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Abstract

How can we effectively inform content selec-
tion in Transformer-based abstractive summa-
rization models? In this work, we present
a simple-yet-effective attention head mask-
ing technique, which is applied on encoder-
decoder attentions to pinpoint salient content
at inference time. Using attention head mask-
ing, we are able to reveal the relation between
encoder-decoder attentions and content selec-
tion behaviors of summarization models. We
then demonstrate its effectiveness on three doc-
ument summarization datasets based on both
in-domain and cross-domain settings. Impor-
tantly, our models outperform prior state-of-
the-art models on CNN/Daily Mail and New
York Times datasets. Moreover, our inference-
time masking technique is also data-efficient,
requiring less than 20% of the training sam-
ples to outperform BART fine-tuned on the full
CNN/DailyMail dataset.

1 Introduction

Large pre-trained Transformers have achieved state-
of-the-art results on various summarization datasets
with a fine-tuning phase to streamline the summa-
rization pipeline (Lewis et al., 2020; Yan et al.,
2020). Yet, it is still unclear how one can use
large models more effectively for abstractive sum-
marization . For example, prior work shows that
informing content selection via attention weight
updating in recurrent neural networks can further
boost summarizer performance (Gehrmann et al.,
2018). However, with multi-heads attentions at
all layers in Transformers (Vaswani et al., 2017),
highlighting salient content becomes non-trivial.

In this work, we propose an inference-time at-
tention head masking mechanism that works on
encoder-decoder attentions to underscore salient
content from the source and improve the quality of
abstractive summaries. Based on this mechanism,
we first demonstrate the relation between encoder-
decoder attentions and content selection behaviors,

on three summarization datasets of CNN/DailyMail
(CNN/DM), New York Times (NYT), and XSum.
Second, we study whether multiple heads at the
same layer collectively guide the summarization.
Partial masking is found to be most effective, indi-
cating a strong collaborative effect and the impor-
tance of head selection.

Based on these observations, we evaluate at-
tention head masking on summarization bench-
marks with salience labels provided by externally
trained content selectors. On all three datasets,
our model consistently outperforms fine-tuned
BART (Lewis et al., 2020) and several top per-
forming Transformer-based abstractive summariza-
tion models (Zhang et al., 2019b; Yan et al., 2020).
Summaries generated by our model are also con-
sidered to have better informativeness by human
judges. Moreover, we illustrate that attention head
masking is data-efficient: on CNN/DM, BART
fine-tuned on less than 20% of the training data
outperforms a version trained on the full set. Fi-
nally, we show that our method is effective under
a cross-domain setting. With a content selector
trained on NYT, BART fine-tuned on CNN/DM
gains more than three points of ROUGE scores
when tested on NYT articles.1

2 Related Work

Large Pre-trained Models for Summarization.
Many recent advancements in text summarization
have been achieved by large pre-trained language
models (Zhang et al., 2019a; Liu and Lapata, 2019;
Song et al., 2019; Zhang et al., 2019b). In par-
ticular, BART has demonstrated impressive per-
formance on summarization, and is used as the
base model in this work. Nonetheless, all prior
attempts take pre-trained models as is and conduct
fine-tuning on target datasets, without knowing if

1Our code is available at: https://shuyangcao.
github.io/projects/inference_head_
masking.

https://shuyangcao.github.io/projects/inference_head_masking
https://shuyangcao.github.io/projects/inference_head_masking
https://shuyangcao.github.io/projects/inference_head_masking
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it is the most effective usage. In contrast, we bring
insights into the relation between attentions and
content selection via masking operations to further
improve summarization performance.

Content Selection for Abstractive Summariza-
tion. Content selection is a crucial step, where
salient information is first detected and then sum-
marized into concise abstracts (Chen and Bansal,
2018; Xu and Durrett, 2019). To minimize the
propagation of selection errors, content selection is
modeled as an extra component and learned within
an end-to-end trained model (Zhou et al., 2017; Li
et al., 2018; Gehrmann et al., 2018). To the best of
our knowledge, we are the first to apply masks on
selected layers and attention heads in Transformers
for content selection in summarization. Moreover,
our masking mechanism is only activated during
inference, without any model modification.

Analyzing Multi-head Attentions has attracted
growing interests in the NLP community (Clark
et al., 2019; Kovaleva et al., 2019). Among the
work that is relevant to encoder-decoder attentions,
Michel et al. (2019) and Voita et al. (2019) observe
that only a small portion of heads is relevant for
translation and encoder-decoder attentions tend to
be more important than self-attentions. Meanwhile,
word alignments for machine translation are in-
duced from encoder-decoder attention weights (Li
et al., 2019; Kobayashi et al., 2020). However,
none of prior work employs attentions to improve
generation quality. As far as we are aware, this is
the first work that studies the content selection ef-
fects of encoder-decoder attentions and uses them
to guide better summary generation.

3 Attention Head Masking

We adopt large pre-trained sequence-to-sequence
Transformer models (BART, specifically) for ab-
stractive summarization. Transformer is built with
multi-head attentions. Attentions are computed
per step based on a query q along with the key and
value matrices, K and V:

Attention(q,K,V) = softmax(
qKT

√
dk

+m)V (1)

where dk is a scaling factor and m is for padding
or masking future tokens (when the value is −∞).

Masking Operation. We propose attention head
masking in encoder-decoder attentions, which
blocks attentions to unimportant tokens, to better
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Figure 1: Illustration of attention head masking (m̃).

concentrate multi-head attentions on salient input
tokens. Importantly, it is activated during infer-
ence. Concretely, we add an m̃ inside the softmax
operator of Eq. 1, with implementation displayed
in Fig. 1. The size of m̃ is the same as the input
length. If the i-th token is tagged as salient, the
corresponding element in m̃ is set to 0 (attendable
to the attention heads), and −∞ otherwise (hid-
den from these heads). The saliency labels can be
predicted by an externally trained content selector.

4 Encoder-decoder Attentions and
Content Selection

In this section, we first probe into the content selec-
tion behavior of each single head (§ 4.1), and then
study the synergism among heads at the same layer
(§ 4.2). In § 4.3, we analyze the attentions’ focus.

Our analysis is conducted on CNN/DM (Her-
mann et al., 2015), NYT (Consortium and Com-
pany, 2008), and XSum (Narayan et al., 2018). We
follow Lewis et al. (2020) for data preprocessing
and train/validation/test splits on CNN/DM and
XSum, and adopt the setups in Paulus et al. (2018)
for NYT, except that we keep entities and num-
bers. The number of samples in training, validation,
and test set are: 287,188, 13,367 and 11,490 for
CNN/DM; 588,909, 32,716 and 32,703 for NYT;
204,045, 11,332 and 11,334 for XSum.

For experiments in this section, we create an
analysis set of 1,000 random samples from the vali-
dation split of each dataset to reduce computational
cost.

4.1 Content Selection Effects

First, we study the feasibility of using encoder-
decoder attentions to inform content selection
and subsequently boost summary informativeness.
Concretely, we apply attention head masking based
on oracle content selection labels (henceforth or-
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Figure 2: ROUGE-1 F1 improvement with oracle
masks for each head at each layer on the analysis set
of CNN/DM. Overall, top layers see greater improve-
ment than bottom layers. Layer 1 is the bottom layer
connected with the word embeddings.

acle masking). Oracle labels are constructed by
aligning a reference summary to the source arti-
cle, where we iteratively find the longest common
subsequences between the two.

Taking a fine-tuned BART model, we apply ora-
cle masking on each head at each layer when decod-
ing on the analysis set. The ROUGE score obtained
in this setting is denoted as rora. We then apply uni-
form encoder-decoder attention weights over the
source to build a baseline that mimics no content
selection, inspired by Wiegreffe and Pinter (2019).
This yields a ROUGE score of runi. The content
select effect per head can thus be calculated as the
ROUGE improvement, i.e., rora − runi.

Overall, it is more effective to constrain atten-
tions to salient content at the top layers, accord-
ing to the results on CNN/DM in Fig. 2. Specif-
ically, with oracle masking, the top layer yields
the most ROUGE-1 improvement. We observe
similar trends on NYT and XSum (figures are in
Appendix C). This indicates the feasibility of lever-
aging attention head masking to improve sum-
mary informativeness.

4.2 Synergism Analysis
Next, we study whether masking multiple heads
can further boost content selection and whether
they form synergy. On the left of Fig. 3, we show
content selection effect by gradually applying or-
acle masking on more heads at each layer, with
heads sorted based on individual ROUGE improve-
ments. Notably, the most ROUGE-1 improvement
is achieved by masking 15 (out of 16) heads at the
top layer, suggesting a strong collaborative effect
on content selection by masking multiple heads.
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Figure 3: [Left] ROUGE-1 F1 improvement by incre-
mentally applying oracle masking to the next head with
most ROUGE improvement per layer on CNN/DM.
Dotted lines indicate that the newly masked heads do
not have individual ROUGE improvements. [Right]
ROUGE-1 recall improvement by masking all heads vs.
sum of improvement by masking each head separately
on CNN/DM. Best viewed in color.

We further compare the ROUGE score gains be-
tween oracle masking on all heads and the sum of
individual effects, illustrated on the right of Fig. 3.
The discrepancies between the two values suggest
that the heads may not be independent at pinpoint-
ing salient content. In Appendix D, we reach simi-
lar results on NYT and XSum.

Based on the above observations, we argue that
it is necessary to select layers and heads accord-
ingly to achieve the best content selection effect,
with more summarization results reported in § 5.

4.3 Attention Focus

We further provide a fine-grained study on what
types of words the heads attend to. Concretely,
we consider each word generated during decoding,
denoted as y. Given an attention head, we follow
the highest attention weight to identify the input
word x (“attendee”). We study several categories
of attendee x: (1) word in the reference (SALIENT);
(2) CONTENT word; (3) the FIRST and LAST words
in the document. For SALIENT and CONTENT, we
further consider two subcategories: x = y (COPY)
and x 6= y (NON-COPY). We then tally the occur-
rences of each type of attendees per head at each
layer on the analysis set.

We show the percentages of COPY and NON-
COPY SALIENT attendees, COPY CONTENT atten-
dees, and FIRST attendees on CNN/DM in Fig. 4.
As can be seen, top layers tend to focus on input
tokens that will be generated as is, while bottom
layers attend to salient words that are not used for
current generation. Additionally, bottom layers fre-
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Figure 4: COPY and NON-COPY SALIENT attendee
word percentages on the analysis set of CNN/DM. Top
layers focus on words to be “copied", while bottom lay-
ers attend to the broader salient context.

quently attend to the first token of the document,
where bottom layers are more likely performing
context gathering. On NYT and XSum (figures are
in Appendix E), similar trends are observed except
that the FIRST attendees are more focused by the
top layers on NYT articles, where many of them
start with all capitalized words.

5 Summarization Results with Attention
Head Masking

In this section, we show how to leverage attention
head masking and a content selector to improve
summary informativeness on three datasets. We
first train a binary sequence tagger for each dataset
to label salient tokens in the source, used for sys-
tem masking for attention heads. Our sequence
tagger is a RoBERTa (Liu et al., 2019) encoder
followed by a double layer multilayer perceptron
(MLP) with a hyperbolic tangent activation func-
tion in between. To obtain the probability for each
token, the MLP output is further fed into a sig-
moid activation function. Details for training and
decoding are in Appendix A.

The decision boundary for the sequence tagger
is selected according to the F1 score calculated
between the predicted tags and the ground-truth
labels on the validation set. We search for the
best decision boundary from 0.1 to 0.4, with a step
size of 0.01. The final decision boundaries used
for taggers trained on CNN/DM, NYT, XSum are
0.20, 0.24, and 0.18, achieving ROUGE-1 F1 of
43.70, 44.10, and 31.56, respectively.

Model R-1 R-2 R-L

BERTSUM (Liu and Lapata, 2019) 42.13 19.60 39.18
UNILM (Dong et al., 2019) 43.33 20.21 40.51
PEGASUS (Zhang et al., 2019b) 44.17 21.47 41.11
PROPHETNET (Yan et al., 2020) 44.20 21.17 41.39
BART (ours) 44.19 21.20 40.98
+ attention head masking (ours) 45.54∗ 22.24∗ 42.44∗

(a) CNN/DailyMail

Model R-1 R-2 R-L

BOTTOMUP (Gehrmann et al., 2018) 47.38 31.23 41.81
DCA (Celikyilmaz et al., 2018) 48.08 31.19 42.33
BERTSUM (Liu and Lapata, 2019) 49.02 31.02 45.55
ASGARD (Huang et al., 2020) 51.29 34.97 48.26
BART (ours) 53.00 36.31 48.90
+ attention head masking (ours) 53.52∗ 36.69 49.24

(b) New York Times

Model R-1 R-2 R-L

BERTSUM (Liu and Lapata, 2019) 38.81 16.50 31.27
PEGASUS 47.21 24.56 39.25
BART (ours) 45.36 22.30 37.11
+ attention head masking (ours) 45.35 22.31 37.15

(c) XSum

Table 1: Automatic evaluation with ROUGE. ∗: signif-
icantly better than BART with approximate randomiza-
tion test (p < 0.005). Our method outperforms BART
and previous models on CNN/DM and NYT.

To select which heads at which layers to mask,
we employ a greedy selection strategy. On the
analysis set, we gradually apply system masking
on four heads with most ROUGE improvement
according to the study in § 4.1, and we select the
heads that achieve the highest sum of ROUGE-1 F1
and ROUGE-2 F1. We apply four heads each time
to reduce computational cost of hyperparameter
searching. Heads selected for each dataset are in
Appendix B.

In-domain Results. Table 1 shows that applying
our attention head masking technique on BART ob-
tains significantly better results on CNN/DM and
NYT, compared to several top performing abstrac-
tive summarization models trained with large Trans-
formers. The improvement is more pronounced
for CNN/DM than the other two datasets. We
believe this is due to the difference in abstrac-
tiveness among the three datasets. CNN/DM has
more extractive summaries compared to the other
datasets (Grusky et al., 2018), suggesting atten-
tion head masking is more effective on extractive
datasets. Notably, PEGASUS is pre-trained with
3.8TB of news articles, the BART model used in
our work is only pre-trained with 160GB of a com-
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w/ masking w/o masking Tie

Informativeness 36.0% 19.3% 44.7%
Faithfulness 10.0% 7.3% 82.7%

Table 2: Percentages of summaries with and without
attention head masking favored by annotators on infor-
mativeness and faithfulness. The Krippendorff’s α for
informativeness and faithfulness are 0.30 and 0.47.
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Figure 5: Results on CNN/DM with different sizes of
training data. Our method consistently improves the
summarizer.

bination of news, books, stories, and web text. The
large size of the pre-training data might be a big
contributor to the better performance by PEGASUS
on XSum.

For human evaluation, we hire three fluent En-
glish speakers to rate 50 pairs of summaries gen-
erated with and without attention head masking
based on BART for informativeness and faith-
fulness. Informativeness measures how well the
summary captures salient content from the article,
while faithfulness indicates whether the summary
correctly reflects the content in the source article.
The annotators are asked to determine if attention
head masking improves any of the two aspects. As
shown in Table 2 where all ratings by three judges
are considered, summaries generated with atten-
tion head masking are considered to have better
informativeness, but no substantial improvement
on faithfulness is observed.

Limited Training Data. Next, we study if our
masking technique is still effective if given limited
training samples. We use the limited training sam-
ples to train both the summarizer and the content
selector. As can be seen in Fig. 5, our masking
technique consistently increases ROUGE scores
with varying amounts of training data. Notably, our
model trained on only 30K samples (with attention
head masking) outperforms the model trained on
the full dataset, suggesting that directly informing
content selection is more data-efficient than model
fine-tuning on more summaries.

Selector Training Data R-1 R-2 R-L

No masking 31.11 14.68 28.19
10K 34.98 17.95 31.87
100K 34.71 17.70 31.61
589K (full) 35.13 18.07 32.03

Table 3: Results on NYT summaries generated by
BART trained on CNN/DM, with masks predicted by
content selectors trained on different sizes of NYT data.

Cross-domain Results. Finally, we show results
on NYT using BART fine-tuned on CNN/DM, with
system masks predicted by a tagger trained on dif-
ferent sizes of NYT samples (Table 3). Using a
selector trained with only 10k of target domain
samples, we already significantly improve the per-
formance by BART trained on CNN/DM only.

6 Conclusion

We propose attention head masking that constrains
encoder-decoder attention heads to attend to salient
tokens, to inform content selection in abstrac-
tive summarization. With this technique, we first
demonstrate the relation between encoder-decoder
attentions and content selection behaviors. With
system masks predicted by external content selec-
tors, we show that attention head masking can con-
sistently improve ROUGE scores over competi-
tive summarization models on three benchmarks.
Summaries generated with attention head mask-
ing are also preferred by human judges more fre-
quently. Additional experiments demonstrate that
our method is more data-efficient and effective on
both in-domain and cross-domain settings.
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A Training and Decoding Settings

When training the sequence taggers, we minimize
the average binary cross-entropy of each token’s
selection probability relative to the ground-truth
label. The parameters of the RoBERTa encoder
are fixed. We set the learning rate to 5× 10−4 and
batch size to 128. Unless specified, all the models
in this paper are trained with Adam (Kingma and
Ba, 2015) optimizer and training will be stopped if
there is no improvement on the validation set for 2
consecutive epochs.

For BART models, we follow the instructions
provided by Fairseq (Ott et al., 2019) to set the
training hyperparameters on CNN/DM and XSum.
We use the same hyperparameters for CNN/DM
and NYT, except that we adopt a linear learning
rate decay of 30,000 steps in total for NYT.

During test, we use a beam size of 5, 5, 6 for
CNN/DM, NYT, and XSum, respectively. To re-
duce computational cost, we use beam size 1 for
our analysis experiments on all datasets. The length
penalties are 2.0, 1.5 and 1.0 for CNN/DM, NYT,
and XSum, following Lewis et al. (2020). We set
the minimal and maximal lengths during decoding
as: 55 and 140 for CNN/DM, 0 and 140 for NYT,
and 10 and 60 for XSum.

B Head Selection

For CNN/DM, we apply masking to all heads at
layer 1. The ROUGE-1/2/L F1 on the analysis set
are 36.43/16.02/33.59.

For NYT, we apply masking to 12 heads at layer
3. The indices of heads are: 3, 4, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15. The ROUGE-1/2/L F1 on the
analysis set are 55.27/39.20/48.16.

For XSum, we apply masking to 12 heads at
layer 3. The indices of heads are: 1, 2, 3, 4, 6, 7,
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Figure 6: ROUGE-1 improvement with oracle masks
for each head at each layer on the analysis sets of XSum
and NYT.

8, 9, 11, 13, 14, 15. The ROUGE-1/2/L F1 on the
analysis set are 45.77/22.82/37.60.

C Content Selection Effects on XSum
and NYT

The content selection effects for BART models
fine-tuned on XSum and NYT, measured by the
ROUGE improvement from the uniform attention
weight setting to the oracle masking setting, are
shown in Fig. 6.

On all three datasets, it is more effective to con-
strain attentions to salient content at the top layers.
Especially, the top layer yields the most ROUGE-1
improvement. Moreover, the ROUGE improve-
ment by a specific head varies among different
datasets.

D Additional Results for Synergism
Analysis

We show the synergism analysis for models fine-
tuned on XSum and NYT in Fig. 7. They both echo
the observation on CNN/DM that multiple heads
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Figure 7: [Left] ROUGE-1 F1 improvement by in-
crementally applying oracle masking to the next head
with most ROUGE improvement per layer on XSum
and NYT. Dotted lines indicate that the newly masked
heads do not have individual ROUGE improvements.
[Right] ROUGE-1 recall improvement by masking all
heads vs. sum of improvement by masking each head
separately on XSum and NYT. Better displayed with
color.

have strong collaborative effects and heads may
not be independent at pinpointing different salient
content.

E Attention Focus

We show the percentages of each type of attendees
on the analysis sets of XSum, NYT, and CNN/DM
in Fig. 8, Fig. 9, and Fig. 10, respectively. We
find that heads have similar focus for salient words,
content words, and the last word across different
datasets. Interestingly, the attention focus for the
first word on NYT is different from other datasets.
On NYT, many articles start with all capitalized
words, which might become the focus of some
heads.
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Figure 8: Percentages of COPY SALIENT, NON-COPY
SALIENT, COPY CONTENT, NON-COPY CONTENT,
FIRST and LAST attendees for each head at each layer
on the analysis set of XSum.
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Figure 9: Percentages of COPY SALIENT, NON-COPY
SALIENT, COPY CONTENT, NON-COPY CONTENT,
FIRST and LAST attendees for each head at each layer
on the analysis set of NYT.
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Figure 10: Percentages of NON-COPY CONTENT and
LAST attendees for each head at each layer on the anal-
ysis set of CNN/DM.


