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Abstract

The success of language models based on the
Transformer architecture appears to be incon-
sistent with observed anisotropic properties of
representations learned by such models. We
resolve this by showing, contrary to previous
studies, that the representations do not occupy
a narrow cone, but rather drift in common di-
rections. At any training step, all of the em-
beddings except for the ground-truth target em-
bedding are updated with gradient in the same
direction. Compounded over the training set,
the embeddings drift and share common com-
ponents, manifested in their shape in all the
models we have empirically tested. Our ex-
periments show that isotropy can be restored
using a simple transformation.1

1 Introduction

Word embeddings, both static (Mikolov et al.,
2013a; Pennington et al., 2014) and contextual-
ized (Peters et al., 2018), have been instrumental
to the progress made in Natural Language Process-
ing over the past decade (Turian et al., 2010; Wu
et al., 2016; Liu et al., 2018; Peters et al., 2018; De-
vlin et al., 2019). In recent years, language models
based on Transformer architecture (Vaswani et al.,
2017) have led to state-of-the-art performance on
problems such as machine translation (Vaswani
et al., 2017), question answering (Devlin et al.,
2019; Liu et al., 2019b), and Word Sense Disam-
biguation (Bevilacqua and Navigli, 2020), among
others. However, it has been observed that repre-
sentations from Transformers exhibit undesirable
properties, such as anisotropy, that is tend to occupy
only a small subspace of the embedding space. The
observation has been documented by a number of
studies (Gao et al., 2019; Ethayarajh, 2019; Wang
et al., 2020). A similar property has been iden-
tified in the past in static word embeddings (Mu

1The code and datasets used in this paper are available at
https://github.com/danielbis/tooMuchInCommon.

and Viswanath, 2018). To address the issues, post-
processing methods (Mu and Viswanath, 2018),
and regularization terms have been proposed (Gao
et al., 2019; Wang et al., 2019c, 2020). However,
the mechanism that leads to undesirable proper-
ties remains unclear. Without understanding the
mechanism, it is going to be difficult to address the
fundamental issue properly.

The deficiencies are most pronounced in the rep-
resentations of rare words, as we will show in
Section 4. Performance of pretrained language
models is inconsistent and tends to decrease when
input contains rare words (Schick and Schütze,
2020b,a). Schick and Schütze (2020a) observe
that replacing a portion of words in the MNLI
(Williams et al., 2018) entailment data set with
less frequent synonyms leads to decrease in per-
formance of BERT-base and RoBERTa-large by
30% and 21.8% respectively.2 After enriching rare
words with surface-form features and additional
context, Schick and Schütze (2020a) decrease the
performance gap to 20.7% for BERT and 17% for
RoBERTa, but the gap remains large nonetheless.
Why do even the large-scale, pretrained language
models struggle to learn good representations of
rare words? Consider a language model with an
embedding matrix shared between the input and
output layers, a standard setup known as weight
tying trick (Inan et al., 2017). Intuitively, at any
training step t, optimization of the cross-entropy
loss can be characterized as “pulling" the target em-
bedding, wT , closer to the model’s output vector
ht, while “pushing" all other embeddings,W \wT ,
in the same direction, away from the output vector
ht. This leads to what we call common enemies
effect – the effect of the target words producing
gradients of the same direction for all of the non-
target words. Compounded over the training set,
the embeddings drift and share common compo-
nents, manifested in their shape in all the models

2Based on the results reported by authors.
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we have empirically tested; see Figure 1.
Although Gao et al. (2019) report a closely re-

lated phenomenon and call it representation degen-
eration, their analysis is based on an assumption
that the embedding matrix is learned after all other
parameters of the model are well-optimized and
fixed, which is not the case in practice. We conduct
our analysis in a more realistic setting, and arrive
at different conclusions. We show that embeddings
do not occupy a narrow cone, but are shifted in one
common direction and only appear as a cone when
projected to a lower dimensional space (Section
4.1). In fact simply removing the mean vector of
all embeddings, thus centering them, shifts the em-
beddings back onto a more spherical shape. We
evaluate embeddings, before and after centering,
on four standard benchmarks and observe signifi-
cant performance improvement across all of them.
Why is removing the mean so effective? We find
that the common enemies effect applies to most, if
not all, words in the vocabulary but in non-uniform
manner. As language is known to follow an approx-
imately Zipfian distribution (Zipf, 1949; Manning
and Schütze, 2001; Piantadosi, 2014) even com-
mon words will not occur frequently in a text cor-
pus, and in result will be often “pushed" by other
target words in the same direction as rare words.
Consequently, all embeddings share a significant
common direction. We will focus on the analy-
sis of auto-regressive GPT-2 (Radford et al., 2019)
and two masked language models, BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019b). Our
contributions can be summarized as follows:

• We show that as word embeddings repeat-
edly share same direction gradients, they are
shifted in one dominant direction in the vector
space. The effects are the most evident in rep-
resentations of rare words, but are also present
in representations of frequent words.

• The shift causes the distribution of projected
embeddings to appear as a narrow cone; we
show that simply removing the mean vector is
enough to restore the spherical distribution.

• We provide empirical evidence of our analy-
ses using state-of-the-art pretrained language
models and demonstrate that removing the
mean dramatically improves isotropy of the
representations.

2 Background

2.1 Distributed Word Representations

Distributed representations induce a rich similarity
space, in which semantically similar concepts are
close in distance (Goodfellow et al., 2016; Bengio
et al., 2003; Mikolov et al., 2013c). In a language
model, the regularities of embeddings space facili-
tate generalization, assigning a high probability to a
sequence of words that has never been seen before
but consists of words that are similar to words form-
ing an already seen sentence (Bengio et al., 2003;
Mikolov et al., 2013c). Although models such as
BERT or GPT-2 produce representations from a
function of the entire input sequence, the represen-
tations are a result of a series of transformations
applied to the input vectors. Consider an example
sentence: “The building was dilapidated.", and the
sentences resulting from replacing “dilapidated"
with either “ruined" or “reconditioned". If the dis-
tance in the embeddings space between the two
rather infrequent, but antonymous, words “dilapi-
dated" and “reconditioned" is not larger than the
distance between “dilapidated" and its relatively
frequent synonym “ruined", then by the aforemen-
tioned generalization principle there is little to no
reason to believe that the distance will become
larger in the output layer.3

2.2 Tokenization

Do the subword tokenization methods (Schuster
and Nakajima, 2012; Wu et al., 2016; Sennrich
et al., 2016; Radford et al., 2019) preserve the word
frequency imbalance? Examination of the common
tokenization methods, such as Byte-Pair Encoding
(Sennrich et al., 2016) and WordPiece (Schuster
and Nakajima, 2012; Wu et al., 2016), suggests
that subword units induced by tokenization algo-
rithms exhibit similar frequency imbalance to that
of full vocabulary. This can be explained by the
greedy nature of the vocabulary induction process.
Although different methods use different base vo-
cabulary symbols to begin with (i.e., Unicode code
points, or bytes), all of the methods construct the
vocabulary through iterative merging of the most
frequent symbols. As a result, the most frequent
units are preserved as words, while the rare words
are segmented into subword units. Moreover, the
words which are segmented into subword units are

3In fact, all three sentences are assigned a negative senti-
ment, with scores between 97% to 100% by RoBERTa fine-
tuned on SST.
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Figure 1: Top: RoBERTa-large. Bottom: GPT-2 (12 layers). (1a, 1d): Word embeddings projected onto first two
singular vectors. (1b, 1e) Centered word embeddings projected onto first two singular vectors. (1c, 1f) Singular
values of embedding matrix before and after centering. Centering the embedding matrix increases isotropy of
embeddings.

infrequent to such a degree that even their com-
bined frequency is orders of magnitude lower than
frequency of the most common words.

We confirm this empirically by tokenizing the
CNN News corpus (See et al., 2017; Hermann et al.,
2015) with WordPiece (used in BERT), revealing
that over 30% of the corpus can be accounted for
using 13 most frequent tokens, and 50% of the cor-
pus can be accounted for using just 85 tokens. On
the other hand, to cover at least 98% of the corpus,
nearly 15000 tokens are needed. Therefore, we
conclude that the tokens follow approximately Zip-
fian distribution (Zipf, 1949; Manning and Schütze,
2001) similar to that of full vocabulary. We pro-
vide a comparison of frequency distributions of
tokens and words based on CNN-News corpus in
Appendix B.4

3 Learning Language Model

3.1 Autoregressive Language Models
Given a sequence of tokens w = [w1, ...,wN ] as
input, autoregressive (AR) language models assign
a probability p(w) to the sequence using factor-
ization p(w) =

∏N
t=1 p(wt|w<t). Consequently,

AR language model is trained by maximizing the
4The preserved imbalance does not imply that subword

tokenization is not beneficial to performance of language sys-
tems on rare words. It may mitigate some of the issues as
shown in (Sennrich et al., 2016), however recent work demon-
strates that it does not solve the problem (Schick and Schütze,
2020b,a).

likelihood under the forward autoregressive factor-
ization:5

max
θ

log pθ(w) =

N∑
t=1

log pθ(wt|w<t) (1)

=
N∑
t=1

log
exp

(〈
hθ(w1:t−1)

>, e(wt)
〉)

∑V
w′ exp

(〈
hθ(w1:t−1)>, e(w′)

〉)
=

N∑
t=1

log softmax
(
hθ(w1:t−1)W

>)
labelt

,

where hθ(w1:t−1) ∈ Rd is the output vector of a
model at position t, θ are the model’s parameters,
W ∈ R|V |×d is the learned embedding matrix,
e(w) is a function mapping a token to its represen-
tation from the embedding matrix, and labelt is the
index of the t-th target token in the vocabulary. To
estimate the probability, W maps hθ(w1:t−1) to
unnormalized scores for every word in the vocab-
ulary V ; the scores are subsequently normalized
by the softmax to a probability distribution over
the vocabulary. In this paper, we focus on neu-
ral language models which compute hθ using the
Transformer architecture, however the mechanisms
is generally applicable to other common variants
of language models (Mikolov et al., 2010; Sunder-
meyer et al., 2012; Peters et al., 2018).

5We omit the bias term in softmax for clarity.
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3.2 Masked Language Modeling
Masked Language Modeling (MLM) pretraining
objective is to maximize the likelihood of masked
tokens conditioned on the (noisy) input sequence.
Given a sequence of tokens w = [w1, ...,wN ], a
corrupted version ŵ is constructed by randomly set-
ting a portion of tokens in w to a special [MASK]
symbol. Although MLM estimates the token proba-
bilities of all masked positions, w̄, simultaneously
and renders the factorization from Subsection 3.1
no longer applicable, the mechanism used to “un-
mask" a token differs only slightly from that in AR,
specifically:

max
θ

log pθ(w̄|ŵ) ≈
N∑
t=1

mt log pθ(wt|ŵ) (2)

=
N∑
t=1

mt log
exp

(〈
hθ(ŵ)>t , e(ŵt

〉)
∑V

w′ exp
(〈
hθ(ŵ)>t , e(w′)

〉)
=

N∑
t=1

mt log softmax
(
hθ(ŵ)W>)

labelt
,

where mt = 1 indicates wt is masked, and hθ(ŵ)t
is the output representations computed as function
of the full, noisy, input sequence. Note, that the
main difference between the equations 1 and 2 is
the context used to condition the estimation. Mod-
els trained with MLM objective, like BERT and
RoBERTa, compute the output vector utilizing bidi-
rectional context through the self-attention mecha-
nism, while the unidirectional models use only the
context to the left of the target token. Moreover,
only the probabilities of masked words, wi such
that wi ∈ w̄, are estimated.

3.3 Learning Rules
Although the two objectives described above differ
in terms of the distribution modeled (Yang et al.,
2019), both AR and MLM models rely on the soft-
max function and cross-entropy loss. Using the
notation established above, the cross-entropy loss
function for an AR model is optimized by minimiz-
ing:

J(θ) = −Ew∼data [log pθ(w)] , (3)

and for a MLM model it takes a form of:

J(θ) = −Ew∼data [log pθ(w̄|ŵ)] . (4)

The gradient of the cross-entropy loss with respect
to the embedding matrixW is a sum of the gradi-
ent flowing through two paths: first one is through

the output layer where the embeddings are used
to create the targets for the softmax, the second
path flows through the encoder stack to the input
layer. The gradient flowing through the embedding
stack to the input layer is complex, and depends on
minute details of a model. Although its contribu-
tion is not irrelevant, it is not necessary to illustrate
the main point of this section. Thus, we focus on
the update rule resulting from the gradient with
respect to embeddings in the top layer of a model.
For prediction of a token wt, let hθ be the output
vector of either AR model (at index t− 1) or MLM
model (at index t), let y = softmax(ft), where
ft = hθW

>, and let ŷ be the true probability dis-
tribution, then:

∂Jt
∂W

= hθ(x̂)>t · (y − ŷ). (5)

The resulting update rule for the embedding matrix
is:

W ′ = W − η · (h>θ · (y − ŷ))

= W − η · h>θ y + η · h>θ ŷ, (6)

where η be the learning rate. Since ŷ is equal to 0
for all the indices except for the index of the target
word wt, all the embeddings will become less sim-
ilar to the representation produced by a model with
the exception of the target word embedding. This
leads to what we define as the common enemies
effect – target words producing gradients of the
same direction for all of the non-target words. As
the parameters θ are updated during the optimiza-
tion process, the hθ changes even when the model
is provided with the same input. Therefore, the
direction of the gradient for the non-target words
changes accordingly, but at a particular step the
direction of the update is the same for all the non-
target words. This is fundamentally different from
the conclusion of Gao et al. (2019), who states that
there exists a uniformly negative direction such
that its minimization yields a nearly optimal solu-
tion for rare words’ embeddings. We find that the
common enemies effect is the most pronounced in
the representations of rare words, which are less
likely to appear as targets, but it is evident in all
embeddings nonetheless.

4 Methods

4.1 Geometry of Embeddings
Previous studies (Gao et al., 2019; Wang et al.,
2020) suggest that word embeddings learned by
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Figure 2: A toy illustration of the effect that updates in one direction have on geometry of the representations and
their singular values. The singular values in 2b correspond to the spheres of the same color in 2a. As the sphere
moves away from the origin, the gap between the singular values of the points sampled from the sphere increases.

Transformer-based language models degenerate
and occupy a narrow cone in the embedding space,
but instead we find that embeddings simply drift in
a common, dominant direction. The conclusions of
Gao et al. (2019) are strongly influenced by a rapid
decay of singular values of an embedding matrix,
however, a rapid decay of singular values is not a
sufficient condition to reach such conclusions.

In fact, points sampled from a 3D sphere satisfy
the condition given above. As at first glance this is
not entirely obvious, we provide a toy example in
Figure 2 that illustrates why embeddings appear as
a cone when projected to a low dimensional space.
We sample points at random from two spheres, one
centered at the origin and one shifted away from
the origin (Figure 2a), and perform Singular Value
Decomposition on the two sets of samples. When
the sphere moves away from the origin, the dif-
ference between the two singular values increases
(Figure 2b).

Similarly, the projection of uncentered embed-
dings (see Figures 1a and 1d) appears as a cone, but
when embeddings are centered around origin (Fig-
ures 1b, 1e), the shape of their projection changes
to resemble a sphere more than a cone; that is sim-
ply removing the mean vector µ of an embedding
matrix W , where µ =

∑
w∈W e(w) / |V |, in-

creases the isotropy of embeddings. Optimization
of a neural language model is certainly more com-
plex than our toy example. Most of all, the common
enemy effect is not uniform; the amount by which
each vector moves in the most dominant direction
depends on many factors, among others the size
of the training corpus, the diversity of the train-
ing corpus, or whether static (BERT) or dynamic
(RoBERTa) masking is used. In a more general

sense, the magnitude of the gradient with respect
to a word vector depends on the value in the logit
corresponding to that word, hence the shift will not
be uniform.

4.2 Unused Tokens and Rare Words

We hypothesize that as rare words drift in common
direction, their embeddings become less discrimi-
native than embeddings of frequent words. BERT’s
vocabulary provides a unique opportunity to inves-
tigate the contribution of the same direction gradi-
ents to embeddings of particular words. There are
994 special unused tokens in BERT’s vocabulary
that were not used as inputs or targets during pre-
training, thus all the updates to their representations
were in the directions opposite to output vectors.
As shown in Figure 3, we observe that cosine simi-
larity between the unused tokens and other tokens
increases as the frequency decreases. The aver-
age cosine similarity between unused words and
tokens in indices [28500-29500]6 is 0.63. In com-
parison the unused tokens have cosine similarity
of 0.27 with tokens in indices [2000-3000] (most
frequent tokens, i.e., “to") but the similarity goes
up rapidly for tokens other than the most frequent
ones.7 Schick and Schütze (2019), evaluate BERT
and RoBERTa on a dataset explicitly measuring
the ability of MLM models to “unmask" words of
different frequencies, and report that both models
struggle to “unmask" rare words. Results presented
in this section provide an explanation of this behav-
ior and confirm that embeddings of the rare tokens

6Although frequency depends on a corpus, in general
higher index implies lower frequency due to the way BERT’s
vocabulary is constructed.

7We observe a similar pattern in RoBERTa using the last
1000 words in its vocabulary in place of the unused tokens.
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Figure 3: Cosine similarity between the [unused]
tokens and words in vocabulary of BERT-base-case
grouped into bins of 1000 (i.e., [1000:1999]).

are most affected by the common enemies effect.

5 Experiments

We validate our theoretical analysis through a se-
ries of experiments on geometric properties of non-
contextualized embeddings.

5.1 Isotropy

Although centering an embedding matrix results
in a more desirable spectral distribution, tokens of
comparable frequency tend to remain clustered in
the embedding space, as shown in Fig 1. There-
fore, we empirically test how much actual gain in
terms of isotropy is obtained in embeddings of the
tested models by removing the shared direction.
Moreover, Mu and Viswanath (2018) show that the
top principal components in skip-gram embeddings
(Mikolov et al., 2013a) correspond to frequency of
words and demonstrate that such frequency bias
can be mitigated by removing the top principal
components of an embedding matrix. We evaluate
the effectiveness of this approach on embeddings
from Transformer-based models. We use BERT,
RoBERTa, and GPT-2 in different sizes in our ex-
periments.

Setup: We measure the initial isotropy of embed-
dings in each of the models, and the isotropy after
removing the mean vector µ =

∑
w∈W w/|V |

from each row of an embedding matrixW , yield-
ing W̃ = W −µ. Next, we use a slightly modified
approach of Mu and Viswanath (2018), and remove
D top principal components from each model’s em-
bedding matrix to obtain highly isotropic represen-
tations. Finally, we evaluate whether increasing
isotropy of embeddings from Transformer-based
models can improve performance on standard em-
bedding benchmarks.

Definitions: To measure isotropy, we use the par-
tition function defined in (Arora et al., 2016),

Z(c) =
∑
w∈V

exp(c>e(w)), (7)

where e(w) maps a word w to its embedding and
c is a unit vector. For vectors to be isotropic, the
value of Z(c) should be approximately constant,
according to Lemma 2.1 in (Arora et al., 2016).
Based on this property, we empirically measure the
isotropy of an embedding matrixW using:

I(W ) =
minc∈X Z(c)

maxc∈X Z(c)
, (8)

where I(W ) ∈ [0, 1]. We follow the standard ap-
proach and defineX to be the set of eigenvectors
ofW>W (Mu and Viswanath, 2018; Wang et al.,
2020). We remove the top principal components
using a modified version of the post-processing
method proposed by Mu and Viswanath (2018):

W̃i = Wi −
1

|V |

V∑
j=1

Wj (9)

U = PCA(W̃ ) (10)

Ŵi = W̃i −
D∑
j=1

(U>j W̃i)Uj , (11)

whereW is the embedding matrix, Ŵ is the post-
processed embedding matrix, and D is the number
of principal components removed from the original
matrix. Mu and Viswanath (2018) useW instead
of W̃ in the term (U>j W̃i)Uj in eq. 11, but we
find the centered version ofW to be more effective.
Following Mu and Viswanath (2018), we set D =
dd/100e, where d is the dimensionality of a model.

5.2 Embedding Benchmarks
Setup: We evaluate each model’s embedding’s
performance on common benchmarks for word
similarity and relatedness before and after post-
processing. We use the following data sets:

• SimLex-999 (Hill et al., 2015) - measures
similarity, rather than relatedness or associ-
ation.

• MEN Test Collection (Bruni et al., 2014) -
measures the relatedness of words.

• WordSim353 (Agirre et al., 2009) - consists
of two parts, one measures similarity, and the
other measures relatedness of words.
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Model I(W ) I(Wc) I(Wr) avg(||e(w)||2) ||µ||2 ||µ||2/avg(||e(w)||2)
BERT-base-uncased 0.39 0.98 0.998 1.40 0.94 0.67
BERT-base-cased 0.59 0.98 0.996 1.29 0.50 0.39
BERT-large-uncased 0.44 0.97 0.997 1.45 0.80 0.55
BERT-large-cased 0.52 0.96 0.995 1.53 0.65 0.42

RoBERTa-base 0.50 0.87 0.959 3.65 0.57 0.16
RoBERTa-large 0.07 0.64 0.956 4.36 2.53 0.58

GPT-2 (12 layers) 0.12 0.91 0.969 3.96 2.05 0.52
GPT-2 (24 layers) 0.52 0.95 0.981 3.68 2.04 0.55

Table 1: Isotropy, I(W ) ∈ [0, 1], of embeddings from various language models. Centering an embedding matrix
yields nearly perfectly isotropic embeddings in most of the tested models. Wc stands for a centered matrix, Wr

stands for an embedding matrix with dd/100e top principal components removed. ||µ||2/avg(||e(w)||2 is the ratio
of the L2 norm of the mean vector, µ, to the average of the L2 norms of word embeddings.

• Stanford Rare Words (RW) (Luong et al.,
2013) - measures similarity of words. In this
dataset at least one word in each pair is a rare
word.

The data sets are designed to measure embeddings’
ability to reflect semantic relations. The perfor-
mance on the data sets is measured by the correla-
tion between the similarities of the representations
and the human scores. We filter out samples con-
sisting of subword units. Although this results in
different test sets for different models, our goal
is not to compare different models’ performance
but to validate the benefits of increased isotropy of
embeddings. We score relations with both cosine
similarity and inner product.

Schakel and Wilson (2015) show that vectors of
more frequent words tend to have smaller norms,
which was confirmed for BERT by Podkorytov et al.
(2020). As the longer vectors of rare words are
most affected by common enemies effect (see Sec-
tion 4.2), we evaluate a “scaled-centering" method
to account for that.

Specifically, we first compute the mean vector
of embeddings normalized to unit length µ̂ =∑

w∈W
e(w)
||e(w)||2 / |V |. Then we scale the mean

vector by the norm of each word embedding before
subtracting it, e(w)′ = e(w)− ||e(w)||2 µ̂.

5.3 Results

Isotropy: We find that merely removing the
mean vector is enough for most models to reach
nearly perfect isotropy. The results are in Table 1.
The only exception is RoBERTa-large, which had
the lowest initial isotropy. Interestingly, Schick and
Schütze (2020a) show that RoBERTa-large outper-
forms BERT models on tasks designed explicitly
for rare words. Moreover, according to common

leaderboards (Wang et al., 2019b,a), RoBERTa per-
forms best on downstream tasks among the models
we analyzed.

We stress that the I(W ) is an approximation of
the degree of isotropy, and should be treated as such
when interpreting its relation to downstream per-
formance. The idea of the partition function Z(c)
states that it’s value should be constant for any vec-
tor c (Arora et al., 2016; Mu and Viswanath, 2018).
As there is no closed-form solution for minc∈X
and maxc∈X , a set of eigenvectors ofW>W has
been used as X in previous studies to approximate
the isotropy (e.g., Mu and Viswanath, 2018; Wang
et al., 2020). The vectors inX , however, cannot be
considered principal components ofW , unless the
matrixW has been centered. Pearson (1901) states
that unless the mean of the data has been subtracted,
the best fitting hyperplane would pass through the
origin and not through the centroid. Indeed, for
RoBERTa-large, the cosine similarity between the
top eigenvector ofW>W and the mean vector is
0.99.

Additionally, as the volume of a cube in Rn
grows exponentially with n, it may be sufficient
for the embeddings to be isotropic around a point
lying on a lower dimensional subspace to retain
the desired separation. In fact, embeddings from
RoBERTa-large have an average pairwise cosine
similarity of 0.33 (angle of 70.7°).

We speculate that a longer pretraining of
RoBERTa compared to BERT results in a more
significant shift of the embeddings in the dominat-
ing directions. Simultaneously, a larger pretraining
corpus and a dynamic masking scheme used in
RoBERTa may result in a more diverse set of shift
directions. We leave this line of research for future
studies.

Moreover, Mu and Viswanath (2018) demon-
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Model CosSim 〈·, ·〉

BERT-base-cased 62.29 (+0.00) 60.91 (+0.00)

+ Centered 60.44 (−1.85) 60.08 (−0.83)

+ Centered-Scaled 62.32 (+0.03) 62.41 (+1.50)

+ Post-Process 65.57 (+3.28) 66.10 (+5.19)

RoBERTa-base 66.81 (+0.00) 66.01 (+0.00)

+ Centered 66.85 (+0.04) 67.03 (+1.02)

+ Centered-Scaled 67.02 (+0.21) 66.95 (+0.94)

+ Post-Process 66.87 (+0.06) 67.15 (+1.14)

GPT-2-small 64.71 (+0.00) 59.45 (+0.00)

+ Centered 64.95 (+0.24) 66.04 (+6.59)

+ Centered-Scaled 66.57 (+1.86) 67.32 (+7.87)

+ Post-Process 67.85 (+)3.14 67.67 (+8.22)

Model CosSim 〈·, ·〉

BERT-large-cased 61.90 (+0.00) 59.42 (+0.00)

+ Centered 58.66 (−3.24) 57.99 (−1.43)

+ Centered-Scaled 61.18 (−0.72) 61.05 (+1.63)

+ Post-Process 65.72 (+3.82) 65.89 (+6.47)

RoBERTa-large 61.29 (+0.00) 44.79 (+0.00)

+ Centered 64.09 (+2.80) 63.78 (+18.99)

+ Centered-Scaled 65.49 (+4.20) 64.16 (+19.37)

+ Post-Process 64.38 (+3.09) 65.17 (+20.38)

GPT-2-medium 65.53 (+0.00) 59.20 (+0.00)

+ Centered 66.83 (+1.30) 67.90 (+8.70)

+ Centered-Scaled 67.95 (+2.42) 68.22 (+9.02)

+ Post-Process 68.05 (+2.52) 67.81 (+8.61)

Table 2: Average performance (Pearson’s r × 100) of the models on the non-contextual benchmarks (SimLex-
999, MEN, WordSim353, Stanford Rare Words). Centered stands for embedding matrix centered at origin;
Centered-Scaled stands for embedding matrix with mean direction, scaled by the norm of each word embed-
ding, subtracted; Post-Process corresponds to the method defined in eq. 11. Results from different models are not
directly comparable due to different tokenization. Best results for each model are underlined. In general, increased
isotropy results in increased performance. The improvement of RoBERTa-large is more significant as its initial
isotropy is lower. Specific results for each benchmark can be found in Appendix C.

strate that neural language models are capable of
learning to remove the mean vector. We leave
the question whether Transformer-based language
models perform an implicit representation center-
ing operation to future research.

Embedding Benchmarks: We present our re-
sults on common benchmarks for word similar-
ity and relatedness in Table 2. We report average
scores from all tasks. The results on individual
data sets are available in Appendix C. We observe
that removing the mean vector, and consequently
increasing the isotropy of embeddings, consistently
improves the performance across all models, ex-
cept for the most isotropic BERT-cased models.
Furthermore, results in Table 2 demonstrate that
“scaled-centering" is more effective than simple
mean subtraction, and nearly as effective as the
more expensive post-processing method. The only
case in which “scaled-centering" does not improve
performance is BERT-large-cased with cosine sim-
ilarity as a scoring function.

Performance gains are more pronounced when
inner-product is used as a scoring function, regard-
less of the model or processing method used. Al-
though, initially cosine-similarity yields better re-
sults, especially for embeddings with greater L2

norms, mean subtraction is sufficient to close the
gap in all but two models (BERT-cased models).8

8Visualization of distributions of L2 norms of embeddings
from the analyzed models is available in Appendix C.

6 Discussion

There has been a body of literature demonstrating
substantial benefits of improved quality of word
embeddings on downstream performance (e.g., Mu
and Viswanath, 2018; Wang et al., 2019c; Gao
et al., 2019; Wang et al., 2020; Schick and Schütze,
2020a). In particular, Gao et al. (2019) propose to
add a cosine similarity regularization to the cross-
entropy loss to increase the aperture of the cone
in which embeddings are distributed, and report
improved performance on machine translation and
language modeling. It is straightforward to demon-
strate that the cosine regularization proposed by
Gao et al. (2019) is equivalent to minimizing the
squared norm of the mean direction of embeddings,
hence constraining the most significant drift direc-
tion. We provide the derivation of the equivalence
in Appendix A.

Large-margin classification has been studied ex-
tensively, both in NLP (Wang et al., 2019c) and
machine learning in general (Weston and Watkins,
1999; Tsochantaridis et al., 2005). As substantial
shared components of embeddings will lead to a de-
creased classification margin in the output softmax
layer, our work offers explanation for the fragility
of pretrained language models reported in the liter-
ature (e.g., Schick and Schütze 2019, 2020a).

Our analyses show clearly that shifting of the
embeddings in the embedding space is due to the
dynamic interactions between the representations
and the embedding vectors. As the embeddings
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become more similar, the resulting representations
become closer, creating a positive feedback mech-
anism for the representations to drift collectively.
In addition, while isotropy of representations is
desirable and has an overall positive impact on per-
formance, the relationships between isotropy and
performance in Table 1 and Table 2 suggest that
the role of isotropy in model performance needs to
be further analyzed. The dynamics of the interac-
tions are being further investigated to pinpoint the
root cause and their relationship with the model’s
performance.

7 Related Work

Gao et al. (2019) present an insightful derivation
of uniformly negative gradients for nonapparent
words and formulate the optimization of rare words
as an α-strongly convex problem but make strong
assumptions that the embedding matrix is learned
after all other parameters of the model are well-
optimized and fixed, which is not the case in prac-
tice. We do not make such assumptions, providing
a more realistic explanation for the learning pro-
cess. Wang et al. (2020) propose to reparametrize
the embedding matrix using SVD and propose di-
rectly controlling the decay rate of singular values.
Our paper’s purpose is inherently different from
that of Wang et al. (2020); we recognize that the
fundamental understanding of the problem is miss-
ing and provide an explanation for the observations
made in previous studies. Another line of work
focuses on limitations of the softmax. Yang et al.
(2018) suggest that softmax does not have suffi-
cient capacity to model the complexity of language.
Zhang et al. (2019) analyze the skip-gram model
to show that optimization based on cross-entropy
loss and softmax resembles competitive learning
in which words compete among each other for the
context vector. This idea is closely related to the
common enemies effect reported in this paper, how-
ever, skip-gram seems to mitigate this through neg-
ative sampling (Mikolov et al., 2013b) but similar
approaches do not seem to help Transformer pre-
training (Clark et al., 2020).

A considerable effort has been made to improve
performance of language systems on rare words,
but the focus has been on either injecting subword
information in non-contextual representations (Lu-
ong et al., 2013; Lazaridou et al., 2017; Pinter
et al., 2017; Bojanowski et al., 2017), replacing
rare words’ representations through exploiting their

context (Khodak et al., 2018; Liu et al., 2019a), or
both (Schick and Schütze, 2019, 2020a). In com-
parison, we strive to provide an explanation of the
underlying problem, which is necessary to render
such post-hoc fixes no longer necessary.

8 Conclusion

We find that the embeddings learned by GPT-2,
BERT, and RoBERTa do not degenerate into a nar-
row cone, as has been suggested in the past, but
instead drift in one shared direction. We recognize
that target words produce gradients in the same di-
rection for all the non-target words at each training
step. Combined with the unbalanced distribution
of word frequencies, any two words’ embeddings
will be repeatedly updated with gradients of the
same direction. As such updates accumulate, the
embeddings drift and share common components.
Our experiments show that simply centering the
embeddings restores a nearly perfectly isotropic
distribution of tested models’ embeddings and si-
multaneously improves embeddings’ ability to re-
flect semantic relations. This understanding of the
learning process dynamics opens exciting avenues
for future work, such as improving the most af-
fected embeddings of rare words and formulation
of more computationally efficient training objec-
tives.
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A Cosine Regularization as Mean
Direction Minimization

In this section we show the equivalence of Cosine
Regularization and mean direction minimization.
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i ŵi||2 is
equivalent to minimizing the CosReg term.

B Token Frequency Validation

Figure 4 validates that the word frequency imbal-
ance is preserved in a corpus tokenized with Word-
Piece (Schuster and Nakajima, 2012; Wu et al.,
2016).

C Additional Experimental Results

In Table 3, we provide expanded results on the em-
bedding benchmarks (see Section 5.2 for details).

Our experiments reveal a negative 0.61 correla-
tion between the average norm of the embedding
vectors and their isotropy. Additionally, the ratio of
the L2 norm of the mean vector to the average of
the L2 norms of embeddings tends to be larger for
less isotropic embeddings. Figure 5 shows distribu-
tions of L2 norms of embeddings from the models
studied in this paper. Moreover, Figure 6 compares
the effect of centering on the L2 norms of embed-
dings from the BERT-large-cased and RoBERTa-
large. We leave the relationship between the norms
of the vectors, their isotropy, and the pretraining
details (e.g., corpus size, number of training steps,
weight decay) for future studies.
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(a) Words (b) Tokens

Figure 4: Comparison of word and token frequencies on CNN-DailyMail corpus.

Model MEN RW Simlex-999 WordSim-Sim WordSim-Rel
〈·, ·〉/cos 〈·, ·〉/cos 〈·, ·〉/cos 〈·, ·〉/cos 〈·, ·〉/cos

Bert-base-cased 65.53 / 67.07 61.22 / 63.72 52.52 / 52.37 75.03 / 75.57 50.27 / 52.70
+ Centered-Scaled 69.32 / 68.36 63.57 / 63.94 47.34 / 47.96 78.58 / 77.36 53.23 / 53.96
+ Post-Process 72.20 / 70.91 67.71 / 68.20 53.60 / 52.53 79.38 / 78.15 57.63 / 58.04

Bert-large-cased 64.64 / 67.20 58.94 / 61.89 52.68 / 52.91 73.44 / 76.32 47.40 / 51.16
+ Centered-Scaled 68.63 / 67.69 61.67 / 62.19 48.66 / 48.53 77.47 / 77.45 48.81 / 50.02
+ Post-Process 72.12 / 71.07 67.22 / 68.07 55.41 / 53.77 78.80 / 78.88 55.90 / 56.79

GPT-2-small 65.55 / 71.16 58.08 / 63.99 50.43 / 51.45 72.98 / 78.32 50.19 / 58.63
+ Centered-Scaled 75.55 / 74.10 64.05 / 64.94 51.60 / 50.36 81.41 / 80.61 63.98 / 62.86
+ Post-Process 76.00 / 75.34 65.30 / 66.56 53.74 / 53.15 80.70 / 80.79 62.62 / 63.40

GPT-2-medium 65.01 / 71.55 58.55 / 65.22 51.13 / 52.51 72.67 / 78.48 48.65 / 59.90
+ Centered-Scaled 76.10 / 75.02 64.14 / 65.34 54.22 / 53.30 80.85 / 80.56 65.79 / 65.51
+ Post-Process 75.92 / 75.25 64.80 / 66.11 54.65 / 54.19 79.99 / 80.25 63.71 / 64.43

RoBERTa-base 72.83 / 72.70 64.72 / 66.61 55.17 / 54.84 78.00 / 78.62 59.31 / 61.27
+ Centered-Scaled 74.18 / 73.33 65.38 / 66.35 54.16 / 53.77 79.35 / 79.10 61.66 / 62.53
+ Post-Process 74.22 / 73.13 65.45 / 66.11 53.87 / 53.35 79.64 / 79.08 62.58 / 62.70

RoBERTa-large 42.92 / 63.44 49.72 / 64.31 45.75 / 54.54 58.09 / 73.46 27.47 / 50.69
+ Centered-Scaled 70.55 / 70.95 63.09 / 65.63 55.24 / 54.18 75.72 / 77.34 56.19 / 59.35
+ Post-Process 72.01 / 70.55 63.11 / 63.64 52.48 / 50.93 77.87 / 77.09 60.36 / 59.71

Table 3: Performance (Pearson’s r × 100) of the models on the non-contextual benchmarks. Centered-Scaled
stands for embedding matrix with mean direction, scaled by the norm of each word embedding, subtracted;
Post-Process corresponds to the method defined in eq. 11. Results from different models are not directly compa-
rable due to different tokenization.
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Figure 5: Kernel density estimation of the L2 norms of embeddings from different models. Models trained on
larger corpora and with an increased number of pretraining steps exhibit larger embedding norms.
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(a) BERT-large-cased
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Figure 6: The effect of mean subtraction on the distribution of L2 norms of embeddings in BERT-large-cased and
RoBERTa-large.


