ArXiv, abs/1603.08983.

Michael U. Gutmann and Aapo Hyvärinen. 2010.
Noise-contrastive estimation: A new estimation prin-
ciple for unnormalized statistical models. In AIS-
TATS.

Michael U. Gutmann and Aapo Hyvärinen. 2012.
Noise-contrastive estimation of unnormalized statis-
ticalmodels, with applications to natural image statis-
tics. JMLR, 13(11):307–361.

Y. Huang, A. Sethy, K. Audhkhasi, and B. Ramabhad-
ran. 2018. Whole sentence neural language models.
In ICASSP.

Aapo Hyvärinen. 2005. Estimation of non-normalized
statistical models by score matching. JMLR,
6(24):695–709.

W. Idsardi. 2006. A simple proof that optimality theory
is computationally intractable. Linguistic Inquiry,
37:271–275.

Piotr Indyk and Rajeev Motwani. 1998. Approximate
nearest neighbors: Towards removing the curse of
dimensionality. In STOC.

Richard M. Karp and Richard J. Lipton. 1980. Some
connections between nonuniform and uniform com-
plexity classes. In STOC.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through memorization: Nearest neighbor language
models. In ICLR.

Diederik P. Kingma and Max Welling. 2014. Auto-
encoding variational Bayes. In ICLR.

https://arxiv.org/abs/1703.00443
https://arxiv.org/abs/1703.00443
https://www.cambridge.org/tw/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/computational-complexity-modern-approach
https://www.cambridge.org/tw/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/computational-complexity-modern-approach
http://jmlr.org/papers/v22/20-326.html
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://news.ycombinator.com/item?id=23990902
https://news.ycombinator.com/item?id=23990902
https://news.ycombinator.com/item?id=23990902
https://news.ycombinator.com/item?id=23990902
https://doi.org/10.1561/0400000004
https://doi.org/10.1561/0400000004
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/N18-1086
https://doi.org/10.18653/v1/N18-1086
https://www.aclweb.org/anthology/P13-2131
https://www.aclweb.org/anthology/P13-2131
https://dl.acm.org/doi/10.5555/3023476.3023485
https://dl.acm.org/doi/10.5555/3023476.3023485
https://doi.org/10.18653/v1/N18-1205
https://doi.org/10.18653/v1/N18-1205
https://dl.acm.org/doi/10.5555/972732.972738
https://dl.acm.org/doi/10.5555/972732.972738
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://www.aclweb.org/anthology/P08-2007.pdf
https://www.aclweb.org/anthology/P08-2007.pdf
https://arxiv.org/abs/2009.14786
https://arxiv.org/abs/2009.14786
https://arxiv.org/abs/1603.08983
https://arxiv.org/abs/1603.08983
http://proceedings.mlr.press/v9/gutmann10a/gutmann10a.pdf
http://proceedings.mlr.press/v9/gutmann10a/gutmann10a.pdf
http://jmlr.org/papers/v13/gutmann12a.html
http://jmlr.org/papers/v13/gutmann12a.html
http://jmlr.org/papers/v13/gutmann12a.html
https://doi.org/10.1109/ICASSP.2018.8461734
http://jmlr.org/papers/v6/hyvarinen05a.html
http://jmlr.org/papers/v6/hyvarinen05a.html
https://ieeexplore.ieee.org/document/6796753
https://ieeexplore.ieee.org/document/6796753
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://dl.acm.org/doi/10.1145/800141.804678
https://dl.acm.org/doi/10.1145/800141.804678
https://dl.acm.org/doi/10.1145/800141.804678
https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/1911.00172
http://arxiv.org/abs/1312.6114v10
http://arxiv.org/abs/1312.6114v10

Richard E. Ladner. 1975. The circuit value problem is
log space complete for P. SIGACT News, 7(1):18–20.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In ICML.

Yann LeCun, Sumit Chopra, Raia Hadsell,
Marc’Aurelio Ranzato, and Fu-Jie Huang. 2006. A
tutorial on energy-based learning. In Predicting
Structured Data. MIT Press.

Leonid A. Levin. 1986. Average case complete prob-
lems. SIAM Journal on Computing, 15:285–286.

Chu-Cheng Lin, Hao Zhu, Matthew R. Gormley, and
Jason Eisner. 2019. Neural finite-state transducers:
Beyond rational relations. In NAACL.

Zhuang Ma and Michael Collins. 2018. Noise con-
trastive estimation and negative sampling for condi-
tional models: Consistency and statistical efficiency.
In EMNLP.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. ArXiv, abs/1609.07843.

Tomas Mikolov, Stefan Kombrink, Anoop Deoras,
Lukas Burget, and Jan Honza Cernocky. 2011.
RNNLM—Recurrent neural network language mod-
eling toolkit. In IEEE Automatic Speech Recognition
and Understanding Workshop.

Randall Munroe. 2009. My Hobby: Embedding NP-
Complete Problems in Restaurant Orders. Online
(accessed May 29, 2020).

Alexei G. Myasnikov and Alexander N. Rybalov. 2008.
Generic complexity of undecidable problems. The
Journal of Symbolic Logic, 73(2):656–673.

Aaron van den Oord, Sander Dieleman, Heiga Zen,
Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. 2016. WaveNet: A generative model
for raw audio. ArXiv, abs/1609.03499.

AlecRadford, JeffWu,RewonChild,DavidLuan,Dario
Amodei, and Ilya Sutskever. 2019. Language models
are unsupervised multitask learners.

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner.
2016. Weighting finite-state transductions with neu-
ral context. In NAACL.

RonaldRosenfeld, StanleyChen, andXiaojin Zhu. 2001.
Whole-sentence exponential language models: A ve-
hicle for linguistic-statistical integration. Computer
Speech & Language, 15(1):55–73.

Dan Roth. 1996. On the hardness of approximate rea-
soning. Artificial Intelligence, 82(1–2):273–302.

Ben Sandbank. 2008. Refining generative language
models using discriminative learning. In EMNLP.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra
Bhagavatula, and Yejin Choi. 2020. Unsupervised
commonsense question answering with self-talk. In
EMNLP.

Hava T. Siegelmann and Eduardo D. Sontag. 1992. On
the computational power of neural nets. In COLT.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In NeurIPS.

BenignoUria,Marc-AlexandreCôté,KarolGregor, Iain
Murray, and Hugo Larochelle. 2016. Neural autore-
gressive distribution estimation. JMLR, 17(1):7184–
7220.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019a.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In ICLR.

Po-Wei Wang, P. Donti, B. Wilder, and J. Z. Kolter.
2019b. SATNet: Bridging deep learning and logical
reasoning using a differentiable satisfiability solver.
In ICML.

Sean Welleck, Ilia Kulikov, Jaedeok Kim,
Richard Yuanzhe Pang, and Kyunghyun Cho.
2020. Consistency of a recurrent language model
with respect to incomplete decoding. In EMNLP.

Shĳie Wu, Pamela Shapiro, and Ryan Cotterell. 2018.
Hard non-monotonic attention for character-level
transduction. In EMNLP.

Yelp. Yelp open dataset. https://www.yelp.com/
dataset.

Dani Yogatama, Cyprien de Masson d’Autume, and
Lingpeng Kong. 2021. Adaptive semiparametric lan-
guage models. ArXiv, abs/2102.02557.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. In NeurIPS.

https://doi.org/10.1145/990518.990519
https://doi.org/10.1145/990518.990519
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1162&context=cis_papers
http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf
https://epubs.siam.org/doi/10.1137/0215020
https://epubs.siam.org/doi/10.1137/0215020
https://doi.org/10.18653/v1/N19-1024
https://doi.org/10.18653/v1/N19-1024
https://www.aclweb.org/anthology/D18-1405.pdf
https://www.aclweb.org/anthology/D18-1405.pdf
https://www.aclweb.org/anthology/D18-1405.pdf
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://www.microsoft.com/en-us/research/publication/rnnlm-recurrent-neural-network-language-modeling-toolkit/
https://www.microsoft.com/en-us/research/publication/rnnlm-recurrent-neural-network-language-modeling-toolkit/
https://xkcd.com/287/
https://xkcd.com/287/
http://www.jstor.org/stable/27588653
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.18653/v1/N16-1076
https://doi.org/10.18653/v1/N16-1076
https://doi.org/10.1006/csla.2000.0159
https://doi.org/10.1006/csla.2000.0159
https://doi.org/10.1016/0004-3702(94)00092-1
https://doi.org/10.1016/0004-3702(94)00092-1
https://www.aclweb.org/anthology/D08-1006.pdf
https://www.aclweb.org/anthology/D08-1006.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.373
https://www.aclweb.org/anthology/2020.emnlp-main.373
https://dl.acm.org/doi/10.1145/130385.130432
https://dl.acm.org/doi/10.1145/130385.130432
https://dl.acm.org/doi/10.5555/2969033.2969173
https://jmlr.org/papers/volume17/16-272/16-272.pdf
https://jmlr.org/papers/volume17/16-272/16-272.pdf
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1905.12149
https://arxiv.org/abs/1905.12149
https://www.aclweb.org/anthology/2020.emnlp-main.448
https://www.aclweb.org/anthology/2020.emnlp-main.448
https://www.aclweb.org/anthology/D18-1473/
https://www.aclweb.org/anthology/D18-1473/
https://www.yelp.com/dataset
https://www.yelp.com/dataset
https://arxiv.org/abs/2102.02557
https://arxiv.org/abs/2102.02557
http://papers.nips.cc/paper/9106-defending-against-neural-fake-news.pdf
http://papers.nips.cc/paper/9106-defending-against-neural-fake-news.pdf

Lookup Models

Lightly Marginalized ELNCP Models

ELN

EC

(all unweighted languages)
<latexit sha1_base64="s1npvV5mqQng659RwU2YXDao540=">AAAB+XicdVDLSgMxFM34rPU16tJNsAjVxZAZa1t3BTcuK9gHtGPJpGkbmskMSaZQhv6JGxeKuPVP3Pk3ZtoKKnogcDjnXu7JCWLOlEbow1pZXVvf2Mxt5bd3dvf27YPDpooSSWiDRDyS7QArypmgDc00p+1YUhwGnLaC8XXmtyZUKhaJOz2NqR/ioWADRrA2Us+2uyHWI4J5Wp8Vm/fnZz27gBxULrmeC5FzidyqhxbkqnIBXQfNUQBL1Hv2e7cfkSSkQhOOleq4KNZ+iqVmhNNZvpsoGmMyxkPaMVTgkCo/nSefwVOj9OEgkuYJDefq940Uh0pNw8BMZjnVby8T//I6iR5U/ZSJONFUkMWhQcKhjmBWA+wzSYnmU0MwkcxkhWSEJSbalJU3JXz9FP5Pmp7jlh3vtlSo1ZZ15MAxOAFF4IIKqIEbUAcNQMAEPIAn8Gyl1qP1Yr0uRles5c4R+AHr7RPtKJM0</latexit>

P(V ⇤)

Figure 2: The space of unweighted languages. We assume in this diagram that NP * P/poly. Each rectangular
outline corresponds to a complexity class (named in its lower right corner) and encloses the languages whose
decision problems fall into that class. Each bold-italic label (colored to match its shape outline) names a model
family and encloses the languages that can be expressed as the support of some weighted language in that family.
All induced partitions in the figure are non-empty sets: shape A properly encloses shape B if and only if language
class A is a strict superset of language class B. As mentioned in Table 1, standard autoregressive models (ELN
models) have support languages that form a strict subset of P (Lemmas 1 and 2, Theorem 5, and §2.4). ELNCP
models (§3.1) extend ELN models by allowing the parameter size to grow polynomially in string length, allowing
them to capture both more languages inside P (Theorem 6) and languages outside P (including undecidable but
sparse languages) that can be characterized autoregressively with the help of these compact parameters. All of
those languages belong in the class P/poly. Theorem 2 establishes that energy-based (EC) and ECCP models go
strictly further than ELN and ELNCP models, respectively (Theorem 2): they correspond to the entire classes P
and P/poly (Lemma 1). However, even ECCP does not capture any NP-complete languages under our assumption
NP * P/poly. Allowing a polynomial number of latent symbols extends the power further still: lightly marginalized
ELNCP or ECCP distributions cover exactly the languages ∈ NP/poly (Theorem 8). Finally, if we were to drop the
requirement that the parameters � must be compact, we could store lookup tries to model any weighted language
(§4.3).

A Proofs

Lemma 1. For any ! ∈ P, there exists an EC
weighted language with support !. For any ! ∈
P/poly, there exists an ECCP languagewith support !.
But for any ! ∈ NP-complete, there exists no ECCP
language with support ! (assuming NP * P/poly).

This simple lemma relates our classes EC and
ECCP ofweighted languages to the complexity classes
P and P/poly of their supports, which are unweighted
formal languages (§2). It holds because computing a
string’s weight can be made as easy as determining
whether that weight is nonzero (if we set the weights
in a simple way), but is certainly no easier. We spell
out the trivial proof to help the reader gain familiarity
with the formalism.

Proof. Given !, define a weighted language ?̃ with
support ! by ?̃(x) = 1 if x ∈ ! and ?̃(x) = 0
otherwise.
If ! ∈ %, then clearly ?̃ is EC since the return

value of 1 or 0 can be determined in polytime.
If ! ∈ P/poly, ! can be described as a tuple
(",�) following our characterization in §2.4. It
is easy to show that ?̃ is ECCP, using the same
polynomially-sized advice strings �. We simply
construct" p̃ such that" p̃()=) returns 1 or 0 on input
x according to whether " ()=) accepts or rejects x.
Both " p̃()=) and " p̃()=) (x) are computed in time
$ (poly(=)) if |x| = =. (The technical construction is
that " p̃ simulates the operation of " on the input
)= to obtain the description of the Turing machine
"= = " ()=), and then outputs a slightly modified
version of this description that will write 1 or 0 on an
output tape.)
For the second half of the lemma, we use the

reverse construction. Suppose ?̃ is an ECCP weighted
language with support !. ?̃ can be characterized by a
tuple (" p̃,�). It is easy to show that ! ∈ P/poly,
using the same polynomially-sized advice strings �.
We simply construct " such that " ()=) accepts x iff
" p̃()=) (x) > 0. Then by the assumption, ! ∉ NP-
complete. �

Lemma 2. An ELNCP model ?̃ is also ECCP. Like-
wise, an ELN model is also EC.

Proof. Let ?̃ be an ELNCP language. This implies
that ?̃ is normalizable, so let ?(x) , ?̃(x) / / as
usual. Specifically, let "q efficiently locally nor-
malize ?̃ with compact parameters �q = {)q

= |
= ∈ N}. It is simple to define a Turing machine

" r that maps each parameter string)
q
= to a Tur-

ing machine A=, where A= (x) simply computes(∏=
C=1 @= (GC | x<C)

)
· @= ($ | x). Then for all x of

length =, A= (x) =
(∏=

C=1 ?(GC | x<C)
)
· ?($ | x),

by the definition of local normalization, and thus
A= (x) = ?(x).
" r can be constructed by incorporating the def-

inition of "q, so that A= = " r()q
=) can include

@= = "q()q
=) as a subroutine. This allows A= to

query @= for local conditional probabilities and multi-
ply them together.
• Since "q runs in polytime, it is straightforward for
this construction to ensure that " r runs in polytime
as well.

• Since @= (· | x̂) ∈ $ (poly(=)), this construction
can ensure that A= runs in polytime as well.

• We were given that |)q
= | ∈ $ (poly(=)) (compact

parameters).
Since ? is the weighted language defined by (" r,�q),
and " r and �q have the properties just discussed,
we see that ? is efficiently computable with compact
parameters (ECCP). Therefore ?̃(x) = /?(x) is also
ECCP.
In the case where ?̃ is more strongly known

to be ELN (the parameters �q are not needed), a
simplification of this argument shows that it is EC. �

Theorem 1. Assuming NP * P/poly, there exists
an efficiently computable normalizable weighted
language ?̃ that is not ELNCP.

Proof. The proof was sketched in §3.2. Here we fill
in the details.

The unweighted language ?̃ defined in that section
is efficiently computable via the following simple
algorithm that outputs ?̃(x) given x ∈ B∗. If x has a
prefix that encodes a formula q, and the remainder
of x is a satisfying assignment a to the variables
of q, then return (13)

|x |+1. Otherwise return 0. This
algorithm can be made to run in polynomial time
because whether an assignment satisfies a formula
can be determined in polynomial time (a fact that is
standardly used to establish that Sat ∈ NP).

Given a formula q with variables �1, . . . , � 9 , we
define q′ = (¬�1 ∧ ¬�2 ∧ . . . ∧ ¬� 9 ∧ ¬� 9+1) ∨
(�1 ∧ Shift(q)), where Shift(q) is a version of q in
which �8 has been renamed to �8+1 for all 1 ≤ 8 ≤ 9 .
It is obvious that q′ and ? have the properties stated
in the proof sketch. The strings in ! that begin with
5′ are precisely the strings of the form 5′a′ where a′
is a satisfying assignment of q′—which happen just
when a′ = 0 9+1 or a′ = 1a where a is a satisfying

assignment ofq. At least one string in ! beginswith5′,
namely5′0 9+1, so / (5′) > 0. Moreover,/ (5′1) > 0
iff q has any satisfying assignments. Therefore the
local probability ?(1 | 5′) = / (5′1) / / (5′) is
defined (see §2.1), and is > 0 iff Sat(q).

Notice that the formal problem used in the proof
is a version of Sat whose inputs are encoded using
the same prefix-free encoding function enc that was
used by our definition of ! in §3.2. We must choose
this encoding function to be concise in the sense
that 5 , enc(q) can be converted to and from the
conventional encoding of q in polynomial time. This
ensures that our version of Sat is ≤%<-interreducible
with the conventional version and hence NP-complete.
It also ensures that there is a polynomial function
5 such that |5′ | ≤ 5 (|5 |), as required by the proof
sketch, since there is a polynomial-time function that
maps 5 → q → q′ → 5′ and the output length
of this function is bounded by its runtime. This is
needed to show that our version of Sat is in P/poly.

Specifically, to show that the existence of ("q,�q)
implies Sat ∈ P/poly, we use it to construct an
appropriate pair (",�) such that (" ()=)) (5) =
Sat(q) if |5 | = =. As mentioned in the proof sketch,
we define � by)= =)

q
5 (=) , and observe that |)= | ∈

$ (poly(=)) (thanks to compactness of the parameters
�q and the fact that 5 is polynomially bounded).
Finally, define " ()=) to be a Turing machine that
maps its input 5 of length = to 5′ of length ≤ 5 (=),
then calls "q()=) = "q()q

5 (=)) on 5′1 to obtain
?(1 | 5′), and returns true or false according to
whether ?(1 | 5′) > 0. Computing 5′ takes time
polynomial in = (thanks to the properties of enc).
Constructing "q() 5 (=)) and calling it on 5′ each
take time polynomial in = (thanks to the properties of
5 and "q). �

Remark on conditional models. While we focus
on modeling joint sequence probabilities in this work,
we note that in many applications it often suffices to
just model conditional probabilities (Sutskever et al.,
2014). Unfortunately, our proof of Theorem 1 above
implies that ELNCPs do not make good conditional
models either: specifically, there exists 5 such that
deciding whether ?(1 | 5) > 0 is NP-hard, and thus
beyond ELNCP’s capability.

Remark on irrationality. In our definitions of
ECCP and ELNCP languages, we implicitly assumed
that the Turing machines that return weights or
probabilities would write them in full on the output
tape, presumably as the ratio of two integers. Such a

Turing machine can only return rational numbers.
But then our formulation of Theorem 1 allows

another proof. We could construct ?̃ such that the local
conditional probabilities ?(G | x̂) , / (x̂G)// (x̂)
are sometimes irrational. In this case, they cannot be
output exactly by a Turing machine, implying that ?̃
is not ELNCP. However, this proof exposes only a
trivial weakness of ELNCPs, namely the fact that they
can only define distributions whose local marginal
probabilities are rational.
We can correct this weakness by formulating

ELNCP languages slightly differently. A real number
is said to be computable if it can be output by a
Turing machine to any desired precision. That Turing
machine takes an extra input 1 which specifies the
number of bits of precision of the output. Similarly, our
definitions of ECCP and ELNCP can be modified so
that their respective Turing machines ?̃= and @= take
this form, are allowed to run in time $ (poly(= + 1)),
and have access to the respective parameter vectors
�p
=+1 and �

q
=+1. Since some of our results concern

the ability to distinguish zero from small values
(arbitrarily small in the case of Theorem 6), our
modified definitions also require ?̃= and @= to output
a bit indicating whether the output is exactly zero.
For simplicity, we suppressed these technical details
from our exposition.

Relatedly, in §4.3, we claimed that lookup models
can fit any weighted language up to length =. This
is not strictly true if the weights can be irrational.
A more precise statement is that for any weighted
language ?̃, there is a lookup model that maps (x, 1)
to the first 1 bits of ?̃(x). Indeed, this holds even
when ?̃(x) is uncomputable.

Remark on computability. In §2.1 we claimed
that any weighted language ?̃ that has a finite and
strictly positive / can be normalized as ?(x) = ?̃ (x)// .
However, / may be uncomputable: that is, there is no
algorithm that takes number of bits of precision 1 as
input, and outputs an approximation of / within 1
bits of precision. Therefore, even if ?̃ is computable,
? may have weights that are not merely irrational but
even uncomputable. An example appears in the proof
of Theorem 6 below. Weighted language classes (e.g.
ELNCP) that only model normalized languages will
not be able to model such languages, simply because
the partition function is uncomputable.

However, our proof of Theorem 1 does not rely on
this issue, because the ?̃ that it exhibits happens to
have a computable / . For any 1,/ may be computed to
1 bits of precision as the explicit sum ∑

x: |x | ≤# ?̃(x)

for a certain large # that depends on 1.

Remark on RNNs. Our proof of Theorem 1
showed that our problematic language ?̃ is efficiently
computable (though not by any locally normalized
architecture with compact parameters). Because this
paper is in part a response to popular neural architec-
tures, we now show that ?̃ can in fact be computed
efficiently by a recurrent neural network (RNN) with
compact parameters. Thus, this is an example where
a simple globally normalized RNN parameterization
is fundamentally more efficient (in runtime or param-
eters) than any locally normalized parameterization
of any architecture (RNN, Transformer, etc.).

Since we showed that ?̃ is efficiently computable,
the existence of an RNN implementation is established
in some sense by the ability of finite rational-weighted
RNNs to simulate Turing machines (Siegelmann and
Sontag, 1992), as well as an extension to Chen et al.
(2018, Thm. 11) to a family of RNNs, where each
RNN instance also takes some formula encoding as
input. However, it is straightforward to give a concrete
construction, for each = ∈ N, for a simple RNN that
maps each string x ∈ B= to ?̃(x). Here ?̃(x) will be
either (13)

=+1 or 0, according to whether x has the
form 5a where 5 encodes a 3-CNF-Sat formula q
that is satisfied by a.18 The basic idea is that 5 has
9 ≤ = variables, so there are only $ (=3) possible
3-CNF clauses. The RNN allocates one hidden unit
to each of these. When reading 5a, each clause
encountered in 5 causes the corresponding hidden
unit to turn on, and then each literal encountered
in a turns off the hidden units for all clauses that
would be satisfied by that literal. If any hidden units
remain on after x has been fully read, then 5 was
not satisfied by a, and the RNN’s final output unit
should return 0. Otherwise it should return (13)

=+1,
which is constant for this RNN. To obtain digital
behaviors such as turning hidden units on and off, it
is most convenient to use ramp activation functions
for the hidden units and the final output unit, rather
than sigmoid activation functions. Note that our use
of a separate RNN "RNN

= for each input length =
is an example of using more hidden units for larger
problems, a key idea thatwe introduced in §2.3 in order
to look at asymptotic behavior. The RNN’s parameter

18The restriction to 3-CNF-Sat formulas is convenient, but
makes this a slightly different definition of ! and ?̃ than we
used in the proofs above. Those proofs can be adjusted to show
that this ?̃, too, cannot be efficiently locally normalized with
compact parameters. The only change is that in the construction
of Theorem 1, q′ must be converted to 3-CNF. The proof then
obtains its contradiction by showing that 3-CNF-Sat ∈ P/poly
(which suffices since 3-CNF-Sat is also NP-complete).

sequence �RNN = {)RNN= | = ∈ N} is obviously
compact, as)RNN= only has to store the input length =.
With our alphabet B for ?̃, |)RNN= | ∈ $ (log =).
Lemma 3. Let ?̃, @̃ be normalizable weighted lan-
guages with support(?̃) ≠ support(@̃). Then ∃x1,

x2 ∈ +∗ such that ?̃(x1) < ?̃(x2) but @̃(x1) ≥ @̃(x2).

Proof. Suppose that the claim is false, i.e., ?̃ and @̃
have the same ranking of strings. Then the minimum-
weight strings under ?̃ must also be minimum-weight
under @̃. WLOG, there exists x ∈ +∗ with ?̃(x) = 0
and @̃(x) = 2 > 0. Then 2 > 0 is the minimum
weight of strings in @̃. But this is not possible for a
normalizable language @̃, since it means that /@̃ ,∑

x′∈+ ∗ @(x′) ≥
∑

x′∈+ ∗ 2 diverges. �

Theorem 3. Assuming NP * P/poly, there exists
an efficiently computable normalizable weighted lan-
guage ?̃ such that no ELNCP @̃ with support(@̃) ⊇
support(?̃) has ?̃(x1) < ?̃(x2) ⇒ @̃(x1) < @̃(x2)
for all x1, x2 ∈ +∗. Indeed, any such @̃ has a coun-
terexample where ?̃(x1) = 0. Moreover, there is a
polynomial 5@̃ : N→ N such that a counterexample
exists for every x1 such that ?̃(x1) = 0 and @̃(x1) > 0,
where the x2 in this counterexample always satisfies
|x2 | ≤ 5@̃ (|x1 |).

Proof. Let ?̃ be the weighted language from The-
orem 2. Given an ELNCP @̃. By Theorem 2,
support(@̃) ≠ support(?̃), so there must exist a string
x1 that is in one support language but not the other.
With the additional assumption that support(@̃) ⊇
support(?̃), it must be that x1 ∈ support(@̃), so
?̃(x1) = 0 but @̃(x1) > 0.
Given any such x1 with ?̃(x1) = 0 but @̃(x1) > 0,

we must find a x2 of length $ (poly(|x1 |)) with
?̃(x2) > 0 but @̃(x2) ≤ @̃(x1).
To ensure that ?̃(x2) > 0, let us use the structure of

?̃. For any 9 , we can construct a tautological formula
q over variables �1, . . . � 9 , as q = (�1 ∨ ¬�1) ∧
· · · ∧ (� 9 ∨ ¬� 9). It follows that ?̃(5a) > 0 for any
a ∈ B 9 . We will take x2 = 5a for a particular choice
of 9 and a.

Specifically,we choose them to ensure that @̃(x2) ≤
@̃(x1). Since @̃ is ELNCP, it is normalizable and hence
has a finite / . Thus, ∑a∈B 9 @̃(5a) ≤ / . So there
must exist some a ∈ B 9 such that @̃(5a) ≤ //2 9 . We
choose that a, after choosing 9 large enough such
that //2 9 ≤ @̃(x1). Then @̃(x2) = @̃(5a) ≤ //2 9 ≤
@̃(x1).

To achieve the last claim of the theorem, we must
also ensure that |x2 | ∈ $ (poly(|x1 |)). Observe that
@̃(x1) can be computed in polytime (with access to

compact parameters), by Lemma 2. But this means
that the representation of @̃(x1) > 0 as a rational
number must have ≤ 6(|x1 |) bits for some polynomial
6. Then @̃(x1) ≥ 2−6 (|x1 |)) , and it suffices to choose
9 = d6(|x1 |)+log2 /e to ensure that //2 9 ≤ 2−6 |x1 | ≤
@̃(x1) as required above.

But then 9 ∈ $ (poly(|x1 |)). Also, recall that the
encoding function enc used in the construction of ?̃
is guaranteed to have only polynomial blowup (see
the proof of Theorem 2). Thus, |x2 | = |5 | + |a| =
|enc(q) | + 9 ∈ $ (poly(9)) ⊆ $ (poly(|x1 |)) as
required by the theorem. �

Lemma A.1. The first part of Theorem 4 (without
the modifications (a) and (b)).

We first prove the first part of Theorem 4 (which
is restated in full below). In this case we will use a
distribution ?̃ that does not have support +∗ (so it
does not prove modification (b)).

Proof. We take ?̃ to be the weighted language that
was defined in §3.2, which was already shown to
be efficiently computable. Suppose ("q,�q, _) is a
counterexample to Lemma A.1. Choose integer : ≥ 1
in a manner (dependent only on _) to be described at
the end of the proof.
Suppose we would like to answer Sat where

q is a formula with variables �1, . . . , � 9 . Define
q′ = (¬�1∧¬�2∧ . . .∧¬� 9 ∧¬� 9+1∧¬� 9+:) ∨
(�1 ∧ Shift(q)). Note that q′ augments q with :
additional variables, namely �1 and � 9+2,..., 9+: . For
: = 1, this is the same construction as in the proof of
Theorem 1. Let = = |5′ | and note that = is polynomial
in the size of q (holding : constant).

The strings in ! = support(?̃) that begin with 5′

are precisely the strings of the form 5′a′ where a′
is a satisfying assignment of q′. This is achieved
precisely when a′ = 0 9+: or a′ = 1a®1 where a is a
satisfying assignment of q and ®1 ∈ B:−1.

By our definition of ?̃, all strings in ! that begin
with 5′ have equal weight under ?̃. Call this weight
F.19 Clearly / (5′0) = F, and / (5′1) = F · 2:−1 ·
(number of satisfying assignments of q).
Recall that ?(0 | 5′) = / (5′0)/(/ (5′0) +

/ (5′1)). Let us abbreviate this quantity by ?. It
follows from the previous paragraph that if q is un-
satisfiable, then ? = 1, but if q is satisfiable, then
? ≤ 1/(1+2:−1). By hypothesis, ? is approximated
(with error probability < 1/3) by the possibly random
quantity ("q()q

|5′ |)) (5
′0), which we abbreviate by

19Specifically, each such string has length =+ 9 + : , so ?̃ gives
it a weight of F = (13)

=+ 9+:+1.

@, to within a factor of _. That is, ? ∈ [@/_, _@].
By choosing : large enough20 such that [@/_, _@]
cannot contain both 1 and 1/(1+2:−1), we can use @
to determine whether ? = 1 or ? ≤ 1/(1+2:−1). This
allows us to determine Sat(q) in polynomial time
with error probability < 1/3, since by hypothesis @ is
computable in polynomial time with compact param-
eters. This shows that Sat ∈ BPP/poly = P/poly,
implying NP ⊆ P/poly, contrary to our assumption.
(BPP/poly is similar to P/poly but allows "q to be
a bounded-error probabilistic Turing machine.) �

Theorem 4. Assuming NP * P/poly, there exists
an efficiently computable weighted language ?̃ :
+∗ → R≥0 such that there is no ("q,�q) where
�q = {)q

= | = ∈ N} that satisfies all of the following
properties (similar to §3.1):
• the parameter size |)q

= | grows only as $ (poly(=))
• "q()q

=) returns a probabilistic Turing machine @=
in time $ (poly(=))

• there exists _ ≥ 1 such that for each G ∈ + ∪ {$}
and x̂ ∈ +∗ with |x̂| ≤ = and ?(G | x̂) > 0, the
probabilistic computation @= (x̂G) has probability
> 2/3 of approximating ?(G | x̂) to within a factor
of _ (that is, @= (x̂G)/?(G | x̂) ∈ [1/_, _])

• @= runs on those inputs x̂G in time $ (poly(=))
Moreover, the statement above remains true
(a) when the approximation guarantee is only re-

quired to hold for prefixes x̂where {x : x̂ � x} is
finite (so ?(G | x̂) is computable by brute force)

(b) or, when support(?̃) = +∗

Proof. It remains to show that the statement remains
true with modification (a) and with modification (b).
For (a), the proof of Lemma A.1 suffices, since it
reduces Sat to approximate local probability queries
of the stated form. That is, the true local probabilities
?(G | x̂) that can be computed with finite summations,
thanks to the structure of our example language ?̃,
which guarantees that the prefix x̂ can only continue
with suffixes of a fixed length that is easily determined
from x̂.
For modification (b), again let + = B = {0, 1}.

Choose some n > 0 (any choice will do), and let

?̃1(x) =

(13)
|x+1 | if x = 5a where 5 = enc(q)

and a satisfies q
0 otherwise

?̃2(x) = (19)
|x+1 | > 0

?̃(x) = ?̃1(x) + n · ?̃2(x)

20It suffices to ensure that 1 + 2:−1 > _2, so take any
: > 1 + log2 (_2 − 1).

We use /1, /2, and / respectively to denote normaliz-
ing constants of these three weighted languages. Note
that ?̃1 is the weighted language that was previously
used in the proofs of Theorem 1 and Lemma A.1. Our
new ?̃ is intended to be very similar while satisfying
the additional condition (b). It is easy to show that
?̃ is efficiently computable, much as we showed for
?̃1 in Theorem 1. Also, ?̃ is normalizable, since
/ = /1 + n · /2, where /1 ≤ (13)/(1 −

2
3) = 1 and

/2 = (19)/(1 −
2
9) =

1
7 are both finite.

The proof proceeds as in Lemma A.1, with q′
constructed from q as before. Recall that q has 9
variables, q′ has 9 + : variables, and |5′ | = =. We
may assume WLOG that the encoding function enc
is such that an encoded formula always has at least as
many bits as the number of variables in the formula,
so = ≥ 9 + : .

Notice that /1(5′) sums over the satisfying as-
signments of q′, and there may be as few as one
of these (if q is unsatisfiable). By contrast, /2(5′)
sums over an infinite number of continuations with
positive probability. The faster decay rate of 1

9 in ?̃2
was chosen to keep /2(5′) small relative to /1(5′)
despite this. Specifically,

/1(5′0) = (13)
=+ 9+:+1

/1(5′1) = (13)
=+ 9+:+1 · 2:−1

· (# of satisfying assignments of q)
/2(5′0) = (19)

= · 1
9 · (

1
9/(1 −

2
9))

= 1
7 · (

1
3)

2(=+1)

< 1
7 · /1(5′0)

(because 2(= + 1) > = + 9 + : + 1)
/2(5′1) = /2(5′0)

As in the proof of Lemma A.1, we will show that
?(0 | 5′) is much larger when q is unsatisfiable.
Recall that / (x̂) = /1(x̂) + n · /2(x̂). When q has
zero satisfying assignments,

?(0 | 5′) = / (5′0)
/ (5′0) + / (5′1)

=
/ (5′0)

/1(5′0) + n · /2(5′0) + n · /2(5′1)

>
/ (5′0)

/1(5′0) + 2 · n7 · /1(5′0)

whereas if q has at least one satisfying assignment,

then

?(0 | 5′) = / (5′0)
/ (5′0) + / (5′1)

<
/ (5′0)

/1(5′0) + /1(5′1)

≤ / (5′0)
/1(5′0) + 2:−1/1(5′0)

This rewrites both probabilities in terms of / · (5′0)
quantities, which do not depend on the number of
satisfying assignments. So now we can see that the
first probability is at least (1 + 2:−1) / (1 + 2n

7)
times as large as the second probability. Choose :
large enough21 such that [@/_, _@] cannot contain
both probabilities, and complete the proof as in
Lemma A.1. �

Theorem 5. The set { ?̃ : ?̃ is normalizable, ?̃ ∈
EC, ?̃ ∉ ELN} is not empty.

Theorem 5 states that some normalizable EC
distributions cannot be expressed as ELN distributions.
The proof is based on the undecidability of the
halting problem, rather than the assumed inefficiency
of the Boolean satisfiability problem. Thus, unlike
Theorem 1, it does not rely on the assumption that
NP * P/poly, or even on the weaker assumption that
P ≠ NP.

Proof. Given any unweighted language ! ⊆ B∗, we
can define a normalizable weighted language ?̃ with
support ! by ?̃(x) = 1/3 |x |+1 for x ∈ ! and ?̃(x) = 0
otherwise. Moreover, if ! ∈ P, then ?̃ ∈ EC.

For our purposes, we take ! to consist of all
strings of the form x(1)x(2) , for which there exists
a deterministic Turing machine " such that x(1) =
enc(") (where enc is a prefix-free encoding function)
and x(2) encodes an accepting execution path of "
on an empty input. (Such a path may be represented
as a sequence of transitions of " that begins with
an initial state and ends at an accepting state.) Note
that any deterministic TM x(1) can be paired with at
most one accepting execution path x(2) , and cannot
be paired with any x(2) if it does not halt.
Clearly ! ∈ P: given x ∈ B∗, we can decide

whether x ∈ ! by first checking if x can be expressed
as a concatenation of strings x(1) and x(2) of the
required form. Then we build " from x(1) and
simulate it to check the transitions in x(2) on "
step-by-step. This can be done in $ (poly(|x|)) total
time. We conclude that the ?̃ derived from ! is EC.

21It suffices to ensure that (1 + 2:−1)/(1 + 2n
7) > _

2, so take
any : > 1 + log2 (_2 · (1 + 2n

7) − 1).

Now, / (x(1)) > 0 iff " halts on the empty input.
But this undecidable problem could be decided if there
were an ELN weighted language that had support !,
since then / (x(1)) / / could be found as a product of
local conditional probabilities, ∏ |x(1) |

C=1 ?(G (1)C | x
(1)
<C),

that could each be computed by a Turing machine.
Therefore ?̃ is not ELN. �

We have shown above that a certain unweighted
language ! is not the support of any ELN distribution.
We conjecture that it is also not the support of
any ELNCP distribution;22 a proof of this would
strengthen Theorem 5 to become an unconditional
version of Theorem 1. However, ELNCP weighted
languages do have more power than ELN weighted
languages, as we now show.
Theorem 6. The set { ?̃ : ?̃ is normalizable, ?̃ ∈
EC, ?̃ ∈ ELNCP, ?̃ ∉ ELN} is not empty.

Theorem 6 justifies why this region is drawn
as non-empty in Figure 2. Again, it does not rely
on the assumption NP * P/poly or P ≠ NP. Note
that Theorem 5 can be regarded as a corollary of
Theorem 6.

Proof. The weighted language ?̃ constructed in The-
orem 5 is not necessarily ELNCP. To fix this, we
modify the construction to obtain a weighted language
?̃′ with sparse support ! ′. We will again be able to
show that ?̃′ is EC and not ELN. To show that ?̃′ is
also ELNCP, we will rely on the sparsity of ! ′, mean-
ing that prefixes(! ′) , {x̂′ : (∃x′ ∈ ! ′) x̂′ � x′}
contains at most $ (poly(=)) strings x̂′ of length
≤ = + 1. Thus, we can use �q

= to store all of those
strings x̂′ in polynomial space, along with their / (x̂′)
values.23 Notice that all strings x̂′ ∉ prefixes(! ′)
have / (x̂′) = 0, so they need not be stored. Now for
any x̂′ of length ≤ =, a Turing machine that consults
)

q
= can compute @(G | x̂′) = / ?̃′ (x̂′G) / / ?̃′ (x̂′) in

time $ (poly(=)) as desired, establishing that ?̃′ is
ELNCP.

We may define ?̃′ as follows. Let sparsify(x) be
a version of x with many extra 0 symbols inserted:
specifically, it inserts 2C copies of0 immediately before
the Cth bit of x, for all 1 ≤ C ≤ |x|. We construct ?̃′ so
that ?̃′(sparsify(x)) = ?̃(x). Specifically, let ! ′ ,

22We have not attempted to prove this. Our loose intuition is
that the compact parameters of an ELNCP language may help it
to memorize some small part of !, but the halting problem would
still be undecidable when restricted to the rest of ! (Myasnikov
and Rybalov, 2008).

23More precisely, the first 1 bits of / (x̂′) ≤ 1 may be stored
in �q

=+1 , when ELNCP is defined as explained in our “Remark
on irrationality” above.

sparsify(!). The inverse function sparsify−1(x′) is
defined on exactly x′ ∈ ! ′, and is uniquewhen defined.
For all x′ ∈ B∗, let ?̃′(x′) , ?̃(sparsify−1(x′)) if
sparsify−1(x′) is defined, and ?̃′(x′) , 0 otherwise.
This can be computed in polytime, so ?̃′ is EC. Also,
its support ! ′ is sparse as claimed, so ?̃′ is ELNCP.
Finally, we claim ?̃′ is not ELN. A given deter-

ministic Turing machine " halts on the empty input
iff enc(") ∈ prefixes(!) iff sparsify(enc(")) ∈
prefixes(! ′) iff / ′(sparsify(enc("))) > 0. But
as in the proof of Theorem 5, this would be de-
cidable if ?̃′ were ELN as defined in §3.1, since
then we would have a Turing machine to compute
the local conditional probabilities ?′(ĜC | x̂<C) for
x̂ = sparsify(enc(")). �

Theorem 7. There exists a light marginalization ?
of an ELN distribution, such that support(?) is an
NP-complete language.

Proof. We will construct ? such that support(?)
is the NP-complete language Sat of all satisfiable
boolean formulas. The idea is to construct an ELN
distribution A that can autoregressively generate any
assignment a followed by any formula q that is
satisfied by a. Thus, if we delete the a prefixes, the
support consists of exactly the satisfiable formulas q
(or more precisely, their encodings 5).

To be more precise, we will have support(A)
be the language ! = {a#5 | a ∈
B∗ and q is a formula satisfied by a}. This is de-
fined similarly to the support language ! in §3.2, but
with the order of 5 and a crucially swapped: A will
now generate the “solution” a before the “problem”
5. The alphabet + of this language contains at least
the symbols {0, 1, #}, where # is a separator symbol,
and any other symbols needed to encode q as 5. The
marginalization operator ` maps a#5 to 5.
Let 9 = |a|. As in §3.2, we will require q to

use all of the variables �1, . . . , � 9 (and only those
variables), implying that |5 | ≥ 9 . This ensures that
marginalizing over the 9 + 1 latent symbols is only
lightmarginalization since 9+1+|5 | ∈ $ (poly(|5 |)).
For convenience, we will also require q to be a CNF
formula. These requirements shrink support(?) but
do not affect its NP-completeness.

The remaining challenge is to construct an autore-
gressive distribution A whose support is !. We can
think of this distribution as describing an efficient
procedure for randomly generating a string from left
to right so that the procedure generates the Cth symbol

in time $ (poly(C)), terminates with probability 1,24
has positive probability of producing any string in !,
and has zero probability of producing any string not
in !. Below we give such a procedure.25
1. First, the procedure generates a# as a sequence

of random symbols from {0, 1, #}, making a
uniform draw at each step. It stops immediately
after generating # for the first time. The string
generated before # is called a and we let 9 = |a|.
For example, a = 010 and 9 = 3.

2. Second, the procedure must generate the encod-
ing 5 of a randomCNF formula q that is satisfied
by a, such as (�2 ∨¬�3 ∨¬�2 ∨ �2) ∧ (¬�1)
in our example. This involves generating a ran-
dom sequence of 0 or more satisfied clauses
connected by ∧. At each step, the procedure
decides whether to generate a new clause or end
the formula. The probability of generating a new
clause is ordinarily 1/2. However, this probability
is 1 if the previous clauses do not yet mention
all the variables �1, . . . , � 9 .
How does it generate each satisfied clause?
This involves generating a sequence of literals
connected by ∨, at least one of which must be
true. At each step of this subroutine, it uniformly
chooses an integer 8 ∈ [1, 9], and then flips a
fair coin to decide whether to add the literal �8
or ¬�8 to the current clause. If the clause is now
satisfied by a (i.e., at least one of the literals is
true), it then flips another fair coin to decide
whether to end the clause.

A is ELN because there exists a Turing machine that
computes from input x̂G—in time $ (poly(|x̂|))—
the probability that the next symbol generated after
the prefix x̂ would be G, under the above procedure.
As discussed in footnote 7, that probability equals
A (G | x̂)—which is what our Turing machine is
required to return—because the above procedure
almost surely terminates (footnote 24), ensuring that
A is a consistent probability distribution over +∗ (that
is, ∑x∈+ ∗ A (x) = 1). �

Theorem 8. The following statements are equivalent
for any nonempty ! ⊆ +∗:
(a) ! ∈ NP/poly.

24Phase 1 almost surely terminates after a finite number of
bits. Phase 2 almost surely terminates after a finite number of
clauses, and each clause almost surely terminates after a finite
number of literals. “Almost surely” means “with probability 1.”

25Our presentation here makes use of an infinite alphabet
that includes symbols such as �8 and ¬�8 for all 8 ∈ N>0, as
well as symbols such as 0, 1,∧,∨. We implicitly invoke some
prefix-free encoding scheme to translate each symbol into a fixed
string over the finite alphabet + .

(b) ! is the support of a light marginalization of an
ELNCP distribution.

(c) ! is the support of a light marginalization of an
ECCP weighted language.

Proof. (b) implies (c) since any ELNCP distribution
is an ECCPweighted language (Lemma 2). (c) implies
(a) by Lemma A.2 below. Finally, (a) implies (b) by
Lemma A.3 below. �

Lemma A.2. For any ECCP weighted language Ã , if
?̃ is a light marginalization of Ã , then support(?̃) ∈
NP/poly.

Notice that this lemma concerns the class NP/poly,
not P/poly (see §2.4). The proof is straightforward.

Proof. Suppose Ã is ECCP via (" r̃,) r̃), and `

is the marginalization operator such that ?̃(x) =∑
z:` (z)=x Ã (z). By the light marginalization assump-

tion, there is a polynomial 5 such that |z| ≤ 5 (|`(z) |).
To prove support(?̃) ∈ NP/poly, we must show

that there exists (",�) such that for all = ≥ 0, a
nondeterministic Turing machine "= can be con-
structed as " ()=) in time $ (poly(=)), which can in
turn decide in time $ (poly(=)) whether ?̃(x) > 0
for any x with |x| = =.
Deciding ?̃(x) > 0 means deciding whether
(∃z ∈ +∗) `(z) = x and Ã (z) > 0. But if |x| = =, the
first condition `(z) = x implies |z| ≤ 5 (|`(z) |) =
5 (|x|) = 5 (=). Thus, we need "= to nondeterminis-
tically check only the z of length up to 5 (=) to see
whether `(z) = x and Ã (z) > 0.

How can "= check a string z of length <? It
can decide the first condition `(z) = x in time
$ (poly(<)), since the marginalization operator ` is
a polytime function. To decide the second condition
Ã (z) > 0, it must construct the (deterministic) Turing
machine " r̃() r̃

<) and then apply it to z to obtain Ã (z):
since Ã is ECCP, both steps take time $ (poly(<)) =
$ (poly(5 (=))) ⊆ $ (poly(=)) as required.

However, this means that "= = " ()=) must have
access to the parameter vectors) r̃

< for all < ≤ 5 (=).
We therefore make)= include this collection of
parameter vectors. Each |) r̃

< | ∈ $ (poly(<)) ⊆
$ (poly(=)) since Ã is ECCP. So |)= | ∈ $ (poly(=))
as required. �

Lemma A.3. For any ! ∈ NP/poly, there exists a
light marginalization ? of an ELNCP distribution,
such that support(?) = !.

Lemma A.3 resembles Theorem 7, but it constructs
distributions for all ! ∈ NP/poly, not just for one

particular ! ∈ NPC. The proof is similar but more
complicated. In both cases, the goal is to demonstrate
how an ELNCP distribution A can define a left-to-
right stochastic string generation process such that
the suffix of the generated string must be in ! and
can be any element of !.

Our string generation process in this case is inspired
by rejection sampling, a widely used method for
sampling from an energy-based model with support !.
The standard scheme is to first sample a string x from
a tractable distribution @ such that support(@) ⊇ !,
then accept the sample with an appropriate probability,
which is 0 if x ∉ !. The process is repeated until a
sample is finally accepted. There is no guarantee that
this standard scheme will terminate in polynomial
time, however. Fortunately, in our setting, we are
not trying to match our sampling distribution ? to
a given energy-based model, but simply match its
support to a given language !. We make use of the
polysize parameter vectors of ELNCP languages to
store certain ‘fallback strings’ that are guaranteed
to be in the desired language !. Wherever ordinary
rejection sampling would reject a string and try
generating another, we switch to generating a stored
fallback string of an appropriate length. This scheme
places all of the rejected probability mass on the
small set of fallback strings (in contrast to rejection
sampling, which in effect throws away this mass and
renormalizes). The advantage is that it does not iterate
indefinitely. At a high level, A is a distribution over
strings z that record traces of this generative story we
describe above.

Proof. WLOG we assume ! uses the alphabet + =

{0, 1, #}. In the case where ! is finite, the result is
trivial. We simply define A (x) = 1/|! | for x ∈ ! and
A (x) = 0 otherwise. We then take ? = A (a trivial
marginalization). It is easy to show that A is ELN,
and therefore ELNCP as desired, by constructing an
appropriate Turing machine that maps x̂G to A (G | x̂)
in time $ (|x̂G |), for any x̂ that is a prefix of some
string in ! and any G ∈ + ∪ {$}. The finite state table
of the Turing machine includes states that correspond
to all possible strings x̂G, with transitions arranged in
a trie. It reads the input string x̂G from left to right to
reach the state corresponding to x̂G. If it detects the
end of the input while in that state, it writes A (G | x̂)
on the output tape.

Now we consider the case where ! is infinite. For
each 9 ∈ N≥0, let the ‘fallback string’ x(9) be some
string in ! of length ≥ 9 . For definiteness, let us
take it to be the shortest such string, breaking ties

lexicographically. At least one such string does exist
because ! is infinite, so x(9) is well-defined.
Also, since ! ∈ NP/poly (§2.4), let (",�) be

an ordered pair and 5 be a polynomial such that
" 9 = " (\ 9) nondeterministically accepts a within
≤ 5 (9) steps iff a ∈ !.

As in the proof of Theorem 7, we now describe a
procedure for randomly generating a string z from left
to right. z will have the form a#b#2d, where d ∈ !
and the latent substring a#b#2 will be removed by
the marginalization operator `.
1. First we generate a random string a ∈ B∗ fol-

lowed by #, just as in the proof of Theorem 7.
Again let 9 = |a|.

2. Next, we must consider whether a ∈ !. We
generate a random computation path b of " 9

on input a until it either accepts (in which case
we then generate #1 to record acceptance of
a) or has run for 5 (9) steps without accepting
(in which case we then generate #0 to record
rejection).

3. In the former case (2 = 1) we finish by deter-
ministically generating d , a ∈ !. In the latter
case (2 = 0), a ∉ !, so we fall back and finish
by deterministically generating d , x(9) ∈ !.

Let A (z) be the probability that the above procedure
generates z. support(A) is then the set of strings
that can be generated by the above procedure. The
marginalized language `(support(A)) keeps just the
d parts of those strings. It consists of all strings
a that are accepted by at least one path b of " |a |
(which are exactly the strings in !) together with the
fallback strings (which form a subset of !). Thus,
`(support(A)) = ! as desired.

We wish to show that A is ELNCP. In other words,
some Turing machine "q efficiently locally normal-
izes A with compact parameters �q, as defined in
§3.1. The parameters will be used to store information
about the infinite set of fallback strings.
In particular, for each =,)q

= must have enough
information to construct a Turing machine @= =

"q()q
=) such that @= (ẑI) returns A (I | ẑ) for all

I ∈ + ∪ {$} and all ẑ with |ẑ| ≤ = and / (ẑ) > 0.
Here / (ẑ) > 0 means that ẑ is a prefix of a string
z = a#b#2d that could be generated by the above
procedure. The computation @= (ẑI) proceeds by
simulating the sequence of choices in the above
procedure that would be required to generate ẑ, and
then returning the probability that the procedure
would generate symbol I next. That probability equals
A (I | ẑ) as desired because the above procedure

almost surely terminates (as explained at the end of
the proof of Theorem 7).
In general, the computation @= (ẑI) may have to

construct " 9 = " (\ 9) and simulate it on a (for
9 = |a|) if I falls in the b#2 portion of ẑ, and it may
have to look up a character of the fallback string
x(9)$ if I falls in the d portion of ẑ or terminates that
portion with I = $. Fortunately 9 < =, and fortunately
if the computation looks up the Cth character of x(9)$
then C < =. Thus, constructing and simulating " 9

can be done in time $ (poly(9)) ⊆ $ (poly(=)),
and looking up the Cth character of x(9)$ can be
achieved with access to the first = characters of each
of x(1) , . . . , x(=) , which can be stored by)q

= in space
$ (=2). It follows that "q can construct and apply @=
in polynomial time with access to compact parameters
�q, so A is ELNCP.

�

B Implementation details of REBMs

B.1 Modeling finite subsets of infinite
languages

The experiments of this paper are conducted on
datasets where we only observe strings that are
finitely long. Given a possibly infinite language !,
we use the notation !≤) = {x | x ∈ !, |x| ≤)}
for the subset of strings that are most) symbols
long. Specific values of) for datasets used in our
experiments are listed in Appendix D.1.

B.2 Design of base models ?0

?0 can be any distribution over !≤) 26 provided that
we can sample from it, and evaluate ?0(x),∀x ∈ !≤) ,
both in $ (poly(|x|)). In this work, we experiment
with two designs of ?0: GRU- and Transformer-based
locally normalized language models. GRU-based
models are used in WikiText and Yelp experiments.
The GRU-based ?0’s are parametrized with 2-layer
GRUs with 500 hidden units, and word embeddings
of dimension size 500.

As for Transformer-based ?0’s, we make use of
Grover models (Zellers et al., 2019), which effectively
are GPT-2 models trained on the aforementioned
RealNews dataset. In this work, we experiment with
the ‘base’ variant of public available weights, which
are 12-layered Transformers, with 12 heads, and 768
hidden units.

26Note that since ?0 does not have support over !, it has to
assign ?($ | x1...)) = 1, which is generally not an issue.

B.3 Design of discriminators 6)
We formulate 6) (x) as a summation of scores at posi-
tions 1 . . . |x|, passed through an activation function
5 :

6) (x) = 5

(
|x |∑
8=1

6C (x;))
)
. (1)

To verify whether lower-bounding 6) would help with
learning, as we discuss in §4.1, we experiment with
two variants of 5 :

• tanh: 5 (G) = 2 · tanh(G)
• softplus: 5 (G) = − log(1 + exp(G + B))

The former one is bounded between (−2, 2), while
the second one has range (−∞, 0). The offset term B

in the softplus activation function determines initial
values of /) . In this paper we set B = 20.

The design of 6C (x;)) follows their base model
counterparts: we use Bi-GRU discriminators for
GRU base models; and bi-directional Transformer
discriminators for Transformer ones. For GRUs
6C (x;)) = hC · GC , For Transformers 6C (x;)) = ∑ hC
where hC are the hidden states at time step C. In both
cases, the discriminators have access to information
of the whole sequence x at any timestep: the Bi-GRU
discriminators achieve this through the bi-directional
RNNs, and the Transformers through the attention
mechanism without directional masking.

B.4 Training procedure
As we note in §4.1, MLE-based training methods
are generally not feasible for globally normalized
models. We therefore opt to train our model using
the ranking variant of noise contrastive estimation
(NCE) (Ma and Collins, 2018), which does not require
samples from ?0 and has a simple form for residual
LMs. Using ?0 as a noise distribution, NCE training
requires minimizing the following single-sequence
loss, in expectation over the true distribution ?:

Lnce() , x, ?0,) = − log
?̃)
?0
(x)∑

:=0
?̃)
?0
(x(:))

, (2)

where x(0) , x, ?̃)
?0
(x) , ?̃) (x)

?0 (x) , and x(1) . . . x() ∼
?0. Since ?̃) (x) = ?0(x) · exp 6) (x), we have
?̃)
?0
(x) = exp 6) (x). The NCEminimization objective

(2) now reduces to the simple form

Lnce() , x, ?0,)
= −6) (x)

+ log(exp 6) (x) +
 ∑
:=1

exp 6) (x(:))). (3)

Notice that minimizing the expected loss with
stochastic gradient descent methods Lnce defined
in equation (3) requires only evaluating sequence
probabilities under 6) , and tuning its parameters, but
not the base model ?0. We only need to generate
the noise samples {x(:) ∼ @ | : ∈ []} from ?0.
This way we do not need to backpropagate through
parameters of the base model ?0, which can speed
up training considerably when ?0 is backed by a
huge network. In fact, the training of 6) can be
completely agnostic to the design of ?0, allowing for
the application of finetuning any locally normalized
?0.

Given the same discriminator 6) , the difference
of KL-divergence between the true model ? and
residual language models ?̃′) (x) = ?

′
0(x) · exp 6) (x),

and the KL-divergence between the true model and
?̃′′) (x) = ?

′′
0 (x) ·exp 6) (x), definedwith base models

?′0 and ?
′′
0 respectively, can be written as

KL[? | |?′)] − KL[? | |?′′)]

= KL[? | |?′0] − KL[? | |?′′0] + log
/ ′

/ ′′
,

(4)

where / ′ = Ex∼?′0 [exp 6) (x)], and / ′′ is similarly
defined with ?′′0 . As a direct result of equation (4),
we can see that finding ?′′0 where KL[? | |?′′0] <
KL[? | |?′0] implies improvement in KL[? | |?′′)] over
KL[? | |?′)], under mild conditions:

TheoremB.1. If∃: > 0 such that
Ex∼?′0

[exp 6) (x)]
Ex∼?′′0

[exp 6) (x)] >

exp(−:) and KL[? | |?′0] − KL[? | |?′′0] > : then
KL[? | |?′)] > KL[? | |?′′)].

Proof.

KL[? | |?′)] − KL[? | |?′′)]
= E

x∼?
[log ?′′) (x) − log ?′) (x)]

= E
x∼?
[log

?′′0 (x) exp 6) (x)∑
x′∈!≤) ?

′′
0 (x) exp 6) (x)

− log
?′0(x) exp 6) (x)∑

x′∈!≤) ?
′
0(x) exp 6) (x)

]

= E
x∼?
[log

?′′0 (x) exp 6) (x)
Ex′∼?′′0 [exp 6) (x)]

− log
?′0(x) exp 6) (x)
Ex′∼?′0 [exp 6) (x)]

]

= E
x∼?
[log ?′′0 (x) − log ?′0(x)]

+ E
x∼?
[log E

x′∼?′0
[exp 6) (x)] − log E

x′∼?′′0
[exp 6) (x)]]

= KL[? | |?′0] − KL[? | |?′′0]

+ log
Ex′∼?′0 [exp 6) (x)]
Ex′∼?′′0 [exp 6) (x)]

. (5)

Plugging assumptions
Ex∼?′0

[exp 6) (x)]
Ex∼?′′0

[exp 6) (x)] > exp(−:)
and KL[? | |?′0] − KL[? | |?′′0] > : into equation (5),
KL[? | |?′)] − KL[? | |?′′)] > 0. �

Theorem B.1 suggests a training strategy that
we first train the base model ?0, then finetune 6) :
under a roughly uniform 6) (e.g. when) is newly
initialized), Ex∼?′0

[exp 6)]/Ex∼?′′0
[exp 6)] ≈ exp(0); so

improvements on the inclusive KL-divergence of base
model KL[? | |?0] will mostly translate to improve-
ment in KL[? | | ?̃)]. Optimizing the base model (i.e.
finding ?′′0 such that KL[? | |?′′0] < KL[? | |?′′0]) is
much easier than directly minimizing KL[? | |?′)]: the
former can be done by minimizing empirical cross
entropy, which is computationally efficient, while
the latter involves an intractable partition function∑

x∈!≤) ?̃
′
) (x).

Pseudocode for fine-tuning 6) is listed in Algo-
rithm 1.

B.5 Computing normalized probabilities

The unnormalized probability ?̃) (x) (in equation (1))
can be evaluated easily, and should suffice for
(re)ranking purposes (e.g. for ASR and MT ap-
plications). However, the normalized probability
@) (x) , ?̃) (x)∑

x ?̃) (x) does require computing the parti-
tion function /) . An unbiased importance sampling

Algorithm 1: Pseudocode for training 6)
Input:

• Training/validation corpora D{train,dev}
• base model ?0 : !≤) → [0, 1]
• initial parameter vector)0 ∈ B3
• noise sample size ∈ N

Output: unnormalized residual language
model @̃) : !≤) → [0, 1]

) ←)0 ;
/* Lnce is defined in
equation (3) */

while ∑
x∈Ddev Lnce() , x, ?0,) is still

decreasing do
foreach x ∈ shuffle(Dtrain) do
∇)Lnce = ∇)Lnce() , x, ?0,);
) ← update-gradient() ,∇)Lnce);

end
end
return x ↦→ ?0(x) + exp 6) (x);

estimate of ∑x∈!≤) ?̃) (x) is
/) =

∑
x∈!≤)

?̃) (x)

=
∑

x∈!≤)
?0(x) exp 6) (x)

= E
x∼?0
[exp 6) (x)]

≈
"∑
<=1

exp 6) (x(<))
"

= /̂)" , (6)

where x(1) . . . x(") ∼ @0.

C Comparison between REBMs and
autoregressive models

We evaluate the effectiveness of REBMs on two
different neural architectures (GRU- and Transformer-
based) and 3 datasets: WikiText (Merity et al., 2017),
Yelp (Yelp), and RealNews (Zellers et al., 2019),
on the task of modeling sequence probabilities. An
REBM ?̃) has two components, 6) and ?0, and we
would like to see how ?̃) competes against ?0 itself.
We do not further tune ?0 while training ?) . As a fair
comparison, we also see how ?′0 compares against
?0, where ?′0 is simply a version of ?0 that has been
trained as many additional epochs as were used to
train ?) .
?0 models are pretrained on moderately large cor-

pora (in GRU cases) or a very large corpus (in the
Transformer case).27 We compare residual energy-
based models ?̃) to further-fine-tuned base models ?′0,

27In the Transformer case we simply take ?0 to be the Grover

on conservatively estimated (at the low end of 95%
confidence interval) token perplexity and bootstrap-
sampled log likelihood improvements. The results are
in Table 2. Residual energy-based models show con-
sistent perplexity improvement compared to ?′0 that
are trained on the same data using the same maximum
numbers of iterations. Although the improvement in
log-likelihood of ?) over ?0 is modest (especially
for RealNews experiments, where ?0 is a very strong
baseline), we verify that these improvements are all
statistically significant (? < 0.05) using bootstrapped
test datasets.

We experimentwith different designs of the discrim-
inator 6) , evaluating the effectiveness of bounding
6) and varying its number of parameters. We find
that in Transformer-based experiments, bounding 6)
considerably helps with performance; but the oppo-
site happens for GRU-based models. We speculate
that this is due to the base models’ performance:
the Transformer base models have high parameter
count and were trained on a lot of data; and the true
distribution ? likely is relatively similar to ?0, and
benefits from a small hypothesis space— even though
we don’t know if the at-most-n error assumption in
§4.1 holds. On the other hand our GRU-based ?0 has
neither the capacity, nor the huge amount of training
data. As a result, the unbounded variant 6) (and @))
may end up learning a better approximation of ?.

D Experimental details

D.1 Datasets

Residual language model experiments are conducted
on these datasets:

• Segmented WikiText: we take the standard
WikiText-2 corpus (Merity et al., 2017), and
segment it into sequences at new line breaks.
We discard all empty lines, and any line that
starts with the ‘=’ token. In effect, we obtain
sequences that are mostly entire paragraphs. We
also only keep lines that are shorter than 800
tokens after BPE tokenization. Because of our
preprocessing, Segmented WikiText loses much
interparagraph context information, and doesn’t
have the ‘simple’ header sequences that were
in the original WikiText corpus, and is much
harder to language-model.

• Yelp: the Yelp dataset (Yelp) contains business
reviews. As in Segmented WikiText, We keep

(Zellers et al., 2019) pretrained language model, which is based
on the GPT-2 (Radford et al., 2019) architecture and performs
competitively on news article generation.

Experiment (Architecture) Model Best configuration log likelihood improvement (95% CI) perplexity improvement

RealNews (Transformer) ?) 4-layer, tanh (−0.18, −0.13) , ` = −0.15 .03%
RealNews (Transformer) ?′0 N/A N/A .00%

WikiText (GRU) ?) 1-layer/500, softplus (−1.85, −1.54) , ` = −1.69 1.44%
WikiText (GRU) ?′0 N/A N/A .50%

Yelp (GRU) ?) 2-layer/500, softplus (−1.89, −1.67) , ` = −1.80 1.82%
Yelp (GRU) ?′0 N/A N/A .49%

Table 2: Residual energy-based model ?̃) improvements over autoregressive base models ?0. The perplexity numbers are per-token,
and log likelihood improvements are per sequence (in nats). We only report each dataset’s best model (according to validation data) in
this table. See Appendix D for experimental details.

reviews shorter than 800 tokens.
• RealNews: we make use of the standardReal-

News corpus comes from (Zellers et al., 2019),
which contains news articles that are up to 1, 024
tokens long.

In all experiments we tokenize with BPE tokenizers
derived from the GPT-2 language models: the GRU
models use Huggingface’s implementation28 and the
Transformers use Grover’s29. Number of sequences
in preprocessed datasets are listed in Table 3.

Train Dev Test

RealNews 3, 855 1, 533 6, 158
WikiText 18, 519 878 2, 183
Yelp 10, 951 9, 964 994

Table 3: Number of sequences in preprocessed datasets
(for training and tuning the discriminators 6) , and eval-
uation).

D.2 Pretraining base models ?0

We use a pretrained Grover model as the base model in
RealNews experiments. For GRU-based experiments,
we train base models on WikiText and Yelp datasets
using separate training and validation splits than those
of the discriminator 6) (Table 4). The base models
are periodically (every 1, 000 iterations) evaluated on
the validation split for early stopping, where we stop
if there is no improvement on validation perplexity
for 10 consecutive evaluations. The base models @)
achieve 113.98 for Segmented WikiText, and 110.89
in test set perplexity, respectively. Note that these base
models are further fine-tuned on additional datasets
in our comparison against residual language models.

D.3 Metrics

We evaluate the relative performance of residual
language models against autoregressive models (i.e.

28https://github.com/huggingface/
transformers

29https://github.com/rowanz/grover

Train Dev

WikiText 17, 556 1, 841
Yelp 9, 954 1, 000

Table 4: Number of sequences in preprocessed datasets
(for training and tuning the base model @). Note that we
do not train our own base models for RealNews, but use
one of the pretrained models provided by (Zellers et al.,
2019).

fine-tuned base models) on two metrics, log likelihood
and perplexity improvement, which are approximated
as follows:

• Log likelihood improvement: since ?, ?) and
@0 are all distributions over !≤) , we can quanti-
tatively evaluate their difference in log likelihood.
We measure the difference between KL[? | |?)]
and KL[? | |?0]:30

KL[? | |?)] − KL[? | |?0]
= E

x∼?
[log ?) (x) − log ?0(x)]

= E
x∼?
[log ?̃) (x) − log ?0(x)] − log /)

= E
x∼?
[6) (x)] − log /)

≈
∑

x∈Dtest 6) (x)
|Dtest |

− log /̂)" , (7)

where /̂)" is estimated using equation (6).
A negative value of log likelihood difference
indicates that @̃) approximates ? better than ?0
in terms of KL-divergence.

• Perplexity improvement: perplexity is a com-
mon language modeling metric. Following
(Rosenfeld et al., 2001), we compute

perplexity improvement of ?)

=
exp |D | log /̂)"

F (Dtest)

exp
∑

x∈Dtest 6) (x)
F (Dtest)

, (8)

30Note that ?0 here is the base model component of ?̃) . While
comparing between residual language models and autoregressive
models, we also finetune ?0 on additional data to get a new
model @′0, which has different parameters than ?0.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/rowanz/grover

where F(D) is the total token count of dataset
D, and |D| is the number of sequences of D.
/̂)" is ecomputed Appendix B.5

Both evaluation metrics involve estimating the parti-
tion function with /̂)" . For the perplexity improve-
ment metric, we obtain 32 estimates of /̂)" 31, which
are normally distributed, and compute equation (8)
using /̂)" the conservative end of a 95% confidence
level. To account for variance in our test datasets, we
further make use of bootstrapping estimation for log
likelihood improvement: we bootstrap-sample 1, 000
subsamples for each test dataset, and compute equa-
tion (7) for each datapoint in the Cartesian product
(1, 000 × 32 in total). We then report results at the
2.5% and 97.5% percentiles.

D.4 Hyperparameters

Transformer experiments. We train our models
on 64 GPUs across 8 nodes, with a total batch size of
64×8×2 = 1, 024, and with 1 noise sequence (= 1
in Appendix B.4) per batch. We use an initial learning
rate of 54 − 5. The rest of the hyperparameters largely
follow settings in (Zellers et al., 2019). Optimization
is done with the Grover implementation of AdaFactor.

GRU experiments. We train our models on 8
GPUs on a single node, with a total batch size of
8 × 2 = 16, and with 25 noise sequences (= 25 in
Appendix B.4) per batch. We have an initial learning
rate of 14 − 4. Upon no improvement on validation
data, we half the learning rate, with patience = 1. The
model parameters are ;2 regularized with a coefficient
of 14 − 5. We also apply dropout regularization with
? = 0.5. Optimization is done with PyTorch-supplied
Adam.

D.5 Configurations

We study the effects of these configurations:
• Bounding 6) : we note in §4.1 that with the
strong hypothesis that the base model ?0 has
bounded error, 6) will have a bounded range,
and leads to a much smaller hypothesis space.
In this work we experiment with both bounded
and unbounded 6)’s, with ranges (−∞, 0) and
(−2, 2) respectively. More details can be found
in Appendix B.3.

• Model capability of 6) : we hypothesize that
the expressiveness of 6) does not need to be as
rich as the parametrization of ?0, since 6) es-
sentially only has to tell whether the sequence x

31We set " = 512 in this paper.

comes from ? or ?0. For the GRU +WikiText ex-
periments, we experiment with {1, 2}-layer GRU
models of 6) . For 1-layermodels,we additionally
experiment with a setup that has only 250 hidden
units. For the Transformers/RealNews dataset,
we experiment with {12, 4}-layer Transformer
models.

D.6 Log likelihood improvements under
different configurations

We also see in Table 5 that using tanh as the activation
function 5 does better than softplus for Transform-
ers; but performs very poorly for GRUs. We also
observe degeneracy problems. We speculate that
our Transformer-based base models @) have already
learned a good approximation of the true distribution;
and limiting the model capacity of 6) in exchange of
smaller variance results in a favorable trade-off, and
vice versa for GRUs. Regarding discriminator capabil-
ity: we see that performance is not sensitive to model
size. Our best Transformers run actually is from the
smaller-model runs. And the 1-layer 500-unit GRU
models achieve best performance. Overall, results in
Table 5 suggests that performance is sensitive to the
choice of model configuration.

Model Size Activation log likelihood improvement

95% CI `

RealNews (Transformers)

12-layer softplus (−0.13, 0.08) −0.09
12-layer tanh (−0.14,−0.10) −0.12
4-layer softplus (−0.15, 2.62) −0.02
4-layer tanh (−0.18,−0.13) −0.16

WikiText (GRUs)

2-layer / 500 tanh (−0.00, 0.00) −0.00
2-layer / 500 softplus (−1.32,−0.85) −1.18
1-layer / 500 tanh (−0.79,−0.64) −0.71
1-layer / 500 softplus (−1.85,−1.54) −1.69
1-layer / 250 tanh (−0.02, 0.02) −0.00
1-layer / 250 softplus (−1.85,−1.46) −1.67

Yelp (GRUs)

2-layer / 500 tanh (−0.03, 0.01) −0.02
2-layer / 500 softplus (−1.89,−1.67) −1.80
1-layer / 500 tanh (−0.65,−0.57) −0.61
1-layer / 500 softplus (−2.62,−2.03) −2.43
1-layer / 250 tanh (−0.00, 0.00) −0.00
1-layer / 250 softplus (−2.25,−1.99) −2.13

Table 5: Comparison of different configurations.

