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Abstract

Transfer learning that adapts a model trained
on data-rich sources to low-resource targets
has been widely applied in natural language
processing (NLP). However, when training a
transfer model over multiple sources, not every
source is equally useful for the target. To better
transfer a model, it is essential to understand
the values of the sources. In this paper, we
develop SEAL-Shap, an efficient source val-
uation framework for quantifying the useful-
ness of the sources (e.g., domains/languages)
in transfer learning based on the Shapley value
method. Experiments and comprehensive anal-
yses on both cross-domain and cross-lingual
transfers demonstrate that our framework is
not only effective in choosing useful transfer
sources but also the source values match the
intuitive source-target similarity.

1 Introduction

Transfer learning has been widely used in learning
models for low-resource scenarios by leveraging
the supervision provided in data-rich source cor-
pora. It has been applied to NLP tasks in various
settings including domain adaptation (Blitzer et al.,
2007; Ruder and Plank, 2017), cross-lingual trans-
fer (Täckström et al., 2013; Wu and Dredze, 2019),
and task transfer (Liu et al., 2019b; Vu et al., 2020).

A common transfer learning setting is to train a
model on a set of sources and then evaluate it on
the corresponding target (Yao and Doretto, 2010;
Yang et al., 2020).1 However, not every source
corpus contributes equally to the transfer model.
Some of them may even cause a performance drop
(Ghorbani and Zou, 2019; Lin et al., 2019). There-
fore, it is essential to understand the value of each
source in the transfer learning not only to achieve

1In this paper, we focus on two transfer learning scenarios:
1) cross-lingual and 2) cross-domain. We train a model on a
set of source corpora and evaluate on a target corpus where
each “corpus” refers to the corresponding domain or language.
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Figure 1: SEAL-Shap estimates the value of each
source corpus by the average marginal contribution
of that particular source corpus to every possible sub-
set of the source corpora. Each block inside SEAL-
Shap denotes a possible subset and the marginal con-
tribution is derived by the difference of transfer re-
sults while trained with and without the corresponding
source. Based on the source values, we select a subset
of source corpora that achieves high transfer accuracy.

a good transfer performance but also for analyzing
the source-target relationships.

Nonetheless, determining the value of a source
corpus is challenging as it is affected by many fac-
tors, including the quality of the source data, the
amount of the source data, and the difference be-
tween source and target at lexical, syntax and se-
mantics levels (Ahmad et al., 2019; Lin et al., 2019).
The current source valuation or ranking methods
are often based on single source transfer perfor-
mance (McDonald et al., 2011; Lin et al., 2019; Vu
et al., 2020) or leave-one-out approaches (Tommasi
and Caputo, 2009; Li et al., 2016; Feng et al., 2018;
Rahimi et al., 2019). They do not consider the com-
binations of the sources. Consequently, they may
identify the best single source corpus effectively
but their top-k ranked source corpora may achieve
limited gain in transfer results.

In this paper, we introduce SEAL-Shap (Source
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sElection for trAnsfer Learning via Shapley value),
a source valuation framework2 (see Fig 1) based on
the Shapley value (Shapley, 1952; Roth, 1988) in
cooperative game theory. SEAL-Shap adopts the
notion of Shapely value to understand the contri-
bution of each source by computing the approxi-
mate average marginal contribution of that particu-
lar source to every possible subset of the sources.

Shapley value is a unique contribution distri-
bution scheme that satisfies the necessary condi-
tions for data valuation like fairness and additivity
(Dubey, 1975; Jia et al., 2019a,b). As many model
explanation methods including Shapley value are
computationally costly (Van den Broeck et al.,
2021), in a different context of features and data
valuation in machine learning, Ghorbani and Zou
(2019) propose to use an approximate Shapley
value to estimate the feature or data values.

However, the existing approximation methods
for estimating Shapley values are not scalable for
NLP applications. NLP models are often large
(e.g., BERT (Devlin et al., 2019)) and NLP transfer
learning usually assumes a large amount of source
data. To deal with the scalability issue, we propose
a new sampling scheme, a truncation method, and a
caching mechanism to efficiently approximate the
source Shapley values.

We evaluate the effectiveness of SEAL-Shap un-
der various applications in quantifying the useful-
ness of the source corpora and in selecting poten-
tial transfer sources. We consider two settings of
source valuation or selection: (1) where a small
target corpus is available; and (2) where we only
have access to the linguistic or statistical features of
the target, such as language distance to the sources,
typological properties, lexical overlap etc. For the
first setting, we use the small target data as the
validation set to measure the values of the sources
w.r.t the target. For the second setting, we follow
Lin et al. (2019) to train a source ranker based on
SEAL-Shap and the available features.

We conduct extensive experiments in both (zero-
shot) cross-lingual and cross-domain transfer set-
tings on three NLP tasks, including POS tagging,
sentiment analysis, and natural language inference
(NLI) with different model architectures (BERT
and BiLSTM). In a case study, on the cross-lingual
transfer learning, we exhibit that the source lan-
guage values are correlated with the language

2Our source codes are available at https://github.
com/rizwan09/NLPDV/

family and language distance—indicating that our
source values are meaningful and follow the intu-
itive source-target relationships. Lastly, we analyze
the approximation correctness and the run-time
improvement of our source valuation framework
SEAL-Shap.

2 Source Valuation Framework

We propose SEAL-Shap, a source valuation frame-
work. We start with the setting where we have
only one target and multiple sources. We denote
the target corpus by V and the corresponding set
of source corpora by D = {D1, · · · , Dm}. Our
goal is to quantify the value Φj of each source
corpus Dj to the transfer performance on V and
explain model behaviors. Once the source values
are measured, we can then develop a method to
select either all the sources or a subset of sources
(i.e.,⊆ D) that realizes a good transfer accuracy on
V . Below, we first review the data Shapley value
and its adaptation for transfer learning. Then, we
describe how SEAL-Shap efficiently quantifies Φj

and how to use it to select a subset of sources for
model transfer.

2.1 Background: Data Shapley Value

Shapley value is designed to measure individual
contributions in collaborative game theory and has
been adapted for data valuation in machine learn-
ing (Ghorbani and Zou, 2019; Jia et al., 2019a,b).
In the transfer learning setting, on a target corpus
V , let Score(CΩ, V ) represent the transfer perfor-
mance of a model C trained on a set of source
corpora Ω.3 The Shapley value Φj is defined as the
average marginal contribution of a source corpus
Dj to every possible subsets of corpora D:

1

m

∑
Ω⊆D−Dj

Score(CΩ∪Dj , V )−Score(CΩ, V )(
m−1
|Ω|
) .

TMC-Shap for Transfer Learning: Comput-
ing the exact source-corpus Shapley value, de-
scribed above, is computationally difficult as it in-
volves evaluating the performances of the transfer
models trained on all the possible combinations
of the source corpora. Hence, Ghorbani and Zou
(2019) propose to approximate the evaluation by

3In this paper, we consider a model trained on the union
of the source data and the loss function for training the model
is aggregated from the loss functions defined on each source.
However, our approach is agnostic to how the model is trained
and can be integrated with other training strategies.

https://github.com/rizwan09/NLPDV/
https://github.com/rizwan09/NLPDV/
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a truncated Monte Carlo method. Given the tar-
get corpus V and a set of source corpora D, for
each epoch, a source training data set Ω ⊆ D is
maintained and a random permutation π on D is
performed (corresponds to line 6 in Algorithm 1
which is discussed in Sec 2.2). Then it loops over
every source corpus πj in the ordered list π and
compute its marginal contribution by evaluating
how much the performance improves by adding πj
to Ω: Score(CΩ∪πj , V ) − Score(CΩ, V ). These
processes are repeated multiple rounds and the av-
erage of all marginal contributions associated with
a particular source corpus is taken as its approxi-
mate Shapley value (line 18 in Algorithm 1). When
the size of Ω increase, the marginal contribution
of adding a new source corpus becomes smaller.
Therefore, to reduce the computation, Ghorbani
and Zou (2019) propose to truncate the computa-
tions at each epoch when the marginal contribution
of adding a new source πj is smaller than a user
defined threshold Tolerance (line 10-11, 18 in Al-
gorithm 1).4

2.2 SEAL-Shap
Despite that TMC-Shap improves the running time,
it is still unrealistic to use it in our setting where
both source data and model are large. For exam-
ple, in cross-lingual POS tagging on Universal De-
pendencies Treebanks, on average, it takes more
than 200 hours to estimate the values of 30 source
languages with multi-lingual BERT (See Sec 4.4).
Therefore, in the following, we propose three tech-
niques to further speed-up the evaluation process.
Stratified Sampling When computing the
marginal contributions, training a model C
on the entire training set Ω is computationally
expensive. Based on extensive experiments, when
computing these marginal contributions, we find
that we do not need the performance difference of
models trained with the entire training sets. For a
reasonably large source corpus, 20-30% samples5

in each source achieve lower but representative
performance difference, in general. Therefore,
we sample a subset of instances to evaluate the
marginal contributions. To address computational
limitation and scale to large data, sampling
techniques have been widely discussed (L’heureux
et al., 2017). In particular, we employ a stratified
sampling (Neyman, 1992) to generate a subset T

4Setting Tolerance to 0 turns off the truncation.
5Higher sampling rate typically leads to better approxima-

tion but are expensive in run-time.

Algorithm 1: SEAL-Shap
Input: Source corpora D = {D1, · · · , Dm}, target

corpus V , Random sampler S, sample size η,
num of epochs nepoch, and Classifier C

Output: Source-corpora Shapley values {Φ1...,Φm}
1 Initialize: Score cache S ← {}, source Shapley

values Φx ← 0 for x = 1 . . .m, and epoch t← 0
2 Dsamp ← {S(Dx, η),∀Dx ∈ D}
3 CDsamp ← Train C on Dsamp
4 while Converge or t < nepoch do
5 t← t+ 1
6 π : Random permutation of D
7 v0 ← ρ
8 for j ∈ {1, · · ·m} do
9 Ω← {π1, · · · , πj}

10 if | Score(CDsamp , V ) - vj−1| < Tolerance
then

11 vj ← vj−1

12 else
13 if Ω /∈ S then
14 T ← {S(Ωx, η), ∀Ωx ∈ Ω}
15 Cj ← Train C on T
16 Insert Ω into S with SΩ ←

Score(Cj , V )
17 vj ← SΩ

18 Φπj ← t−1
t

Φπj + 1
t
(vj − vj−1)

from Ω by sampling training instances from each
source corpus Ωx with a user defined sample rate
η. Then, we train the model on T (line 14-15 in
Algorithm 1). The quantitative effectiveness of this
technique is discussed in Sec 4.4 and the impact of
different sampling rates are presented in Fig 5.
Truncation As discussed in Sec 2.1, at each
epoch, Ghorbani and Zou (2019) truncate the
computations once a marginal contribution
becomes small when looping over the ordered list
π of that corresponding epoch, typically for the
last few sources in π. On the other hand, at the
beginning of each epoch, when computing the
marginal contribution by adding the first source
corpus π1 into an empty Ω, the contribution is
computed by the performance gap between a
model trained on π1 and a random baseline model
without any training. Usually, the performance
of a random model (v0) is low and hence, the
marginal contribution is high in the first step, in
general. As this scale of marginal contributions
at the first step is drastically different from later
steps, it leads TMC-Shap to converge slowly.
Hence, to restrict the variance of the marginal
contributions, we down weight the marginal
contributions of the first step by setting v0 =
ρ, where ρ is a hyper-parameter6 indicating the

6Typically a factor of the performance achieved when us-
ing only one source, or all the sources together
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baseline performance of a model (line 7, 18 in
Algorithm 1).
Caching When computing the source Shapley val-
ues, we have to repeatedly evaluate the perfor-
mance of the model on different subsets of source
corpora. Sometimes, we may encounter subsets
that we have evaluated before. For example, con-
sider a set of source corpora D = {D1, D2, D3}
and we evaluate their Shapley values through two
permutations: π1 = [D3, D1, D2], and π2 =
[D1, D3, D2]. When we compute the marginal con-
tribution of the last source corpus D2, in both cases
the training set Ω = {D1, D3}. That is, if we cache
the result of Score(CD1∪D3), then we can reuse
the scores. We implement this cache mechanism in
line 1, 13, 16, 17 in Algorithm 1. With these opti-
mization techniques, we improve the computation
time by about 2x (see Sec 4.4). This enables us to
apply this techniques in NLP transfer learning.

Note that whenever an Ω causes a cache miss,
for each source Ωx, as discussed above in this Sec-
tion, we sample a new set of instances (line 13-14
in Algorithm-1). Thus, given a reasonably large
number of epochs, our approach performs sampling
for a large number of times and in aggregation, it
evaluates a wide number of samples in each source.

2.3 SEAL-Shap for Multiple Targets

Many applications require to evaluate the values
of a set of sources with respect to a set of targets.
For example, under the zero-shot transfer learning
setting, we assume a model is purely trained on
the source corpora without using any target data.
Consequently, then the same trained model can be
evaluated on multiple target corpora. With this
intuition, whenever the model is trained on a new
training set Ω, SEAL-Shap evaluates it on all the
target corpora and caches all of them accordingly.

2.4 Source Values without Evaluation Corpus

In the previous discussions above, we assume a
small annotated target corpus is available and can
be used to evaluate the transfer performances. How-
ever, in some scenarios, only some linguistic or
statistical features of the sources and targets, such
as language distance and word overlap, are avail-
able. Lin et al. (2019) show that by using these
features, we can train a ranker to sort the sources
to unknown targets by predicting their value. In the
following, we extend their ranker by incorporating
it with SEAL-Shap.

Given the set of training corpora D and
the actual target corpus V , we iteratively
consider each training corpus Dj as target
and the rest m-1 corpora as the sources. We
compute the corresponding source values
YDjD = {ΦD1 , . . . ,ΦDj−1 ,ΦDj+1 , . . . ,ΦDm}.
Now, w.r.t the target Dj , the linguistic or statistical
features of the source corpora (e.g., language
distance from the target, lexical overlap between
the corresponding source and the target) XDjD =
{F j(D1),. . . ,F j(Dj−1), F j(Dj+1),. . . ,F j(Dm)}
where F j denotes the source feature generator
function for the corresponding target Dj . This
feature vector of the source corpora (XDjD ) is a
training input and their value vector (YDjD ) is the
corresponding training output for the ranker. We
repeat this for each training corpus and generate
the respective training inputs and outputs for the
ranker. Once trained, for the actual target V and
the source corpora D, the ranker can predict the
values of the source corpora YVD only based on the
linguistic source features X VD .

2.5 Source Corpora Selection by SEAL-Shap
The source values computed in Sec 2.2-2.4 estimate
the usefulness of the corresponding transfer sources
and can be used to identify the potential sources
which lead to the good transfer performances. We
select the potential source corpora in two ways. (i)
Top-k: We simply sort the sources based on their
values and select the user defined top-k sources. (ii)
Threshold: When an annotated evaluation dataset
in target corpus V is available, after computing the
source values, we empirically set a threshold θ and
select each source that has source value higher than
θ. On that evaluation target corpus, we tune and
set θ for which the corresponding transfer model
achieves the best performance.

3 Experimental Settings

We conduct experiments on zero-shot cross-lingual
and cross-domain transfer settings. Models are
trained only on the source languages/domains
and directly applied in target languages/domains.
Cross-lingual Datasets We conduct experiments
on two popular cross-lingual transfer problems: (i)
universal POS tagging on the Universal Depen-
dencies Treebanks (Nivre et al., 2018). Following
Ahmad et al. (2019), we select 31 languages of 13
different language families (details in Appendix
A). (ii) natural language inference on the XNLI
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(a) UD Treebank, target: en (b) XNLI, target: vi (c) mtl-dom-senti, target: E (d) mGLUE, target:MNLI-mm
Figure 2: Performance, and run time with up to top-3 sources ranked by different approaches. (a), (b) denotes cross-lingual and
(c), (d) denotes cross-domain transfer. All models have same training configurations (e.g., sample size). All the run times are
final except for Greedy DFS where it increases linearly with top-k. Adding top-2 and top-3 ranked sources, other methods drop
their accuracy across the tasks while ours shows a consistent gain in all tasks and achieves the best results with top-3 sources.

dataset (Conneau et al., 2018), that covers 15 differ-
ent languages. XNLI task is a 3-way classification
task (entailment, neutral, and contradiction). Data
statistics are in Appendix R.
Cross-domain Datasets We consider three do-
main transfer tasks: (i) POS tagging: we use the
SANCL 2012 shared task datasets (Petrov and Mc-
Donald, 2012) that has six different domains (de-
tails in Appendix B). (ii) Sentiment analysis: we
use the multi-domain sentiment datasets (Liu et al.,
2017) which has several additional domains than
the popular Blitzer et al. (2007) dataset, See Ap-
pendix D. (iii) NLI: we consider a (modified) bi-
nary classification (e.g., entailed or not) dataset
used in Ma et al. (2019). It is made upon modifi-
cation on GLUE tasks (Wang et al., 2018) and has
four domains (details in Appendix C). As GLUE
test sets are unavailable, for each target domain, we
use the original dev set as the pseudo test set and
randomly select 2,000 instances from its training
set as the pseudo dev set.
Classifier and Preprocessing For all domain
transfer tasks, we use BERT and for all language
transfer tasks, we use multi-lingual BERT (De-
vlin et al., 2019) models except for cross-doman
POS tagging where we consider the state-of-the-
art BiLSTM based Flair framework (Akbik et al.,
2018). For BERT models, we use the Transformers
implementations in the Huggingface library Wolf
et al. (2019). For significance test, we use an open-
sourced library.7 By default, no preprocessing is
performed except tokenization (see Appendix J).
Hyper-parameters Tuning For all BERT models,
we tune the learning rate, batch size, and number
of epochs. We also tune the number of epochs
nepoch in Algorithm 1, the threshold SEAL-Shap
value θ, initial score ρ. Details are in Appendix K.

7github.com/neubig/util-scripts/blob/
master/paired-bootstrap.py

4 Results and Discussion

In the following, we first verify SEAL-Shap is an ef-
fective tool for source valuation. Then, we evaluate
the source values when an evaluation target corpus
is unavailable. In Sec 4.3, we interpret the relations
between sources and targets based on the SEAL-
Shap values. Finally, we analyze our method with
comprehensive ablation studies.

4.1 Evaluating Source Valuation

We assess our source valuation approach in com-
pare to the following baselines: (i) Baseline-s:
source values are based on the single source trans-
fer performance. (ii) Leave-one-out (LOO): source
values are based on how much transfer performance
we loose if we train the model on all the sources
except the corresponding one. (iii) Baseline-r: a
random baseline that assigns random values to
sources.8 (iv) Greedy DFS: the top-1 ranked source
is same as that of Baseline-s. Next, it selects one of
the remaining sources as top-2 that gives the best
transfer result along with the top-1 and so on. (v)
Lang-Dist: (if available) in reverse order of target-
source language distance (Ahmad et al., 2019).9

Balancing Source Corpora In the experiements,
our focus is to understand the values of the sources.
For some datasets, the sizes of source corpora are
very different. For example, in UD Treebank, the
number of instances in Czech, and Turkish is 69k,
3.5k, respectively. Since data-size is an obvious
factor, we conduct experiments on balanced data
to reduce the influence of data-size in the analysis.
We sub-sample the source corpora to ensure their
sizes are similar. Specifically, for the cross-domain
NLI task, we sample 20k instances for each source.

8Our experiments with different seeds result in different
but similar results.

9Ahmad et al. (2019) compute the distances from an anno-
tated dependency parse tree based on UD Treebank.

github.com/neubig/util-scripts/blob/master/paired-bootstrap.py
github.com/neubig/util-scripts/blob/master/paired-bootstrap.py
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Lang en All Source Baseline-r Baseline-s SEAL-Shap
en - 82.71 86.32 86.39 88.55∗$†
fr - 94.60 94.63 94.83 94.79
da 88.3 88.94 89.30 89.23 89.47∗

es 85.2 93.15 93.00 93.04 93.21$

it 84.7 96.58 96.43 96.71 96.67
ca - 91.54 91.64 90.78 92.08∗$†
sl 84.2 93.28 93.50 92.89 93.52∗†
nl 75.9 90.10 90.19 90.14 90.26
ru - 92.98 92.91 92.71 93.13∗$†
de 89.8 90.79 91.07 91.44 91.06
he - 76.67 75.75 75.43 76.73$†

cs - 93.89 93.04 93.94 94.81∗$†
sk 83.6 95.68 95.62 95.53 95.81†
sr - 97.55 97.47 97.43 97.58†

id - 84.10 85.23 85.50 85.97∗$
fi - 87.13 86.89 86.86 87.05
ko - 63.59 64.27 63.77 64.19
hi - 81.49 80.27 79.94 82.41∗$†

ja - 66.86 65.99 67.71 67.81∗$
fa 72.8 81.03 80.69 82.37 81.79

Average - 82.98 83.05 83.15 83.66

Table 1: Performance on universal POS tagging when
using each of language as the target language and the
rest as source languages . ’*’, ‘$’, ‘†’ denote SEAL-
Shap model is statistically significantly outperforms All
Sources, Baseline-r and Baseline-s respectively using
paired bootstrap test with p ≤ 0.05. “en” refers to the
only source (“en”) results in Wu and Dredze (2019).

For others, we sub-sample each source such that the
size of the corpus is the same as the smallest one
in the dataset. However, our approach can handle
both balanced or unbalanced data and the source
values are similar in conclusions (e.g., see Fig 5).
Result: We first compare these methods by select-
ing top-k sources ranked by each of the approach
and reporting the corresponding transfer perfor-
mance. With k = 3, we plot the corresponding
transfer results and the running time for valuation
in Fig 2. As mentioned in Sec 1, the relatively
strong Baseline-s can select the best performing
top-1 source but with top-2 and top-3 sources, the
performances drop on cross-domain sentiment anal-
ysis and cross-lingual POS tagging (See Fig 2(c)
and 2(a)) while our approach shows a consistent
gain in all of the these tasks and with top-3 sources
it achieves the best performances. Appendix I plots
the results with higher k.

Next, as in Sec 2.5, we tune a threshold θ and
either select all the sources as useful or a smaller
subset of m number of sources (i.e., m < |D|)
whose SEAL-Shap values are higher than θ. In the
followings, we compare the model performances of
these m sources selected by SEAL-Shap with the
same top-m sources ranked by the aforementioned
baseline methods. Being relatively weak or slow,
we do not further report performances for LOO,

Model WSJ EM N A R WB Avg
MMD 96.12 96.23 96.40 95.75 95.51 96.95 96.16
RENYI 96.35 96.31 96.62 95.52 95.97 96.75 96.25

All Sources 95.95 95.39 96.94 95.15 96.08 97.10 96.10
Baseline-r 95.98 93.41 93.78 93.14 95.25 97.10 94.78
SEAL-Shap 96.14∗$ 95.47$ 97.02$ 95.30∗$ 96.17$ 97.10 96.20

Table 2: POS tagging results (% accuracy) on SANCL
2012 Shared Task. ’*’ and ‘$’ denote the model using
SEAL-Shap statistically significantly outperforms All
Sources and Baseline-r respectively using paired boot-
strap test with p ≤ 0.05. MMD, and RENYI refer to
Liu et al. (2019a) which use auxiliary unlabelled data
in the target domain and focus on instance selection.
Baseline-s has exactly same results as SEAL-Shap.

Model bg ru tr ar vi hi sw ur Avg

XLM-MLM 74.0 73.1 67.8 68.5 71.2 65.7 64.6 63.4 68.54
mBERT(en) 68.9 69.0 61.6 64.9 69.5 60.0 50.4 58.0 62.79

All Sources 74.03 73.59 65.21 68.94 74.39 67.31 52.67 64.37 67.56
Baseline-r 74.69 74.53 65.85 68.68 75.03 66.69 52.97 63.69 67.77
Baseline-s 73.23 73.73 65.67 68.36 74.11 67.07 52.59 63.31 67.26
Ours 74.95 73.85 65.63 69.24 75.71 67.78 52.73 64.67 68.07

Table 3: XNLI results. As a reference, we include two
results from the recently published papers mBERT (Wu
and Dredze, 2019) and “XLM-MLM” Lample and Con-
neau (2019). mBERT is trained on “en” only and
“XLM-MLM” is applicable to XNLI languages only.

Lang-Dist, and Greedy DFS. Rather we consider
another strong baseline All Sources that uses all the
source corpora D. This is a strong baseline as it is
trained on more source-corpus instances in general.
Cross-Lingual POS Tagging We evaluate the
source selection results on zero-shot cross-lingual
POS tagging in Table 1. Among the 31 target lan-
guages, in 21 of them, SEAL-Shap selects a small
subset of source corpora. From the Table, over-
all, SEAL-Shap selects source corpora with high
usefulness for training the model, and except for
few cases the model constantly outperforms all the
baselines by more than 0.5% in avg token accu-
racy. In 13 of them, it is statistically significant
by a paired bootstrap test. The gap is especially
high for English, Czech, and Hindi. These results
demonstrate that SEAL-Shap is capable in both
quantifying the source values and also in source
selection. We report the full results on the dev and
test set of all target languages in Appendix M, N
respectively. For each row in Table 1, the num-
ber of selected sources are reported in Appendix S.
Cross-Domain POS Tagging Table 2 presents the
POS tagging results in zero-shot domain transfer
on SANCL 2012 shared task. In 5 out of 6 tar-
gets, SEAL-Shap outperforms all baselines except
Baseline-s. For each target domain with only 5
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Model books kitchen dvd baby MR Avg

Cai and Wan (2019) 87.3 88.3 88.8 90.3 76.3 86.2

All Sources 87.3 90.3 88.3 92.3 79.3 87.5
Baseline-r 87.0 90.5 87.3 91.8 78.8 87.1
Baseline-s 86.8 89.8 87.0 92.5 77.5 86.7
SEAL-Shap 87.3 90.8 88.8 92.5 79.5 87.8

Table 4: Cross-domain transfer results on multi-domain
sentiment analysis task. Cai and Wan (2019) use unla-
belled data from the target domain.

Model SNLI QQP QNLI MNLI-mm Avg
Ma et al. (2019) 88.30 73.90 59.10 - 76.23
All Sources 88.69 72.96 50.65 89.47 75.45
Baseline-r 88.11 72.71 50.53 89.18 75.13
Baseline-s 88.72 73.47 50.98 89.69 75.72
SEAL-Shap 88.72 73.47 54.75 89.69 76.66

Table 5: Zero-shot results on modified GLUE. Ma
et al. (2019) selects instances from one source domain
at once while we select a subset of source corpora.

sources, Baseline-s source values match with ours
in general. However, SEAL-Shap significantly out-
performs Baseline-r on all 5 cases and All-Sources
twice. It even outperforms MMD, and RENYI (Liu
et al., 2019a) on Newsgroups (N), Reviews (R),
and Weblogs (WB) despite they select source data
at instance level and use additional resources.
Cross-Lingual NLI In Table 3, we show the XNLI
results in 8 target languages where SEAL-Shap se-
lects a small subset of source corpora. Among
them, in 3 languages, Baseline-r marginally sur-
passes ours. However, in 5 other languages SEAL-
Shap outperforms all the baselines with clear mar-
gin specially on Bulgarian, Vietnamese with about
1% better accuracy (full results in Appendix E).
Cross-Domain NLI Next, we evaluate SEAL-
Shap on the modified GLUE dataset in Table 5.
SEAL-Shap outperforms Baseline-s once and other
baselines in all cases. Its highest performance im-
provement is gained on QNLI, where it outper-
forms others by 4%.
Cross-Domain Sentiment Analysis Among the
13 target domains in the multi-domain sentiment
analysis dataset, in 5 domains SEAL-Shap selects
a small subset (full results in Appendix O). As in
Table 4), with a large margin, SEAL-Shap achieves
higher accuracy than all other baselines and, in 4
cases, it is even better than Cai and Wan (2019)
that uses unlabeled target data.

Our experimental evidences show that SEAL-
Shap is an effective tool in choosing useful trans-
fer sources and can achieve higher transfer perfor-
mances than other source valuation approaches.

Figure 3: Cross-lingual POS tagging accuracies on differ-
ent target languages using top-3 sources ranked by SEAL-
Shap. The ranker (red) selects similar sources as using SEAL-
Shap with annotated target data (blue). Ranker trained to
predict SEAL-Shap values (red) performs better than baseline
(green) (Lin et al., 2019).

Figure 4: Cross-lingual POS tagging SEAL-Shap values,
referring to the relative contribution of the source languages.

4.2 Results without an Evaluation Corpus

We evaluate the effectiveness of SEAL-Shap to
build a straightforward ranker that directly com-
putes the source values without any evaluation tar-
get corpus (see Sec 2.4). We use the ranker in
Lin et al. (2019) as the underlying ranking model.
First, we show that the source values evaluated by
the ranker is as good as SEAL-Shap that uses its
annotated target dataset. We compare the trans-
fer performances of the top-k sources based on the
source values computed with and without the evalu-
ation corpus. Then, we show that the ranker trained
with SEAL-Shap is more effective than training it
with the existing single source based Baseline-s.

In cross-lingual POS tagging on UD Treebank,
for each of the 31 target languages, we set aside
that language and consider the remaining 30 lan-
guages as the training corpora. We then train the
ranker as described in Sec 2.4 and compute the
source values using it. As for reference, we pass
the evaluation target dataset and the 30 source lan-
guages to SEAL-Shap to compute their values on
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(a) XNLI, target: ’es’, R <10% (b) mGLUE, target: MNLI-mm, R=10-20% (c) SANCL’12, target: wsj, R ∼50%
Figure 5: Source values by TMC-Shap and ours. TMC-Shap uses unbalanced full source corpora whereas SEAL-
Shap that achieves similar source values uses balanced and sampled source corpora. Even with a small sample
rate (R), source order is almost same. Higher sampling rate typically refers to better approximation but leads
to expensive runtime. In general, for a reasonably large corpus, 20-30% samples (>few thousands) are found
sufficient to achieve reasonable approximation.

the evaluation dataset. With k = 3, we compare
the transfer results of the top-k sources of these two
methods in Fig 3. We also plot the results of the
baseline ranker (Lin et al., 2019) that is trained with
Baseline-s. Results show that the ranker source val-
ues are similar to the sources values estimated by
SEAL-Shap with an annotated evaluation dataset
and also it outperforms the baseline.

4.3 Interpret Source Value by SEAL-Shap

In this Section, we show that SEAL-Shap values
provide a means to understand the usefulness of the
transfer sources in cross-lingual and cross-domain
transfer. We first analyze cross-lingual POS tag-
ging. Following Ahmad et al. (2019), we consider
using language family and word-order distance as
a reference distance metric. We anticipate that lan-
guages in the same language family with smaller
word-order distance from the target language are
more valuable in multi-lingual transfer. We plot
SEAL-Shap of source languages evaluated on two
target languages English (“en”) and Hindi (“hi”)
in Fig 4. In the x-axis, a common set of twenty
different source languages are grouped into ten dif-
ferent language families and sorted based on the
word order distance from English. As the figure
illustrates, Germanic and Romance languages have
higher Shapley values when using English as the
target language. The value gradually decreases for
language of other families when the word order
distance increase. As for the target language Hindi,
the trend is opposite, in general.

Figure 6: Similar SEAL-Shap value curves for two closely
related target languages in cross-lingual POS tagging.

Figure 7: Similar SEAL-Shap value curves for two closely
related XNLI targets “en” and “fr”. In XNLI, the source
corpora are prepared by machine translating from “en”. This
data processing may affect the source values. Translation
into “zh” being relatively better, although different from both
targets, its source values are higher than others.

Analogously, in cross-domain NLI, we find
that correlation between QNLI, and QQP is high
whereas between MNLI-mm and QQP, it is lower
(see Appendix Q).
SEAL-Shap on Similar Targets Intuitively, if two
target corpora are similar, the corresponding Shap-
ley values of the source corpora when transferring
to these two targets should be similar as well. To
verify, in Fig 6, we plot the Shapley values of
twenty nine source languages for targets Russian
and Serbian on cross-lingual POS tagging. Also
we plot the source values when transferring a NLI
model to English and French in Fig 7. We observe
that the corresponding curves are almost identi-
cal, and SEAL-Shap in fact selects the same set of
source corpora as potential. These results suggest
that if there is no sufficient data in the target corpus,
it is also possible to use a neighboring corpus as a
proxy to compute SEAL-Shap values.
Source Values Influenced by Data Processing
Typically, the sources with least or negative source
values are from the domains/languages that are dif-
ferent from the targets (e.g., Fig 4). However, in
some cases, source usefulness (i.e., values) is af-
fected by the data preparing process. For example,
in XLNI, the source corpora are prepared by ma-
chine translation from “en” (Conneau et al., 2018)
and the quality of this translation into “zh” is better
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Prob. Transfer Target #Targets #Samples Caching Time
(hours)

NLI Domain MNLI-mm

1 7 7 300∗

1 7 3 101
1 20k 3 18
3 20k 3 5

POS Language Arabic (ar)

1 7 7 210∗

1 7 3 180∗

1 3.3k 3 25
31 3.3k 3 3.5

Table 6: Running time for computing approximate
Shapley value. The marker ∗represents the time is esti-
mated by extrapolation. #Targets indicates number of
target corpus evaluated simultaneously. #Samples is
the number of samples used to train model for comput-
ing marginal contribution. TMC-Shap is equivalent to
disable all the techniques (the first row of each block).

Figure 8: SEAL-Shap value with two (colored) seeds.

in compare to other languages, in general. Conse-
quently, in Fig 7, “zh” has higher source value for
both targets “en” and “fr”.

4.4 Analysis and Ablation Study

Finally, we analyze the proposed Algorithm 1 for
computing Shapley value approximately.
How good is the approximation? In Fig 5, we
compare SEAL-Shap with TMC-Shap (Ghorbani
and Zou, 2019) on three datasets (details in Ap-
pendix F). Overall, the Shapley values obtained
by SEAL-Shap and TMC-Shap are highly corre-
lated and their relative orders are matched, while
SEAL-Shap is much more efficient. Note that, the
rankings themselves being same/similar, the model
performances using the same/similar top-k sources
are same/similar, too; therefore, we do not list their
transfer performances furthermore.
Ablation Study: We examine the effectiveness of
each proposed components in SEAL-Shap. Results
are shown in Table 6 and details are in Appendix
F-H. Results show that without the proposed ap-
proximation, TMC-Shap is computational costly
and is impractical to use to analyze the value of
source corpus in the NLP transfer setting. All the
proposed components contribute to significantly
speed-up the computations.
Is the approximation sensitive to the order of
permutations? As SEAL-Shap is a Monte Carlo

approximation, we study if SEAL-Shap is sensitive
to the random seed using the cross-lingual POS
tagging task. To analyze, we first compute a refer-
ence Shapley values by running SEAL-Shap until
empirically convergence (blue line). Then, we re-
port the Shapley value produced by another random
seed. Fig 8 shows that with enough epochs, the val-
ues computed by different random seeds are highly
correlated (more in Appendix H).

5 Related Work

As discussed in Section 1, transfer learning has
been extensively studied in NLP to improve model
performance in low-resource domains and lan-
guages. In the litearture, various approaches have
been proposed to various tasks, including text clas-
sification (Zhou et al., 2016; Kim et al., 2017), natu-
ral language inference (Lample et al., 2018; Artetxe
and Schwenk, 2019), sequence tagging (Täckström
et al., 2013; Agić et al., 2016; Kim et al., 2017;
Ruder and Plank, 2017), dependency parsing (Guo
et al., 2015; Meng et al., 2019). These prior studies
mostly focus on bridging the domain gap between
sources and targets.

In different contexts, methods including influ-
ence functions and Shapley values have been ap-
plied to value the contribution of training data (Koh
and Liang, 2017; Lundberg et al., 2018; Jia et al.,
2019a). Specifically, Monte Carlo approximation
of Shapley values has been used in various applica-
tions (Maleki, 2015; Jia et al., 2019a; Ghorbani and
Zou, 2020; Tripathi et al., 2020; Tang et al., 2020;
Sundararajan and Najmi, 2019). However they are
either task/model specific or not scalable to NLP
applications. Oppositely, Kumar et al. (2020) dis-
cuss the problems of using Shapley value for model
explanation. In contrast, we apply efficient Shapley
value approximation in NLP transfer learning and
analyze the source-target relationships.

6 Conclusion

We propose SEAL-Shap to quantify the value of
the source corpora in transfer learning for NLP by
computing an approximate Shapley value for each
corpus. We show that SEAL-Shap can be used to
select source corpora for transfer and provide in-
sight on understanding the value of source corpora.
In the future, we plan to further improve the run-
time of our source valuation approach by limiting
the repetition of model training.
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Supplementary Material: Appendices

A Details of UD Treebanks
We use the Flair framework provided version of UDTreebank.

The statistics of the Universal Dependency treebanks (v2.2) is summarized in Table 7. However, more
accurate statistics can be found using the above link.

Language Lang. Family Treebank Num. of Sent. #Token(w/o punct)

Arabic (ar) Afro-Asiatic PADT
train 6075 223881(206041)
dev 909 30239(27339)
test 680 28264(26171)

Bulgarian (bg) IE.Slavic BTB
train 8907 124336(106813)
dev 1115 16089(13822)
test 1116 15724(13456)

Catalan (ca) IE.Romance AnCora
train 13123 417587(371981)
dev 1709 56482(50452)
test 1846 57902(51459)

Chinese (zh) Sino-Tibetan GSD
train 3997 98608(84988)
dev 500 12663(10890)
test 500 12012(10321)

Croatian (hr) IE.Slavic SET
train 6983 154055(135206)
dev 849 19543(17211)
test 1057 23446(20622)

Czech (cs) IE.Slavic PDT,CAC,CLTT,FicTree
train 102993 1806230(1542805)
dev 11311 191679(163387)
test 12203 205597(174771)

Danish (da) IE.Germanic DDT
train 4383 80378(69219)
dev 564 10332(8951)
test 565 10023(8573)

Dutch (nl) IE.Germanic Alpino,LassySmall
train 18058 261180(228902)
dev 1394 22938(19645)
test 1472 22622(19734)

English (en) IE.Germanic EWT
train 12543 204585(180303)
dev 2002 25148(21995)
test 2077 25096(21898)

Estonian (et) Uralic EDT
train 20827 287859(240496)
dev 2633 37219(30937)
test 2737 41273(34837)

Finnish (fi) Uralic TDT
train 12217 162621(138324)
dev 1364 18290(15631)
test 1555 21041(17908)

French (fr) IE.Romance GSD
train 14554 356638(316780)
dev 1478 35768(31896)
test 416 10020(8795)

German (de) IE.Germanic GSD
train 13814 263804(229338)
dev 799 12486(10809)
test 977 16498(14132)

Hebrew (he) Afro-Asiatic HTB
train 5241 137680(122122)
dev 484 11408(10050)
test 491 12281(10895)

Hindi (hi) IE.Indic HDTB
train 13304 281057(262389)
dev 1659 35217(32850)
test 1684 35430(33010)

Indonesian (id) Austronesian GSD
train 4477 97531(82617)
dev 559 12612(10634)
test 557 11780(10026)

Italian (it) IE.Romance ISDT
train 13121 276019(244632)
dev 564 11908(10490)
test 482 10417(9237)

Japanese (ja) Japanese GSD
train 7164 161900(144045)
dev 511 11556(10326)
test 557 12615(11258)

Korean (ko) Korean GSD,Kaist
train 27410 353133(312481)
dev 3016 37236(32770)
test 3276 40043(35286)

Norwegian (no) IE.Germanic Bokmaal,Nynorsk
train 29870 489217(432597)
dev 4300 67619(59784)

https://github.com/flairNLP/flair/blob/master/resources/docs/TUTORIAL_6_CORPUS.md
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test 3450 54739(48588)

Polish (pl) IE.Slavic LFG,SZ
train 19874 167251(136504)
dev 2772 23367(19144)
test 2827 23920(19590)

Portuguese (pt) IE.Romance Bosque,GSD
train 17993 462494(400343)
dev 1770 42980(37244)
test 1681 41697(36100)

Romanian (ro) IE.Romance RRT
train 8043 185113(161429)
dev 752 17074(14851)
test 729 16324(14241)

Russian (ru) IE.Slavic SynTagRus
train 48814 870474(711647)
dev 6584 118487(95740)
test 6491 117329(95799)

Serbian (sr) IE.Slavic SET
train 3328 74259(74259)
dev 599 11993(11993)
test 600 11421(11421)

Slovak (sk) IE.Slavic SNK
train 8483 80575(65042)
dev 1060 12440(10641)
test 1061 13028(11208)

Slovenian (sl) IE.Slavic SSJ, SST
train 8556 132003(116730)
dev 734 14063(12271)
test 1898 24092(22017)

Spanish (es) IE.Romance GSD,AnCora
train 28492 827053(730062)
dev 3054 89487(78951)
test 2147 64617(56973)

Swedish (sv) IE.Germanic Talbanken
train 4303 66645(59268)
dev 504 9797(8825)
test 1219 20377(18272)

Turkish (tr) Altaic IMST
train 36822 37784(36822)
dev 988 10046(9777)
test 983 10029(9797)

Basque (eu) Language Iasolate BDT
train 5396 72974(72974)
dev 1798 24095(24095)
test 1799 24074(24374)

Persian (fa) IE.Iranic UPDT
train 4798 121064(119945)
dev 599 15832(15755)
test 600 16020(15925)

Table 7: Statistics of the UD Treebanks we used. For language family, “IE” stands for Indo-European and “(w/o)
punct” means #tokens excluding “PUNCT” and “SYM”.
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Language Family Languages
Afro-Asiatic Arabic (ar), Hebrew (he)
Austronesian Indonesian (id)

IE.Germanic Norwegian (no), Danish (da), Dutch (nl),
English (en), German (de), Swedish (sv)

IE.Indic Hindi (hi)
IE.Altaic Turkish (tr)

IE.Romance Catalan (ca), French (fr), Portuguese (pt),
Italian (it), Romanian (ro), Spanish (es)

IE.Slavic Bulgarian (bg), Croatian (hr), Czech (cs), Polish (pl),
Russian (ru), Slovak (sk), Slovenian (sl), Serbian (sr)

Japanese Japanese (ja)
Korean Korean (ko)
Sino-Tibetan Chinese (zh)
Uralic Finnish (fi)
Iranic Persian (fa)
Isolate Basque (eu)

Table 8: The selected languages from UDTreebank 2.2,used in our cross

lingual POS tagging, grouped by language families. “IE” is the abbreviation

of Indo-European.
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B POS Taggong Dataset for Domain Transfer

Domain WSJ Emails Newsgroups Answers Reviews Weblogs
Train/Dev/Test 2976/1336/1640 4900/2450/2450 2391/1196/1195 3489/1745/1744 3813/1907/1906 2031/1016/1015

Table 9: Data Statistics of SANCL 2012 shared task dataset (Petrov and McDonald, 2012)
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C Modified GLUE NLI Task for Domain Transfer
For NLI, we consider the 2-class classification (e.g., entailed or not) corpora used in Ma et al. (2019) that
is made upon modification on 4 Glue benchmark (Wang et al., 2018) problems: SNLI, MNLI, QNLI, and
QQP. We split the MNLI training set into a corpora of “fiction”, “slate”, “govt.”, “travel”, and “telephone”
as in Williams et al. (2018) and always include them in the source corpora for all target domains. Here,
As the annotations for GLUE test sets are publicly unavailable, for each target domain, we consider
the original dev set as pseudo test set and randomly select 2k instances from training set for parameter
tuning (i.e., pseudo dev set). For MNLI as target, we have two original dev set. Hence, we take the 2k
instances from matched dev set as pseudo dev set and consider the miss-matched corpus as pseudo test set.
Therefore, in zero-shot setting, the number of source corpora for target MNLI is 8, and for others it is 7.

Task Category Dataset Train Size Dev Size

Natural Language Inference SNLI 510,711 -

MNLI-Fiction 77348 -
MNLI-Travel 77350 -

Multi-Genre MNLI-Slate 77306 -
Natural Language Inference MNLI-Government 77350 -

MNLI-Telephone 83348 -
MNLI-Mismatched - 9,832

Answer Sentence Selection QNLI 108,436 5,732

Paraphrase Detection QQP 363,847 -

Table 10: Data Statistics of Glue NLI tasks. We report
the performance on the full dev set and to tune all the
models, randomly select 20% examples from it.
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D Sentiment Analysis Dataset for Domain Transfer
For sentiment analysis, following Cai and Wan (2019), we use the multi-domain sentiment datasets
released by Liu et al. (2017) which has several additional domains than a popular sentiment analysis
dataset Blitzer et al. (2007). For each domain, we use the same test set as in Liu et al. (2017). However,
as train and dev data are released together, we simply consider the first section of this combined set as
the train set and the last section as dev set. Statistics of the 14 domains in this dataset considered in our
experiments are reported in Appendix.

Dataset Train Dev Test Avg length

Books 1400 200 400 159
Electronics 1398 200 400 101
DVD 1400 200 400 173
Kitchen 1400 200 400 89
Apparel 1400 200 400 57
Camera 1397 200 400 130
Health 1400 200 400 81
Toys 1400 200 400 90
Video 1400 200 400 156
Baby 1300 200 400 104
Magazine 1370 200 400 117
Software 1315 200 400 129
Sports 1400 200 400 94
MR 1400 200 400 21

Table 11: Data Statistics of multi-domain sentiment
dataset

E XNLI Results

Model es de el bg ru tr ar vi th zh hi sw ur en fr

All Sources 77.88 71.82 72.23 74.03 73.59 65.21 68.94 74.39 60.10 74.69 67.31 52.67 64.37 82.65 77.03
Baseline-r 77.88 71.82 72.23 74.69 74.53 65.85 68.68 75.03 60.10 74.69 66.69 52.97 63.69 82.65 77.03
Baseline-s 77.88 71.82 72.23 73.23 73.73 65.67 68.36 74.11 60.10 74.69 67.07 52.59 63.31 82.65 77.03
Ours 77.88 71.82 72.23 74.95 73.85 65.63 69.24 75.71 60.10 74.69 67.78 52.73 64.67 82.65 77.03

Table 12: Cross-lingual results on the XNLI test sets.

All model performances are same when selecting all source corpora as potential.
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F How good is the approximation?
We consider three different datasets: XNLI (target: ’es’), Modified GLUE NLI dataset(target: ’MNLI-
mm’), and SANCL 2012 shared task for POS tagging (target: ’WSJ’). We use the corresponding full size
source tasks except for the extremely large XNLI in which we randomly sample half of each source task
(180k instances) and compute the Shapley value adopting the source code released by Ghorbani and Zou
(2019). Then, on XNLI dataset we consider sample size 50k, on GLUE 20k, on SANCL 2012 sahred task
2k for each source task. Then we use Algorithm 1 (in the main paper) with tuned initial score to compute
the approximate data Shapley value. Instead of full convergence, we do early stop by setting the Shapley
value nepochs to 10, 50, 30 on XNLI, GLUE, and SANCL datsets respectively.
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G Shapley Value Computation Time with/out different Factors:
We consider two example problem to transfer both language and domain: (i) UDPOS tagging for language
transfer (ii) modified GLUE NLI for domain transfer. We consider the “initial score” to All Sources/2
andR ; nepoch to 30, and 50 for these two respective target task, for the data Shapley computation as in
Algorithm 1, we then switch different factors as in reported in Table 6 (in the main paper) as record the
corresponding Shapley value computation time.
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H Approximate Shapley Value with Different Seeds:
In Figure 9, we plot the SEAL-Shap value w.r.t same threshold (θk = 0) by different seeds.

Figure 9: SEAL-Shap value with two different seeds.



5105

I Adding sources according different source ranking/selection methods

Figure 10: Performance using top-k sources as per dfifferent source ranking/selection methods. (Task: XNLI,
target: vi. Red colored line denotes Random or Baseline-S.

Figure 11: Performance using top-k sources as per different source ranking/selection methods (Task: Cross-domain
Sentiment Analysis, Target: Electronics.) Red colored line denotes Random or Baseline-S.



5106

Figure 12: Performance using top-k sources as per dfifferent source ranking/selection methods. (Task: Cross-
domain NLI, target: MNLI-mm). Red colored line denotes Random or Baseline-S.

We consider a Bert model with certain model parameters. Then using the corresponding training and
development dataset we compute SEAL-Shap values by adjusting the ρ, compute the ranks according to
Baseline-s, Baseline-r, language distance from the target language etc., We consider the top-3 sources to
compare. We also consider the top-3 sources in a greedy depth first search approach. Ours get consistent
increase and best performance using top-3 sources. Here we plot figure with more top-3 sources. For
large datasets, we do not plot the greedy DFS here as it takes extremely long time to compute due to the
fact that the DFS search branches rarely overlap for different targets.
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J Classifier and Data Preprocessing:
As for the underlying machine learning classifier, in our experiments on the domain transfer problem, we
consider the BERT based cased model (Devlin et al., 2019) except for POS tagging. For POS tagging, we
consider the the state-of-the-art BiLSTM based Flair framework (Akbik et al., 2018). As for language
transfer problem, we consider a generic state-of-the-art classifier: the multi-linigual version of BERT
based cased model. For all bert models, we adopt Transformers implementation (Wolf et al., 2019).
Number of model parameters BERT model 10 million parameters. For each task, no preprocessing is
performed other than the tokenization of words into subwords with WordPiece except for cross-lingual
POS for which we use an oppen-sourced multilingual preprocessing toolkit10 to remove “strange control
character" tokens. Following Wu and Dredze (2019), we also limit subwords sequence length to 128 to fit
in a single GPU for all tasks. For all tasks, we use the accuracy metric.

10github.com/huggingface/transformers/tree/master/examples/token-classification

github.com/huggingface/transformers/tree/master/examples/token-classification
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K Hyper-parameters Tuning:
For the small multi-domain sentiments analysis dataset, we do a full search of the combination of learning
rate, batch size and number epochs up to 5. For all other large scale datasets, we perform a greedy
search. We first find the best combination of learning rate and batch size. Then we tune the number of
epochs. For the extremely large XNLI, in which for any target task the multi-source training data size is
∼ 5.5M, we tune only when our framework select a smaller subset of the source corpora for learning rate in
{3×10−5, 5×10−5}, batch size {32} and epochs within 50k steps (i.e., no more than 3 epochs). On XNLI,
when our framework selects all source corpora as potential, we do not further tune the hyper-parameters
both baselines have the same training set as SEAL-Shap. Hence, we report the result using a default
learning rate 5−5, batch size 32. All test results reported in this paper are performed on the corresponding
test set11 using a single gpu. All Shapley value calculations were performed on multi-gpus. After transfer
source selection, all models for XLNI, and UDPOS, are trained, and tuned on multi-gpu distributed system
and for for SANCL 2012 POS tagging, and mulit-domain sentiment analysis datasets single gpu is used. As
for modified GLUE NLI dataset, both single gpu and distributed system is used. For UDPOS significance
test, we use the default num_samples 10k, except for Polish we use 3k. As for Flair, the system does not
support saving the prediction options, getting the model prediction even from a trained BiLSTM model
is time consuming. Hence, we sample for no more than 50 times for SANCL 2012 dataset significance
test. For Flair framework, after preliminary verification, we follow their configuration suggested for best
performance on English Penn treebank POS tags12 and tune each model up to 150 epochs with patience 4.
All the approximated Shapley values (SEAL-Shap values) are computed within nepoch 30 and only for
UDPOS and XNLI dataset, multiple seeds (< 3) are used. For UDPOS nepoch within 30 or 46, for XNLI
nepoch within 10 or 20. For any target task Vk, the corresponding threshold Shapley value θk is chosen in
{1×10−2, 1×10−3, 5×10−3}, initial scores ρ in {R,N , 0.5, All sources/2, All Sources, µ}whereR is a
random baseline model performance (i.e., randomly initialized model performance); given the total number
of sources n, N = n−1

n × Score(CDj , Vk); µ = mean({ All Sources} ∪ {Score(CDj , Vk)∀Dj ∈ D}),
and D is all source tasks. This means we also tune SEAL-Shap value as the mean of a combination of
SEAL-Shap values, leave one out values, and single source transfer values. For Shapley value computation,
for multiple seeds run like on cross-lingual POS tagging and XNLI, seed 42, 43 is used. All the hyper-
parameter tuning is done with default seed in the open-sourced Transformer implementation13 which is
42. All the SEAL-Shap values are calculated using single seed. Only for plotting Figure 6 in main paper,
on cross-lingual POS tagging for target English two different seeds are used. The blue curve in Figure 6,
and the results in Table 2 are using the same seed and all other plots uses the other seed. All the parameter
configuration and the dev set performance will be reported here upon acceptance. All computations are
performed on gpus; in general using (4,8,1) #gpus. Note that while tuning, if there is no θ for which the
corresponding subset of sources (i.e., ⊂ D) achieves better result than using all of D, then we select the
set of all sources D assuming each source is contributing positively.

11for GLUE NLI, pseudo test set
12github.com/flairNLP/flair/blob/master/resources/docs/EXPERIMENTS.md
13github.com/huggingface/transformers/

github.com/flairNLP/flair/blob/master/resources/docs/EXPERIMENTS.md
github.com/huggingface/transformers/
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L Training a Direct Source Selection Ranker using SEAL-Shap

Figure 13: Transfer performance with the top-3 sources

In addition to the sampled single source performances Baseline-s in the main paper, here we also
compare smapled SEAL-Shap with the full size (i.e., no sampling) single source performance. Lin et al.
(2019) with full size Baseline-s results are found using the original ranker realised in (Lin et al., 2019). In
most cases ours outperforms (Lin et al., 2019) such as ’hr’, ’de’, ’da’, ’nl’, ’en’, ’fr’, ’he’, ’it’, ’es’, ’sv’.
However, the margin is small and also there are multiple cases where Lin et al. (2019) outperforms ours
such as ’ar’, ’cs’, ’zh’, ’id’, ’fi’, ’ja’, ’ko’, ’sr’.
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M Dev set Results
In Table 13, we report the dev set result for cross-lingual POS tagging. For French, German, Hebrew,
Slovenian, we need

Lang All Sources Baseline-s SEAL-Shap
en 85.21 87.39 88.50
no 90.05 90.05 90.05
sv 93.39 93.27 93.18
fr 95.52 95.68 95.71
pt 94.55 94.73 94.77
da 90.19 90.27 90.42
es 94.11 94.04 94.16
it 96.83 96.56 96.89
hr 96.36 96.36 96.36
ca 92.58 92.39 92.92
pl 91.64 91.40 91.62
sl 93.35 93.56 93.45
nl 91.47 91.55 91.55
bg 92.26 92.26 92.26
ru 92.87 92.79 92.92
de 91.42 91.65 91.42
he 77.09 76.16 77.30
cs 94.56 93.14 94.74
ro 90.41 90.41 90.41
sk 96.38 96.33 96.42
sr 97.18 97.27 97.35
id 83.98 84.63 85.58
fi 87.24 87.26 87.26
zh 71.31 71.31 71.31
ar 79.18 79.18 79.18
ko 63.58 63.76 64.31
hi 80.69 80.16 82.78
ja 69.28 69.72 69.93
tr 78.43 78.43 78.43
eu 80.90 80.90 80.90
fa 82.37 81.67 82.74

Table 13: Dev set results on cross-lingual POS tagging.
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N Full Cross-lingual POS Tagging Results

Lang en All Source Baseline-r SEAL-Shap Baseline-s
en - 82.71 86.32 88.55∗$ 86.39
no - 90.06 90.06 90.06 90.06
sv 83.6 93.26 93.26 93.26 93.26
fr - 94.60 94.63 94.79 94.83
pt 82.1 94.33 94.33 94.33 94.33
da 88.3 88.94 89.30 89.47∗ 89.23
es 85.2 93.15 93.00 93.21$ 93.04
it 84.7 96.58 96.43 96.67 96.71
hr - 96.60 96.60 96.60 96.60
ca - 91.54 91.64 92.08∗$ 90.78
pl 86.9 91.61 91.61 91.61 91.61
sl 84.2 93.28 93.50 93.52∗ 92.89
nl 75.9 90.10 90.19 90.26 90.14
bg 87.4 92.93 92.93 92.93 92.93
ru - 92.98 92.91 93.13∗$ 92.71
de 89.8 90.79 91.07 91.06 91.44
he - 76.67 75.75 76.73$ 75.43
cs - 93.89 93.04 94.81∗$ 93.94
ro 84.7 89.97 89.97 89.97 89.97
sk 83.6 95.68 95.62 95.81 95.53
sr - 97.55 97.47 97.58 97.43
id - 84.10 85.23 85.97∗$ 85.50
fi - 87.13 86.89 87.05 86.86
zh - 71.31 71.31 71.31 71.31
ar - 80.07 80.07 80.07 80.07
ko - 63.59 64.27 64.19 63.77
hi - 81.49 80.27 82.41∗$ 79.94
ja - 66.86 65.99 67.81∗$ 67.71
tr - 78.43 78.43 78.43 78.43
eu - 81.18 81.18 81.18 81.18
fa 72.8 81.03 80.69 81.79 82.37

Average - 87.17 87.21 87.62

Table 14: Performance on universal POS tagging (test set) when using each of language as the target language
and the rest as source languages . ’*’ and ‘$’ denote SEAL-Shap model is statistically significantly outperforms
All Sources and Baseline-s respectively using paired bootstrap test with p ≤ 0.05. ‘en’ refers to the best single
source (’en’) results, reported in Wu and Dredze (2019).

All model performances are same when selecting all source corpora as potential. (See line 2 in Table
13 and Table 14).
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O Full Cross-domain Sentiment Analysis Results

Model books kitchen dvd electronics apparel camera baby health magazines MR software video toys sports Avg

Cai and Wan (2019) 87.3 88.3 88.8 89.5 88.0 90.3 90.3 91.0 88.5 76.3 90.8 91.3 90.3 90.5 82.16

All Sources 87.3 90.3 88.3 90.8 91.0 91.5 92.3 92.0 90.5 79.3 90.3 85.3 91.3 90.5 89.33
Baseline-r 87.0 90.5 87.3 90.8 91.0 91.5 91.8 92.0 90.5 78.8 90.0 84.8 91.3 90.5 89.08
Baseline-s 86.8 89.8 87.0 90.8 91.0 91.5 92.5 92.0 90.5 77.5 90.0 84.8 91.3 90.5 -
SEAL-Shap 87.3 90.8 88.8 90.8 91.0 91.5 92.5 92.0 90.5 79.5 90.3 87.8 91.3 90.5 89.76

Table 15: Cross-domain Transfer performance on multi-domain sentiment analysis dataset (Liu et al., 2017). Cai
and Wan (2019) leverages unlabelled data from the target domain.
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P SEAL-Shap values for two similar targets

Figure 14: Similar SEAL-Shap value curvature of two close language English (“en”) and French (“fr”) on cross-
lingual NLI.
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Q Interpreting Source Shapley Values in Cross-domain NLI

Figure 15: SEAL-Shap value on cross-domain NLI, referring to relative contribution of source domains. For
target domain MNLI-mm, source domain QQP has the lowest contribution, whereas for target domain QNLI,
source domain QQP has the highest contribution.



5115

R Data Statistics

Transfer Task Dataset #target #source

Language
POS tag UD Treebank 31 30
NLI XNLI 15 14

Domain
POS tag SANCL 2012 6 5
NLI mGLUE 4 7+
Sentiment Ana. mlt-dom-senti 14 13

Table 16: Task statistics. #sources are for each target. In (m)odified GLUE, #sources is 8 for target MNLI, and 7
otherwise. “mlt-dom-senti” refers to Liu et al. (2017).
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S Number of Sources Selected

Lang #Sources Selected
en 9
fr 29
da 29
es 27
it 26
ca 25
sl 29
nl 28
ru 27
de 28
he 29
cs 27
sk 27
sr 27
id 26
fi 27
ar 30
ko 27
hi 27
ja 29
fa 27

Table 17: Number of sources selected from 30 different languages by SEAL-Shap for the task of cross-lingual
POS tagging.


