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Abstract

Understanding narrative text requires captur-
ing characters’ motivations, goals, and mental
states. This paper proposes an Entity-based
Narrative Graph (ENG) to model the internal-
states of characters in a story. We explicitly
model entities, their interactions and the con-
text in which they appear, and learn rich rep-
resentations for them. We experiment with
different task-adaptive pre-training objectives,
in-domain training, and symbolic inference to
capture dependencies between different deci-
sions in the output space. We evaluate our
model on two narrative understanding tasks:
predicting character mental states, and desire
fulfillment, and conduct a qualitative analysis.

1 Introduction

Understanding narrative text requires modeling the
motivations, goals and internal states of the char-
acters described in it. These elements can help
explain intentional behavior and capture causal con-
nections between the characters’ actions and their
goals. While this is straightforward for humans,
machine readers often struggle as a correct anal-
ysis relies on making long range common-sense
inferences over the narrative text. Providing the ap-
propriate narrative representation for making such
inferences is therefore a key component. In this
paper, we suggest a novel narrative representation
model and evaluate it on two narrative understand-
ing tasks, analyzing the characters’ mental states
and motivations (Abdul-Mageed and Ungar, 2017;
Rashkin et al., 2018; Chen et al., 2020), and desire
fulfillment (Chaturvedi et al., 2016; Rahimtoroghi
et al., 2017).

We follow the observation that narrative under-
standing requires an expressive representation cap-
turing the context in which events appear and the
interactions between characters’ states. To clarify,
consider the short story in Fig. 1. The desire ex-
pression appears early in the story and provides

the context explaining the protagonist’s actions.
Evaluating the fulfilment status of this expression,

Cindy really likes apples. 
 
She wanted to try something 
new with them. 
 
She decided to try to make 
baked apples for the first time. 
 
She gathered everything she 
needed and began cooking. 
 
It's now her favorite apple dish! 

Desire Expression: try something 
new with them 
Motivation (Reiss): Curiosity  
Emotion (Plutchik): Joy, 
Anticipation 

Desire Fulfilled! 
Motivation (Reiss): Independence 
Emotion (Plutchik): Joy 

Figure 1: Narrative Example

which tends to appear towards the end of the story,
requires models that can reason over the desire ex-
pression (“trying something new”), its target (“ap-
ples”) and the outcome of the protagonist’s actions
(“it’s now her favorite apple dish!”). Capturing
the interaction between the motivation underlying
the desire expression (in Fig. 1, CURIOSITY) and
the emotions (in Fig. 1, ANTICIPATION) likely to
be invoked by the motivation can help ensure the
consistency of this analysis and improve its quality.

To meet this challenge, we suggest a graph-
contextualized representation for entity states. Sim-
ilar to contextualized word representations (Peters
et al., 2018; Devlin et al., 2019), we suggest learn-
ing an entity-based representation which captures
the narrative it is a part of. For example, in “She de-
cided to try to make baked apples for the first time”
the mental state of “she” would be represented dif-
ferently given a different context, such as a differ-
ent motivation for the action (“Her mother asked
her to make an apple dish for a dinner party”). In
this case, the contextualized representation would
capture the different emotion associated with it
(e.g., FEAR of disappointing her mother). Unlike
contextualized word embeddings, entity-based con-
textualization needs to consider, at least, two levels
of context: local text context and distant event con-
text, which require more complicated modeling
techniques to capture event semantics. Moreover,
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the context of event relationships can spread over
a long narrative, exceeding maximum sequence
length limitation in modern contextualized word
embedding models such as BERT (Devlin et al.,
2019).

In this paper, we propose an Entity-based Narra-
tive Graph (ENG) representation of the text. Unlike
other graph-based narrative representations (Lehn-
ert, 1981; Goyal et al., 2010; Elson, 2012) which
require intensive human annotation, we design our
models around low-cost supervision sources and
shift the focus from symbolic graph representations
of nuanced information to their learned embedding.
In ENG, each node is associated with an entity-
event pair, representing an entity mention that is
involved in an event. Edges represent observed
relations between entities or events. We adapt the
definition of event relationships introduced in Lee
et al. (2020) to our entity-event scenario. For entity
relationships, the CNext relationship connects two
coreferent entity nodes. For event relationships, the
Next relationship captures the sequential order of
events as they appear in the text, and six discourse
relation types from the Penn Discourse Tree Bank
(PDTB) (Prasad et al., 2007) are used. These in-
clude Before, After, Sync., Contrast, Reason and
Result. Note that these are extracted in a weakly
supervised manner, without expensive human an-
notations.

To contextualize the entity embeddings over
ENG, we apply a Relational Graph Convolution
Network (R-GCN) (Schlichtkrull et al., 2018), a
relational variant of the Graph Convolution Net-
work architecture (GCN) (Kipf and Welling, 2016).
R-GCNs create contextualized node representa-
tions by considering the graph structure through
graph convolutions and learn a composition func-
tion. This architecture allows us to take into ac-
count the narrative structure and the different dis-
course relations connecting the entity-event nodes.

To further enhance our model, we investigate
three possible pre-training paradigms: whole-word-
masking, node prediction, and link prediction. All
of them are constructed by automatically extract-
ing noisy supervision and pre-training on a large-
scale corpus. We show that choosing the right
pre-training strategy can lead to significant perfor-
mance enhancements in downstream tasks. For
example, automatically extracting sentiment for en-
tities can impact downstream emotion predictions.
Finally, we explore the use of a symbolic inference

layer to model relationships in the output space,
and show that we can obtain additional gains in the
downstream tasks that have strong correlation in
the output space.

The evaluated downstream tasks include two
challenging narrative analysis tasks, predicting
characters’ psychological states (Rashkin et al.,
2018) and desire fulfilment (Rahimtoroghi et al.,
2017). Results show that our model can outperform
competitive transformer-based representations of
the narrative text, suggesting that explicitly model-
ing the relational structure of entities and events is
beneficial. Our code and trained models are pub-
licly available1.

2 Related Work

Tracking entities and modeling their properties has
proven successful in a wide range of tasks, includ-
ing language modeling (Ji et al., 2017), question
answering (Henaff et al., 2017) and text genera-
tion (Bosselut et al., 2018). In an effort to model
complex story dynamics in text, Rashkin et al.
(2018) released a dataset for tracking the emo-
tional reactions of characters in stories. In their
dataset, each character mention is annotated with
three types of mental state descriptors: Maslow’s
“hierarchy of needs” (Maslow, 1943), Reiss’ “ba-
sic motives” (Reiss, 2004), that provide a more
informative range of motivations, and Plutchik’s
“wheel of emotions” (Plutchik, 1980), comprised
of eight basic emotional dimensions (e.g. joy, sad-
ness, etc). In their paper, they showed that neural
models with explicit or latent entity representa-
tions achieve promising results on this task. Paul
and Frank (2019) approached this task by extract-
ing multi-hop relational paths from ConceptNet,
while Gaonkar et al. (2020) leveraged semantics
of the emotional states by embedding their textual
description and modeling the co-relation between
different entity states. Rahimtoroghi et al. (2017)
introduced a dataset for the task of desire fulfill-
ment. They identified desire expressions in first-
person narratives and annotated their fulfillment
status. They showed that models that capture the
flow of the narrative perform well on this task.

Representing the narrative flow of stories using
graph structures and multi-relational embeddings
has been studied in the context of script learning (Li
et al., 2018; Lee and Goldwasser, 2019; Lee et al.,

1https://github.com/doug919/entity_
based_narrative_graph

https://github.com/doug919/entity_based_narrative_graph
https://github.com/doug919/entity_based_narrative_graph
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2020). In these cases, the nodes represent predicate-
centric events, and entity mentions are added as
context to the events. In this paper, we use an entity-
centric narrative graph, where nodes are defined
by entity mentions and their textual context. We
encode the textual information in the nodes using
pre-trained language models (Devlin et al., 2019;
Liu et al., 2019), and the graph structure with a
relational graph neural network (Schlichtkrull et al.,
2018). To learn the representation, we incorporate
a task-adaptive pre-training phase. Gururangan
et al. (2020) showed that further specializing large
pre-trained language models to domains and tasks
within those domains is effective.

3 Entity-based Narrative Graph

3.1 Framework Overview

Many NLU applications require understanding en-
tity states in order to make sophisticated infer-
ences (Sap et al., 2018; Bosselut et al., 2019;
Rashkin et al., 2018), and the entity states are
highly related to the event the entity involves in.
In this work, we propose a learning framework
that aims at modeling entities’ internal states, and
their interactions to other entities’ internal states
through events. We include task-adaptive pre-
training (TAPT) and downstream task training to
train an entity-based narrative graph (ENG), a
graph neural model designed to capture implicit
states and interactions between entities. We extend
the narrative graph proposed by Lee et al. (2020),
which models event relationships, and instead of
learning node representations for events, we fo-
cus on entity mentions that are involved in events.
This change is motivated by the high-demand of
NLU applications that require understanding en-
tity mentions’ states in order to make sophisticated
inference.

Our framework consists of four main compo-
nents: Node Encoder, Graph Encoder, Learning
Objectives, and Symbolic Inference, outlined in
Figure 2. The node encoder is a function used to
extract event information about the target entity
mention corresponding to the local node represen-
tation. The graph encoder uses a graph neural net-
work to contextualize node representations with
entity-events in the same document, generating
entity-context-aware representations. The learn-
ing objectives use this representation for several
learning tasks, such as node classification, link pre-
diction, and document classification. Finally, we

include a symbolic inference procedure to capture
dependencies between output decisions.

We introduce a training pipeline, containing pre-
training and downstream training, following recent
evidence suggesting that task-adaptive pre-training
is potentially useful for many NLU tasks (Guru-
rangan et al., 2020). We experiment with three
pre-training setups, including the common whole-
word-masking pre-training (Liu et al., 2019), and
two newly proposed unsupervised pre-training ob-
jectives based on ENG. We then evaluate two
downstream tasks: StoryCommonsense (Rashkin
et al., 2018) and DesireDB (Rahimtoroghi et al.,
2017). StoryCommonsense aims at predicting three
sets of mental states based on psychological theo-
ries (Maslow, 1943; Reiss, 2004; Plutchik, 1980),
while DesireDB’s goal is to identify whether a tar-
get desire is satisfied or not. Solving these tasks
requires understanding entities’ mental states and
their interactions.

f(s, ctx(c), L)

sentence storycharacter labels

Node

Encoder

Graph

Encoder

Learning

Objectives


Document 
Classification

Link 
Prediction

Node 
Classification

g(V, E)

Symbolic

Inference label2label1 label3 label4

Figure 2: Overview of the ENG framework.

3.2 Node Encoder
Each node in our graph captures the local context
of a specific entity mention (or character mention),
and how the entity mentions are extracted is related
to extracting their edges, which will be described
in Sec. 3.3. Following Gaonkar et al. (2020), we
format the input information to be fed into a pre-
trained language model. For a given character c and
sentence s, the inputs to the node encoder consist
of three components (s, ctx(c), L), where s is the
sentence in which c appears, ctx(c) is the context
of c (all the sentences that the character appears
in), and L is a label sentence. The label sentence is
an artificial sentence of the form “[entity name] is
[label 1], [label 2], ..., [label k].” The k labels cor-
respond to the target labels in the downstream task.
For example, in StoryCommonsense, the Plutchik
state prediction task has eight labels characteriz-
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ing human emotions, such as joy, trust, and anger.
Gaonkar et al. (2020) show that self-attention is an
effective way to let the model take label semantics
into account, and improve performance2.

Our best model uses RoBERTa (Liu et al.,
2019), a highly-optimized version of BERT (De-
vlin et al., 2019), to encode nodes. We convert
the node input (s, ctx(c), L) to RoBERTa’s two-
sentence input format by treating s as the first
sentence, and the concatenation of ctx(c) and
L as the second sentence. After forward propa-
gation, we take the pooled sentence representa-
tion (i.e., <s >for RoBERTa, CLS for BERT), as
the node representation v. This is formulated as
v = froberta(s, ctx(c), L).

3.3 Graph Encoder
The ENG is defined as ENG = (V,E), where V
is the set of encoded nodes in a document and E
is the set of edges capturing relationships between
nodes. Each edge e ∈ E is a triplet (v1, r, v2),
where v1, v2 ∈ V and r is an edge type (r ∈ R).
Following Lee et al. (2020), we use eight relation
types (|R| = 8) that have been shown to be use-
ful for modeling narratives. NEXT denotes if two
nodes appear in neighboring sentences. CNEXT

expresses the next occurrence of a specific entity
following its co-reference chain. Six discourse rela-
tion types, used by Lee et al. (2020) and defined in
Penn Discourse Tree Bank (PDTB) (Prasad et al.,
2007), are also used in this work, including BE-
FORE, AFTER, SYNC., CONTRAST, REASON, RE-
SULT. Their corresponding definition in PDTB
and can be found in Table 1. Following Lee et al.
(2020), we use the Stanford CoreNLP pipeline3

(Manning et al., 2014) to obtain co-reference links
and dependency trees. We use them as heuristics
to extract the above relations and identify entities
for TAPT4. Details of this procedure can be found
in (Lee et al., 2020). Note that although we share
the same relation definitions, our nodes are defined
over entities, instead of events.

For encoding the graph, we use a Re-
lational Graph Convolution Network (R-
GCN) (Schlichtkrull et al., 2018), which is
designed for Knowledge Base Completion. This

2Note that all candidate labels are appended to every ex-
ample, without denoting which one is the right answer. Our
preliminary experiments confirm that taking label semantics
into account improves performance

3Stanford CoreNLP v4.0 with default annotators.
4For StoryCommonsense, since the entity names are anno-

tated, we simply use them.

Abbrev. PDTB Distr.

NEXT – 50%
CNEXT – 20%
BEFORE Temporal.Async.Precedence 5%
AFTER Temporal.Async.Succession 5%
SYNC. Temporal.Synchrony 5%
CONTRAST Comparison.Contrast 5%
REASON Contingency.Cause.Reason 5%
RESULT Contingency.Cause.Result 5%

Table 1: Alignment between PDTB relations and the
abbreviations used in this paper. The third column in
the sampling distribution.

architecture is capable of modeling typed edges
and is resilient to noise. R-GCN is defined as:

hl+1
i = ReLU

(∑
r∈R

∑
u∈Ur(vi)

1

zi,r
W l

rh
l
u

)
, (1)

where hli is the hidden representation for the i-th
node at layer l and h0i = vi (output of the node
encoder); Ur(vi) represents vi’s neighboring nodes
connected by the relation type r; zi,r is for normal-
ization; and W l

r represents trainable parameters.
Our implementation of R-GCN propagates mes-

sages between entity nodes, emulating the interac-
tions between their psychological states, and thus
enriching node representations with context. Note
that our framework is flexible, and alternative node
and graph encoders could be used.

3.4 Output Layers and Learning Objectives
We explore three learning problem types.

Node Classification For node classification, we
use the contextualized node embeddings coming
from the graph encoder, and plug in a k-layer feed-
forward neural network on top (k = 2 in our case).
The learning objectives could be either multi-class
or multi-label. For multi-class classification, we
use the weighted cross-entropy loss (CE). For multi-
label classification, we use the binary cross-entropy
(BCE) loss for each label5:

CE = − 1

N

N∑
i=1

αiyi log(S(g(f(xi)))), (2)

where S(.) is the Softmax function, f(.) is the
graph encoder, g(.) is the node encoder, xi is the
input including the target node i ((s, ctx(c), L))
and all other nodes in the same document (or ENG),
yi is the label, and αi is the example weight based
on the label distribution of the training set..

5We tried weighted an unweighted BCE, and selected the
unweighted one for our final model.
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Link Prediction This objective tries to recover
missing links in a given ENG. We sample a small
portion of edges (20% in our case) as positive exam-
ples, based on the relation type distribution given
in Table 1, taken from the training set. To obtain
negative examples, we corrupt the positive exam-
ples by replacing one component of the edge triplet
with a sampled component so that the resulting
triplet does not exist in the original graph. For
example, given a positive edge (e1, r, e2), we can
create negative edges: (e′1, r, e2), (e1, r

′, e2), or
(e1, r, e

′
2). Following Schlichtkrull et al. (2018),

we score each edge sample with DistMult (Chang
et al., 2014):

D(i, r, j) = hTi Wrhj , (3)

where Wr is a relation-specific trainable matrix
(non-diagonal) and hi and hj are node embeddings
coming from the graph encoder. A higher score in-
dicates that the edge is more likely to be active. To
learn this, we reward positive samples and penalize
negative ones, using an adapted CE loss:

L = − 1

|T |
∑

(i,r,j,y)∈T

y log(σ(εrD(i, r, j)))

+(1− y) log(1− σ(εrD(i, r, j))), (4)

T is the sampled edges set, y = {0, 1}, σ(.) is the
Sigmoid function, and εr is the edge type weight,
based on the edge sampling rate in Table 1.

Document Classification For document classifi-
cations, such as DesireDB, we aggregate the node
representations from the entire ENG to form a sin-
gle representation. To leverage the relative impor-
tance of each node, we add a self-attention layer on
top of the graph nodes. We calculate the attention
weights by attending on the query embedding (in
DesireDB, this is the sentence embedding for the
desire expression).

ai = ReLU(Wa[hi;ht] + ba)

zi = exp(ai)

αi =
zi∑
k zk

; hd =
∑
i

αihi (5)

where hi is the i-th node representation, ht is the
query embedding, Wa and ba are trainable param-
eters, and hd is the final document representation.
We then feed hd to a two-hidden-layer classifier to
make predictions. We use the loss function speci-
fied in Eq. 2.

3.5 Task-Adaptive Pre-training

Recent studies demonstrate that downstream tasks
performance can be improved by performing self-
supervised pre-training on the text of the tar-
get domain (Gururangan et al., 2020), called
Task-Adaptive Pre-Training (TAPT). To investi-
gate whether different TAPT objectives can pro-
vide different insights for downstream tasks, we
apply three possible pre-training paradigms and
compare them on StoryCommonsense. We focus
on StoryCommonsense given that the dataset was
created by annotating characters’ mental states on a
subset of RocStories (Mostafazadeh et al., 2016), a
corpus with 90K short common-sense stories. This
provides us with a large unlabeled resource for
investigating different pre-training methods. We
run TAPT on all the RocStories text6. We use the
learning parameters suggested by Gururangan et al.
(2020) and explore the following strategies:

Whole-Word Masking: Randomly masks a
subset of words and asks the model to recover them
from their context (Radford et al., 2019; Liu et al.,
2019). We perform this task over RoBERTa, initial-
ized with roberta-base.

ENG Link Prediction: Weakly-supervised
TAPT over the ENG. The setup follows Sec. 3.4
(Link Prediction) to learn a model that can recover
missing edges in the ENG.

ENG Node Sentiment Classification: Per-
forms weakly-supervised sentiment TAPT. We use
the Vader sentiment analysis (Hutto and Gilbert,
2014) tool to annotate the sentiment polarity for
each node in the ENG, based on its sentence. The
setup follows Sec. 3.4 (Node Classification).

3.6 Symbolic Inference

In addition to modeling the narrative structure in
the embedding space, we add a symbolic inference
procedure to capture structural dependencies in the
output space for the StoryCommonsense task. To
model these dependencies, we use DRaiL (Pacheco
and Goldwasser, 2021), a neural-symbolic frame-
work that allows us to define probabilistic logical
rules on top of neural network potentials.

Decisions in DRaiL are modeled using rules,
which can be weighted (i.e., soft constraints), or
unweighted (i.e., hard constraints). Rules are for-
matted as horn clauses: A⇒ B, where A is a con-
junction of observations and predicted values, and

6Not including the validation and testing sets of Story
Cloze Test
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B is the output to be predicted. Each weighted rule
is associated with a neural architecture, which is
used as a scoring function to obtain the rule weight.
The collection of rules represents the global deci-
sion, and the solution is obtained by performing
MAP inference. Given that rules are written as horn
clauses, they can be expressed as linear inequalities
corresponding to their disjunctive form, and thus
MAP inference is defined as a linear program.

In DRaiL, parameters are trained using the struc-
tured hinge loss. This way, all neural parameters
are updated to optimize the global objective. Addi-
tional details can be found in (Pacheco and Gold-
wasser, 2021). To score weighted rules, we used
feed-forward networks over the node embeddings
obtained by the objectives outlined in Sec. 3.4 and
3.5, without back-propagating to the full graph. We
model the following rules:

Weighted rules We score each state, as well as
state transitions to capture the progression in a
character’s mental state throughout the story.

Entity(ei) ⇒ State(ei, li)

State(ei, li) ∧ HasNext(ei, ej) ⇒ State(ej, lj)

where ei and ej are two different mentions of
the same character, and HasNext is a relation be-
tween consecutive sentences. State can be either
Maslow, Reiss or Plutchik.

Unweighted rules There is a dependency be-
tween Maslow’s “hierarchy of needs’ and Reiss
“basic motives” (Rashkin et al., 2018). We intro-
duce logical constraints to disallow mismatches in
the Maslow and Reiss prediction for a given men-
tion ei. In addition to this, we model positive and
negative sentiment correlations between Plutchik
labels. To do this, we group labels into positive (e.g.
joy, trust), and negative (e.g. fear, sadness). We
refer to this set of rules as inter-label dependencies.

Maslow(ei, mi) ∧ ¬Align(mi, ri) ⇒ ¬Reiss(ei, ri)
Reiss(ei, ri) ∧ ¬Align(mi, ri) ⇒ ¬Maslow(ei, mi)
Plut(ei, pi) ∧ Pos(pi) ∧ ¬Pos(pj) ⇒ ¬Plut(ei, pj)

Given that the DesireDB task requires a single
prediction for each narrative graph, we do not em-
ploy symbolic inference for this task.

4 Evaluation

Our evaluation includes two downstream tasks and
a qualitative analysis. We report the results for
different TAPT schemes and symbolic inference on

StoryCommonsense. For the qualitative analysis,
we visualize and compare the contextualized graph
embeddings and contextualized word embeddings.

4.1 Data and Experiment Settings
For TAPT, we use RocStories, as it has a decent
amount of documents (90K after excluding the val-
idation and testing sets) that share the text style
of StoryCommonsense. For all tasks, we use the
train/dev/test splits used in previous work.

All the RoBERTa models used in this paper
are initialized with roberta-base, and the BERT
models with bert-base-uncased. The maximum
sequence length for the language models is 160.
If the input sequence exceeds this number, we
will keep the label sentence untouched and cut
down the main sentence. For large ENGs, such
as long narratives in DesireDB, we set the maxi-
mum number of nodes to 60; all the hidden layer
have 128 hidden units; and the number of layers
for R-GCN is 2. For learning parameters in TAPT,
we set the batch size to 256 through gradient ac-
cumulations; the optimizer is Adam (Kingma and
Ba, 2014) with an initial learning rate of 1e− 4,
ε = 1e− 6, β = (0.9, 0.98), weight decay 0.01,
and warm-up proportion 0.06. We run TAPT for
100 epochs. For the downstream tasks, we conduct
a grid search of Adam’s initial learning rate from
{2e− 3, 2e− 4, 2e− 5, 2e− 6}, 5000 warm-up
steps, and stop patience of 10. Model selection
is done on the validation set. We report results
for the best model. For learning the potentials for
symbolic inference with DRaiL (Pacheco and Gold-
wasser, 2021), we use local normalization with a
learning rate of 1e− 3, and represent neural po-
tentials using 2-layer Feed-Forward Networks over
the ENG node embeddings. All hidden layers con-
sist of 128 units. The parameters are learned using
SGD with a patience of 5, tested against the val-
idation set. For more details, refer to (Pacheco
and Goldwasser, 2021). Note that while it would
be possible to back-propagate to the whole graph,
this is a computationally expensive procedure. We
leave this exploration for future work.

4.2 Task: StoryCommonsense
StoryCommonsense consists of three subtasks:
Maslow, Reiss, and Plutchik, introduced in Sec.
2. Each subtask is a multi-label classification task,
where the input is a sentence-character pair in a
given story, and the output is a set of mental state
labels. Each story was annotated by three annota-
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Maslow Reiss Plutchik

Group Models Precision Recall F1 Precision Recall F1 Precision Recall F1

G1 RANDOM 7.45 49.99 12.96 1.76 50.02 3.40 10.35 50.00 17.15
TF-IDF 29.79 34.56 32.00 20.55 24.81 22.48 22.71 25.24 23.91
GLOVE 27.02 37.00 31.23 16.99 26.08 20.58 19.47 46.65 27.48
LSTM 30.34 40.12 34.55 21.38 28.70 24.51 25.31 33.44 28.81

CNN 29.30 44.18 35.23 17.87 37.52 24.21 24.47 38.87 30.04
REN 26.85 44.78 33.57 16.73 26.55 20.53 25.30 37.30 30.15
NPN 26.60 39.17 31.69 15.75 20.34 17.75 24.33 40.10 30.29

G2 SA-ELMo* 34.91 32.16 33.48 21.23 16.53 18.59 47.33 40.86 43.86
SA-RBERT* 43.58 30.03 35.55 24.75 18.00 20.84 46.51 45.45 45.97

LC-BERT* 43.05 41.31 42.16 29.46 28.67 29.06 49.36 52.09 50.69
LC-RBERT* 43.25 47.17 45.13 39.62 29.75 33.98 47.87 53.41 50.49

G3 ENG 43.87 51.13 47.22 37.66 36.20 36.92 48.96 56.07 52.27
ENG+Mask 44.27 53.54 48.47 39.29 33.93 36.41 49.64 56.93 53.03
ENG+Link 43.47 52.80 47.68 37.17 37.18 37.18 50.62 54.48 52.48
ENG+Sent 45.29 50.89 47.93 36.69 36.14 36.41 49.48 57.12 53.03

G4 ENG+IL 40.90 58.03 47.98 31.67 41.19 35.81 49.93 74.95 59.93
ENG+IL+ST 40.47 58.43 47.82 31.80 40.58 35.66 51.19 72.60 60.04

Table 2: Results for the StoryCommonsense task, including three multi-label tasks (Maslow, Reiss, and Plutchik),
for predicting human’s mental states of motivations or emotions. The star sign indicates that the result is from our
re-implemented version of previous baselines.

tors and the final labels were determined through a
majority vote. For Maslow and Reiss, the vote is
count-based, i.e., if two out of three annotators flag
a label, then it is an active label. For Plutchik, the
vote is rating-based, where each label has an anno-
tated rating, ranging from {0, 5}. If the averaged
rating is larger or equal to 2, then it is an active
label. This is the set-up given in the original pa-
per (Rashkin et al., 2018). Some papers (Gaonkar
et al., 2020) report results using only the count-
based majority vote, resulting in scores that are not
comparable to ours. Therefore, we re-implement
two recent strong models proposed for this task.
The Label Correlation model (LC (Gaonkar et al.,
2020)) applies label semantics as input and model
output space using a learned correlation matrix.
The Self-Attention model (SA (Paul and Frank,
2019)) utilize attentions over multi-hop knowledge
paths extracted from external corpus. We evaluate
them under the same set of hyper-parameters and
model selection strategies as our models.

We briefly explain all the baselines, as well
as our model variants shown in Table 2. The
first group (G1) are the baselines proposed in the
task paper. TF-IDF uses TF-IDF features, trained
on RocStories, to represent the target sentence
s and character context ctx(c), and uses a Feed-
Forward Net (FFN) classifier; GloVe encodes the
sentences with the pretrained GloVe embeddings
and uses a FFN; CNN (Kim, 2014) replaces the

FFN with a Convolutional Neural Network; LSTM
is a two-layer bi-directional LSTM; REN (Henaff
et al., 2017) is a recurrent entity network that
learns to encode information for memory cells; and
NPN (Bosselut et al., 2018) is an REN variant that
includes a neural process network.

The second group (G2) of baselines are based on
two recent publications–LC and SA–that showed
strong performance on this task. We re-implement
them and run the evaluation under the same setting
as our proposed models. They originally use BERT
and ELMo, respectively. To provide a fair com-
parison, we also train a RoBERTa variant for them
(LC-RBERT and SA-RBERT). Note that the orig-
inal paper of SA (Paul and Frank, 2019) reports
an F1 of 59.81 on Maslow and 35.41 on Reiss,
while LC (Gaonkar et al., 2020) reports 65.88 on
Plutchik. However, these results are not directly
comparable to ours. The discrepancy arises mainly
from two points: (1) The rating-based voting, de-
scribed in Sec. 4.2, is not properly applied, and
(2) We do not optimize the hyper-parameter search
space in our setting, given the relatively expensive
pre-training. Our re-implemented versions give a
better foundation for a fair comparison.

The third (G3) and fourth (G4) groups are our
model variants. ENG is the model without TAPT;
ENG+Mask, ENG+Link, and ENG+Sent are the
models with Whole-Word-Masking (WM), Link
Prediction (LP), and Node Sentiment (NS) TAPT,
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respectively. In the last group, ENG(Best) + IL
and ENG(Best) + IL + ST are based on our best
ENG model with TAPT and adding inter-label de-
pendencies (IL) and state transitions (ST) using
symbolic inference, described in Sec. 3.6.

Table 2 reports all the results. We can see that
Group 2 generally performs better than Group 1 on
all three subtasks, suggesting that our implemen-
tation is reasonable. Even without TAPT, ENG
outperforms all baselines, rendering 2− 3% abso-
lute F1-score improvement. With TAPT, the per-
formance is further strengthened. Moreover, we
find that different TAPT tasks offer different levels
of improvement for each subtask. The WM helps
the most in Maslow and Plutchik, while the LP
and NS excel in Reiss and Plutchik, respectively.
This means that different TAPTs embed different
information needed for solving the subtask. For ex-
ample, the ability to add potential edges can be key
to do motivation reasoning (Reiss), while identify-
ing sentiment polarities (NS) can help in emotion
analysis (Plutchik). This observation suggests a
direction of connecting different related tasks in a
joint pipeline. We leave this for future work.

Lastly, we evaluate the impact of symbolic in-
ference. We perform joint inference over the rules
defined in Sec. 3.6. On Table 2, we can appreciate
the advantage of modeling these dependencies for
predicting Plutchik labels. However, the same is
not true for the other two subtasks, where symbolic
inference increases recall at the expense of preci-
sion, resulting in no F1 improvement. Note that
labels for Maslow and Reiss are sparser, account-
ing for 55% and 42% of the nodes, respectively. In
contrast, Plutchik labels are present in 68% of the
nodes.

4.3 Task: DesireDB

DesireDB (Rahimtoroghi et al., 2017) is the task of
predicting whether a desire expression is fulfilled or
not, given its prior and posterior context. It requires
aggregating information from multiple parts of the
document. If a target desire is “I want to be rich”,
and the character’s mental changed from “sad” to
“happy” along the text, we can infer that their desire
is likely to be fulfilled.

We use the baseline systems described in
(Rahimtoroghi et al., 2017), based on SkipThought
(ST) and Logistic Regression (LR), with manually
engineered lexical and discourse features. We train
a stronger baseline by encoding the prior and poste-

rior context, as well as the desire expression, using
BERT. Then, we add an attention layer (Eq. 5) for
the two contexts over the desire expression. The
resulting three representations (the weighted prior
and posterior representations, and the desire repre-
sentation) are then concatenated. For ENG, we add
an attention layer over the nodes to form the ENG
document representation. We compare BERT and
BERT+ENG document representations by feeding
each of them into a two-layer FFN for classifica-
tion, as described in Sec. 3.4 (Doc. Classification).

Table 3 shows the result. The BERT baseline out-
performs other baselines with a large gap, 4.27%
absolute increase in the averaged F1-score. Fur-
thermore, BERT+ENG forms a better document
summary for the target desire, which further in-
crease another absolute 3.23% on the avg. F1-
score. These results illustrate that ENG can be used
in various settings for modeling entity information.

4.4 Qualitative Analysis

We conduct a qualitative analysis by measuring
and visualizing distances between event nodes cor-
responding to six verbs and their Maslow labels.
We project the node embeddings, based on differ-
ent encoders, to a 2-D space using t-SNE (Maaten
and Hinton, 2008). We use shapes to represent
verbs and colors to represent labels. In Fig. 3b and
3c, RoBERTa, pretrained on Whole-Word-Masking
TAPT, was used. Nodes are word-contextualized,
receiving the whole story (W-CTX-STORY) or the
target sentence (W-CTX-SENT) as context. In these
two cases, event nodes with the same verb (shape)
tend to be closer. In Fig. 3a, we use ENG as the
encoder to generate graph-contextualized embed-
dings (ENG-CTX). We observe that nodes with the
same label (color) tend to be closer. In all cases,
the embedding was trained using only the TAPT
tasks, without task specific data. The ENG embed-
ding is better at capturing entities’ mental states,
rather than verb information, as the graph structure
is entity-driven.

Figure 4 makes this point quantitatively. We
use 10-fold cross validation and report averaged
results. The proximity between verbs and between
labels are measured in two ways: cluster purity and
KNN classification. For the cluster purity (Man-
ning et al., 2008), we cluster the events using K-
Means (K = 5), and calculate the averaged cluster
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Fulfilled Unfulfilled Average

Models Precision Recall F1 Precision Recall F1 Precision Recall F1

ST-BOW 78.00 78.00 78.00 57.00 56.00 57.00 67.50 67.00 67.50
ST-ALL 78.00 79.00 79.00 58.00 56.00 57.00 68.0 67.50 68.00

ST-DISC 80.00 79.00 80.00 58.00 56.00 57.00 68.00 67.50 68.00
LR-BOW 69.00 65.00 67.00 53.00 57.00 55.00 61.00 61.00 61.00

LR-ALL 79.00 70.00 74.00 52.00 64.00 58.00 65.50 67.00 66.00
LR-DISC 75.00 84.00 80.00 60.00 45.00 52.00 67.50 64.50 66.00

BERT 81.75 75.90 78.72 57.95 66.23 61.82 69.85 71.06 70.27
BERT+ENG 81.99 83.06 82.52 65.33 63.64 64.47 73.66 73.35 73.50

Table 3: Results for the DesireDB task: identifying if a desire described in the document is fulfilled or not.

(a) ENG-CTX (b) W-CTX-STORY (c) W-CTX-SENT

Figure 3: t-SNE visualization of embeddings based on ENG and RoBERTa.

Figure 4: Cluster Purity and KNN Classification results
for graph- and word-contextualized embeddings.

purity, defined as follows:

1

N

∑
c∈C

max
d∈D
|c ∩ d|, (6)

where C is the set of clusters and D is either the
set of labels or verbs.

For the graph contextualization, we can see that
the labels have higher cluster purity than the verbs,
while for the word contextualization, the verbs have
higher cluster purity. This result aligns with our
visualization. The KNN classification uses the
learned embedding as a distance function. The
KNN classifier performs better when classifying
labels using the graph-contextualized embeddings,

while it performs better using word-contexualized
embeddings when classifying verbs. These results
demonstrate that ENG can better capture the states
of entities.

5 Conclusions

We propose an ENG model that captures implicit
information about the states of narrative entities
using multi-relational graph contextualization. We
study three types of weakly-supervised TAPTs for
ENG and their impact on the performance of down-
stream tasks, as well as symbolic inference cap-
turing the interactions between predictions. Our
empirical evaluation was done over two narrative
analysis tasks. The results show that ENG can
outperform other strong baselines, and the contri-
bution of different types of TAPT is task-dependent.
In the future, we want to connect different TAPT
schemes and downstream tasks, and explore con-
strained representations.
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