
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 4474–4488

June 6–11, 2021. ©2021 Association for Computational Linguistics

4474

On Biasing Transformer Attention Towards Monotonicity

Annette Rios1, Chantal Amrhein1, Noëmi Aepli1 and Rico Sennrich1,2

1Department of Computational Linguistics, University of Zurich
2School of Informatics, University of Edinburgh

{rios,amrhein,naepli,sennrich}@cl.uzh.ch

Abstract

Many sequence-to-sequence tasks in natural
language processing are roughly monotonic
in the alignment between source and target
sequence, and previous work has facilitated
or enforced learning of monotonic attention
behavior via specialized attention functions
or pretraining. In this work, we introduce
a monotonicity loss function that is com-
patible with standard attention mechanisms
and test it on several sequence-to-sequence
tasks: grapheme-to-phoneme conversion, mor-
phological inflection, transliteration, and di-
alect normalization. Experiments show that
we can achieve largely monotonic behavior.
Performance is mixed, with larger gains on
top of RNN baselines. General monotonicity
does not benefit transformer multihead atten-
tion, however, we see isolated improvements
when only a subset of heads is biased towards
monotonic behavior.

1 Introduction

Many sequence-to-sequence tasks in natural lan-
guage processing are roughly monotonic in the
alignment between source and target sequence, and
previous work has focused on learning monotonic
attention behavior either through specialized atten-
tion functions (Aharoni and Goldberg, 2017; Raffel
et al., 2017; Wu and Cotterell, 2019) or pretraining
(Aji et al., 2020). However, it is non-trivial to port
specialized attention functions to different models,
and recently, Yolchuyeva et al. (2019); Wu et al.
(2021) found that a transformer model (Vaswani
et al., 2017) outperforms previous work on mono-
tone tasks such as grapheme-to-phoneme conver-
sion, despite having no mechanism that biases the
model towards monotonicity.

In the transformer, it is less straightforward to
what extent individual encoder states, especially
in deeper layers, still represent distinct source in-
puts after passing through several self-attention

layers. Consequently, it is unclear whether enforc-
ing monotonicity in the transformer is as beneficial
as for recurrent neural networks (RNNs).

In this paper, we investigate the following re-
search questions:

1. How can we incorporate a monotonicity bias
into attentional sequence-to-sequence models
such as the transformer?

2. To what extent does a transformer model ben-
efit from such a bias?

Specifically, we want to incorporate a mono-
tonicity bias in a way that is agnostic of the task
and model architecture, allowing for its applica-
tion to different sequence-to-sequence models and
tasks. To this end, we introduce a loss function that
measures and rewards monotonic behavior of the
attention mechanism.1

We perform experiments and analysis on a va-
riety of sequence-to-sequence tasks where we ex-
pect the alignment between source and target to be
highly monotonic, such as grapheme-to-phoneme
conversion, transliteration, morphological inflec-
tion, and dialect normalization and compare our
results to previous work that successfully applied
hard monotonic attention to recurrent sequence-to-
sequence models for these tasks (Wu et al., 2018a;
Wu and Cotterell, 2019).

Our results show that a monotonicity bias
learned through a loss function is capable of mak-
ing the soft attention between source and target
highly monotonic both in RNNs and the trans-
former. We find that this leads to a similar im-
provement to previous works on hard monotonic
attention for RNNs, whereas for transformer mod-
els, the results are mixed: Biasing all attention
heads towards monotonicity may limit the repre-
sentation power of multihead attention in a way

1Code and scripts available at: https://github.
com/ZurichNLP/monotonicity_loss

https://github.com/ZurichNLP/monotonicity_loss
https://github.com/ZurichNLP/monotonicity_loss

4475

that is harmful even for monotonic sequence-to-
sequence tasks. However, for some tasks, we see
small improvements when limiting monotonicity
to only a subset of heads.

2 Related Work

Attention models (Bahdanau et al., 2015; Luong
et al., 2015; Vaswani et al., 2017) are a very pow-
erful and flexible mechanism to learn the relation-
ship between source and target sequences, but the
flexibility might come at the cost of making the
relationship harder to learn. Previous work has
shown that their performance can be improved by
introducing inductive biases. Cohn et al. (2016)
introduce various structural alignment biases into
a neural machine translation model, including a
positional bias. While this bias is motivated by the
fact that a given token in the source often aligns
with a target token at a similar relative position, it
does not explicitly encourage monotonicity.

In contrast, Raffel et al. (2017) propose to mod-
ify the attention mechanism to learn hard mono-
tonic alignments instead of computing soft atten-
tion over the whole source sequence. Several ex-
tensions have been proposed: having a pointer
monotonically move over the source sequence and
computing soft attention on a local window (Chiu
and Raffel, 2018) or from the beginning of the
sequence up to the pointer (Arivazhagan et al.,
2019). For tasks like simultaneous translation and
automatic speech recognition, the main benefit
from hard monotonic attention is that decoding
becomes faster and can be done in an online set-
ting. However, many sequence-to-sequence tasks
behave roughly monotonic and biasing the attention
towards monotonicity can improve performance;
especially in low-resource settings. Aharoni and
Goldberg (2017) show that hard monotonic atten-
tion works well for morphological inflection if it
mimics an external alignment.

Wu et al. (2018b) propose a probabilistic latent-
variable model for hard but non-monotonic atten-
tion which Wu and Cotterell (2019) later extend to
exact hard monotonic attention. In contrast to Aha-
roni and Goldberg (2017), the alignment is learned
jointly with the model. Their approach outperforms
several other models on grapheme-to-phoneme con-
version, transliteration, and morphological inflec-
tion. Monotonic attention has also improved tasks
such as summarization (Chung et al., 2020) and
morphological analysis (Hwang and Lee, 2020).

Recently, the transformer architecture (Vaswani
et al., 2017) has outperformed RNNs in low-
resource settings for character-level transduction
tasks (Yolchuyeva et al., 2019; Wu et al., 2021)
and neural machine translation (Araabi and Monz,
2020). While there has been some work on extend-
ing the methods of Raffel et al. (2017); Chiu and
Raffel (2018); Arivazhagan et al. (2019) to multi-
head attention (Ma et al., 2020; Liu et al., 2020), we
are not aware of any work that studied monotonic-
ity in transformers for monotonic tasks, such as
grapheme-to-phoneme conversion, transliteration,
or morphological inflection.

To this end, we propose a model-agnostic mono-
tonicity loss that can seamlessly be integrated into
RNNs as well as the transformer. Our monotonic-
ity loss captures how monotone the soft attention
behaves during training, while two hyperparame-
ters allow us to control how much monotonicity is
enforced. By encouraging monotonicity through
a loss instead of a modification of the attention
mechanism, our implementation still brings all the
benefits of soft attention to tasks where fast, online
inference is not paramount and allows us to explore
various trade-offs between unconstrained and fully
monotonic attention.

3 Monotonicity Loss

We now introduce our monotonicity loss function.
The loss function is differentiable and compatible
with standard soft attention mechanisms and is thus
easy to integrate into popular encoder-decoder ar-
chitectures such as the transformer. On a high level,
we compare the attention distribution between de-
coder time steps in a pairwise fashion and measure
whether the mean attended position increases for
each pair.

Let us denote the input sequence as X =
(x1, ..., x|X|), and the output sequence as Y =
(y1, ..., y|Y |). The interface between the encoder
and decoder is one or several attention mechanisms.
In its general form, the attention mechanism com-
putes some energy eij between a decoder state at
time step i and an encoder state j. While this en-
ergy function varies, with popular choices being
a feedforward network (Bahdanau et al., 2015) or
(scaled) dot-product (Luong et al., 2015; Vaswani
et al., 2017), they are typically normalized to a
vector of attention weights α using the softmax

4476

t

h

o

r

o

u

g

h

EOS

TH ER OW L

t

h

o

r

o

u

g

h

EOS

t

h

o

r

o

u

g

h

EOS

t

h

o

r

o

u

g

h

EOS

margin: loss:
0

0.5
1

0.364
0.530
0.697

margin: loss:
0.000
0.167
0.333

margin: loss:
0.000
0.000
0.152

margin: loss:
0.000
0.000
0.000

0
0.5
1

0
0.5
1

0
0.5
1

l

y

IY EOS

l

y

l

y

l

y

TH ER OW L IY EOS TH ER OW L IY EOS TH ER OW L IY EOS

Target	Output

So
ur
ce
	In

pu
t

Target	Output Target	Output Target	Output

Figure 1: Average attention positions between target output characters and source input characters and the corre-
sponding monotonicity loss for different attention distributions, and with different margins δ. The average attention
positions were rounded to integers for visualization purposes.

function:

αij =
exp(eij)∑|X|
k=1 exp(eik)

(1)

These attention weights are then applied to ob-
tain a weighted average ci of a vector of value states
V :

ci =

|x|∑
j=1

αij · vj (2)

For our monotonicity loss, we also compute the
mean attended position āi:

āi =

|x|∑
j=1

αij · j (3)

We can then define the monotonicity loss in a
pairwise fashion, comparing the mean attended
position at time steps i and i+ 1:

Lmono =

|Y |−1∑
i=1

max(
āi − āi+1 + δ |X||Y |

|X|
, 0) (4)

δ is a hyperparameter that controls how devia-
tions from the main diagonal are penalized. Let us
first consider the case with δ = 0: if āi+1 ≥ āi for
all positions i, i.e. if the mean attended position is
weakly increasing2, then the loss is 0. Any decrease

2We can swap āi and āi+1 in equation 4 to bias the model
towards monotonically decreasing attention.

in the mean attended position will incur a cost that
is proportional to the amount of decrease, relative
to the source sequence length;3 this allows differen-
tiation of the loss, and will also serve as a measure
of the degree of monotonicity in the analysis.

We might want to bias the model towards strictly
monotonic behavior, penalizing it if ā remains un-
changed over several time steps. We can achieve
this by incurring a loss if ā does not increase by
some margin, controlled by δ. At the most extreme,
with δ = 1, the loss is minimized if the mean at-
tended position follows the main diagonal of the
alignment matrix, increasing by |X||Y | at each time
step. Figure 1 shows how the margin δ can influ-
ence the monotonicity loss with some examples.

In equation 4, costs are later summed over the
target sequence. In practice, we normalize the cost
by the number of tokens in a batch for training
stability, as is typically done for the cross-entropy
loss. If a model has multiple attention mechanisms,
e.g. attention in multiple layers, or multihead at-
tention, we separately compute the loss for each
attention mechanism, then average the losses. We
can also just apply the loss to a subset of attention
mechanisms, allowing different attention heads to
learn specialized behavior (Voita et al., 2019).

3Making the cost relative to the source sequence length
ensures that the worst-case cost per timestep is independent
of source sequence length.

4477

4 Experiments

4.1 Models and Data

We implement the loss function in sockeye (Hieber
et al., 2018), and experiment with RNN and trans-
former models. We list the specific baseline set-
tings for each task in Appendix A.2.

The monotonic loss function is controlled by a
hyperparameter for the margin (δ), and an addi-
tional scaling factor for the loss itself (λ). Prelimi-
nary experiments have shown that the monotonicity
loss has an undesirable interaction with attention
dropout, which is commonly used in transformer
models. Randomly dropping attention connections
during training makes it harder to reliably avoid a
decrease in the mean attended position, favoring a
degenerate local optimum where attention resides
constantly on the first (or last) encoder state. To
avoid this problem, we use DropHead (Zhou et al.,
2020) instead, which has a similar regularizing ef-
fect as attention dropout, but does not interact with
the monotonicity loss. In addition to the standard
evaluation metrics used in each task, we provide the
monotonicity loss on the test set and the percent-
age of target tokens for which the average source
attention position has increased (by some margin).

We perform experiments on three word-level and
one sentence-level sequence-to-sequence tasks:

Grapheme-to-Phoneme Conversion
For grapheme-to-phoneme conversion, we use
NETtalk (Sejnowski and Rosenberg, 1987)4 and
CMUdict,5 two datasets for English, with the same
data split as Wu and Cotterell (2019). For experi-
ments with RNN models, we follow the settings in
Wu et al. (2018b) (large configuration).6

For experiments with transformer models, we
follow the settings suggested in Wu et al. (2021),
however, we use dropout rates of 0.3 (NETtalk) and
0.2 (CMUdict) instead of 0.1 and 0.3. Furthermore,
we use a smaller feed-forward dimension for the
NETtalk models (512 instead of 1024), since this a
relatively small dataset (∼14k samples).

For both RNN and transformer models, we use
early stopping with phoneme error rate, as opposed
to a minimum learning rate value as in Wu et al.

4https://archive.ics.uci.edu/ml/
datasets/Connectionist+Bench+(Nettalk+
Corpus)

5https://github.com/cmusphinx/cmudict
6Even though we follow the settings in Wu et al. (2018b),

our RNN models are smaller than theirs (4.5M vs. 8.6M pa-
rameters).

vanilla

V SG 3 PRS <sep> u s e
0 1 2 3 4 5 6 7

separator-centered

V SG 3 PRS <sep> u s e
-4 -3 -2 -1 0 1 2 3

Figure 2: Vanilla and our proposed separator-centered
positional encoding for the input “use V;SG;3;PRS” in
the morphological inflection task.

(2018b) and Wu et al. (2021). We evaluate our
models with word error rate (WER) and phoneme
error rate (PER).

Morphological Inflection
For morphological inflection, we use the CoNLL-
SIGMORPHON 2017 shared task dataset.7 We
choose all 51 languages from the high-resource
setting where the training data for each language
consists of 10,000 morphological tags + lemma
and inflected form pairs (except for Bengali and
Haida which have 4,243 and 6,840 pairs respec-
tively) and from the medium-resource setting with
1,000 training examples per language. Our base-
lines performed very poorly on the low-resource
setting with only 100 training examples and we
decided to focus on the other two tasks instead.

We preprocess the data to insert a separator to-
ken between the morphological tags and the input
lemma. The monotonicity loss is then only com-
puted on the positions to the right of the separator
token’s position. We follow Wu et al. (2021) and
use special positional encodings for the morpholog-
ical tags in the transformer. Unlike their approach,
where the position for all tags was set to 0, we set
the position of the separator token to 0 and sequen-
tially decrease the positions of the morphological
tags to the left (Figure 2). This serves to stabi-
lize the positional encodings of the lemma tokens,
while still accounting for the fixed order of mor-
phological tags in the dataset. In preliminary ex-
periments, we observed an improvement of 0.63%
in accuracy over vanilla positional encodings.

We train models on character-level for morpho-
logical inflection following the previously recom-
mended settings for RNNs in Wu et al. (2018b)

7https://github.com/sigmorphon/
conll2017

https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Nettalk+Corpus)
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Nettalk+Corpus)
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Nettalk+Corpus)
https://github.com/cmusphinx/cmudict
https://github.com/sigmorphon/conll2017
https://github.com/sigmorphon/conll2017

4478

and for transformers in Wu et al. (2021) (except
for reducing the feed-forward dimension to 512
instead of 1024). For the high resource datasets,
we use a batch size of 400, for the medium re-
source datasets 200. Early stopping is done in the
same way as for grapheme-to-phoneme conversion.
We use the official evaluation script to compute
word-level accuracy (ACC) and character-level edit
distance (LEV).

Transliteration
For transliteration, we experiment on the
NEWS2015 shared task data (Zhang et al., 2015)
and use the same subset of 11 script pairs that
Wu and Cotterell (2019) used in their experiments:
AR-EN, EN-BA, EN-HI, EN-JA, EN-KA, EN-KO,
EN-PE, EN-TA, EN-TH, JN-JK, and TH-EN. To-
tal training dataset sizes range from 6,761 source
names for EN-KO up to 27,789 source names for
EN-TH. For certain script pairs, multiple translit-
erations per source name are acceptable. We add
all possible pairs to our training data, which only
has a large effect on EN-AR, where there are on
average 10 acceptable transliterations per source
name. Since the references of the official shared
task test sets were not released, we follow Wu and
Cotterell (2019) and use the development set as our
test set. We randomly sample 1,000 names from
the training sets as our development sets for script
pairs with more than 20,000 training examples and
100 for script pairs with fewer training examples.

Again, we follow Wu et al. (2018b) for hyper-
parameters in RNNs and Wu et al. (2021) in trans-
formers (smaller feed-forward dimensions of 512).
We early stop training as for grapheme-to-phoneme
conversion. We evaluate our models following
Zhang et al. (2015) and compute word-level ac-
curacy (ACC) and character-level mean F-score
(MFS). The formula for MFS is in Appendix A.1.

Dialect Normalization
For this work, we consider dialect normalization
as a machine translation task from dialect to stan-
dard. We work with the dataset described in Aepli
and Clematide (2018), which consists of 26,015
crowd-sourced German translations of 6,197 orig-
inal Swiss German sentences. We use three docu-
ments (10%) as test sets and randomly split the rest
in development and training set (10% and 80% re-
spectively). The alignment between Swiss German
and the German translations is highly monotonic,
but there are occasional word order differences, as

es isch aber als Kompliment gmeint gsi

es war aber als Kompliment gemeint
it was however as compliment meant

Figure 3: Swiss-German to German dialect normaliza-
tion example with verb reordering.

illustrated in Figure 3.
The models are trained on subwords obtained via

BPE (Sennrich et al., 2016), created with subword-
nmt computing 2000 merges. We treat this as a low-
resource machine translation task, and thus follow
hyperparameters by Sennrich and Zhang (2019) for
the RNN models, while the transformer models are
trained according to Araabi and Monz (2020). We
evaluate our models with BLEU (Papineni et al.,
2002).8

4.2 Results

In addition to task-specific evaluation metrics, we
use the loss function to score the monotonicity of
the attention on the test set for all models (reported
as LMONO). Furthermore, we report the percent-
age of decoding states for which the average source
attention position ā increases by at least δ |X||Y | as
%mono. In other words, this is the percentage of
states for which the pairwise loss is 0.

Grapheme-to-Phoneme Conversion

We test different settings on the grapheme-to-
phoneme task, see Table 1 for results with RNNs
(top) and transformers (bottom). We find that mod-
els trained with the additional loss have more mono-
tonic attention than the baselines (see %mono and
LMONO). We observe large differences both in
terms of WER and PER across multiple runs for
the baseline, especially for the small data set.9 We
therefore report the average result of three runs
with standard deviations for each model.

Attention in the RNN baselines is already quite
monotonic, but we observe small improvements
with δ = 0.5. For transformer models, on the other
hand, δ > 0 seems to harm the performance, there-
fore we only report results with δ = 0. In general,
multihead attention in the transformer does not
seem to benefit much from enforced monotonicity.

8SacreBLEU (Post, 2018): BLEU+case.mixed+numrefs.1
+smooth.exp+tok.13a+version.1.3.6

9Standard deviation on NETtalk with RNN is >1.2 WER
and >0.27 PER across baseline runs.

4479

Grapheme-to-Phoneme Conversion

δ = 0.0 δ = 0.5 δ = 1.0
WER ↓ PER ↓ %mono LMONO %mono LMONO %mono LMONO

RNN
Wu et al. (2018b) 28.20 6.8

Wu and Cotterell (2019) 28.20 6.9

baseline (λ = 0) 28.76±0.73 7.16±0.16 84.7% 2.91e-04 84.0% 3.94e-03 26.8% 1.03e-01

λ = 0.1, δ = 0.0 28.88±0.32 7.16±0.03 84.8% 1.24e-04
λ = 0.1, δ = 0.5 28.55±0.18 7.13±0.09 84.3% 1.74e-03
λ = 0.1, δ = 1.0 29.02±0.55 7.32±0.19 44.5% 4.05e-02

Transformer
Wu et al. (2021) 27.63 6.9

baseline 27.79±0.24 7.00±0.09 77.0% 7.26e-02

λ = 0.1, δ = 0.0, h = all: 27.99±0.60 7.11±0.18 84.6% 5.12e-05

Table 1: Results for grapheme-to-phoneme, monotonicity loss for transformer on all layers and heads. Average
over three runs with independent seeds with λ = 0.1. Our best models are marked in bold.

Morph. Infl. High Resource Morph. Infl. Medium Resource

ACC ↑ LEV ↓ %mono LMONO ACC ↑ LEV ↓ %mono LMONO

RNN
Wu et al. (2018b) 93.60 0.128 - -

Wu and Cotterell (2019) 94.81 0.123 - -
baseline (λ = 0) 94.97±0.06 0.098±0.002 65.5% 1.17 78.15±0.24 0.441±0.005 64.6% 1.16
λ = 0.1, δ = 0.0 94.63±0.01 0.105±0.002 83.5% 3.78e-4 74.11±0.35 0.560±0.009 84.3% 1.63e-3

Transformer
Wu et al. (2021) 95.59 0.088 - -
baseline (λ = 0) 95.05±0.03 0.097±0.001 58.1% 1.34 81.33±0.02 0.378±0.001 58.1% 1.35

λ = 0.1, δ = 0.1, h = all 94.98±0.07 0.099±0.002 87.5% 4.49e-4 81.02±0.17 0.383±0.001 85.7% 1.45e-3

Table 2: Results for morphological inflection, monotonicity loss for transformer on all layers and heads. Average
over three runs with independent seeds with λ = 0.1. Our best models are marked in bold.

Transliteration Dialect Normalization

ACC ↑ MFS ↑ %mono LMONO BLEU ↑ %mono LMONO

RNN
Wu et al. (2018b) 41.10 89.40 - -

Wu and Cotterell (2019) 41.20 89.50 - -
baseline (λ = 0) 39.53±0.56 89.06±0.06 74.4% 0.06 33.41±0.39 83.1% 0.42
λ = 0.1, δ = 0.0 40.03±0.39 89.18±0.04 81.7% 1.4e-3 33.29±0.23 90.2% 0.10

Transformer
Wu et al. (2021) 43.39 89.70 - -
baseline (λ = 0) 42.08±0.55 89.63±0.04 69.1% 0.12 32.83±0.20 71.7% 1.23

λ = 0.1, δ = 0.0, h = all 41.32±0.53 89.47±0.08 82.2% 7.1e-4 32.17±0.78 91.1% 0.05

Table 3: Results for transliteration and dialect normalization, all experiments with δ = 0. Monotonicity Loss for
transformer on all layers and heads. Average over three runs with independent seeds with λ = 0.1. Our best
models are marked in bold.

4480

Morphological Inflection

For morphological inflection, we show the aver-
age results over all 51 languages in Table 2. Our
RNN baseline is slightly better than previous work,
whereas our transformer baseline performs slightly
worse. We notice that the transformer models
trained with δ = 0 on the morphological inflec-
tion tasks result in the model always attending to
the same source position at every decoding state.
We therefore set δ to 0.1 for transformer models
trained on this task. For the remaining tasks, we
report results with δ set to 0 and λ always set to 0.1
so as not to overfit hyperparameters on each task.

The baseline monotonicity loss for this task is
higher than for grapheme-to-phoneme conversion
but training with the monotonicity loss can dras-
tically increase the monotonicity of the attention
mechanisms. This can be seen both in the lower
monotonicity score and the higher percentage of
decoding states where the average source attention
position increases from the previous state. In terms
of performance, we do not see an improvement
over the baselines.

Transliteration

Our results for transliteration are shown in Table
3 (average over all 11 datasets). Again, we can
see that the monotonicity loss effectively biases
the attention towards a more monotonic behavior,
decreasing the monotonicity score and increasing
the percentage of decoding states where the average
source attention position increases. In terms of
performance, there is a small gain for RNNs both
in word-level accuracy and character-level mean
F-score. Training with the monotonicity loss does
not improve the performance of the transformer
compared to the baseline.

Dialect Normalization

Since dialect normalization is our only sentence-
level sequence-to-sequence task, it is interesting
to see how the monotonicity loss works on longer
sequences where more reordering is possible com-
pared to the previous tasks. The less monotonic
nature of this task is reflected in the fact that neither
of our models trained towards monotonicity out-
performs the non-monotonic baselines, see Table 3.
Dialect normalization is also the only task where
the transformer does not outperform the RNN mod-
els.

0 5000 10000 15000 20000 25000
Updates

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

M
on

ot
on

ic
it

y
L

os
s

Base RNN

λ = 0.1 RNN

0 5000 10000 15000 20000 25000
Updates

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

M
on

ot
on

ic
it

y
L

os
s

Base Transformer

λ = 0.1 Transformer

Figure 4: Monotonicity score during training on the
EN-JA transliteration dataset with δ = 0. Upper plot:
RNN, lower plot: transformer (all heads).

5 Analysis

Overall, our results show that the proposed mono-
tonicity loss succeeds in making attention more
monotonic, but effects on quality are more positive
for RNNs than for transformers. We now analyze
the proposed loss function in more detail.

Monotonicity Over Time

First, we plot the monotonicity score during train-
ing and compare how fast it decreases over time.
We find that the monotonicity score decreases very
fast for the models trained with our loss function
and then stays rather constant. The baseline mod-
els show various behaviors: for some datasets and
models, the score decreases over training time -
suggesting that the model does learn to attend more
monotonically even without the loss. For other
data sets, the score is initially lower and increases
over training time, and, for some, the score stays
more or less constant. What all baselines have in
common, is that the monotonicity score oscillates
much more than when trained with the monotonic-
ity loss. Figure 4 shows an example plot for the
EN-JA transliteration dataset.

Varying Monotonicity

We can vary how much we constrain attention to
be monotonic by varying the weight of the mono-
tonicity loss function (λ). We analyze how this

4481

Figure 5: Relative BLEU scores as a function of the
monotonicity loss for dialect normalization with trans-
former (all heads). Different data points obtained by
varying λ. (λ ∈ {0.3, 0.2, 0.1, 0.01, 0.001, 0}).

influences the performance on dialect normaliza-
tion. Figure 5 shows that non-monotonic behav-
ior (as defined by the monotonicity loss) can be
reduced by a factor of 10-20 with stable or even
slightly improving performance. However, BLEU
drops drastically for large λ. This highlights the
advantage of our loss function over hard monotonic
attention. Through λ we can regulate the degree
of monotonicity in the attention mechanism, which
can be beneficial for tasks where hard monotonic
attention would be too strict.

Monotonicity Loss on Single Heads
Since we calculate the loss on each attention com-
ponent separately, we can also limit its applica-
tion to specific layers and heads (in the case of
multihead attention). We test how restricting the
monotonic behavior to only one head per layer in-
fluences the performance of the transformer on our
chosen tasks. Results are presented in Table 4. We
find that monotonicity on only one head generally
improves performance compared to on all heads,
except for dialect normalization. For grapheme-to-
phoneme conversion and morphological inflection
in the medium resource setting, we even see perfor-
mance gains over the baseline.

Our results support the belief that the flexibil-
ity of multihead attention is key to the success
of the transformer. If applied to all heads, the
monotonicity loss reduces variability in the atten-
tion distribution of the different heads, i.e. with
high λ, all heads attend to the same source position.
We suspect that this severely limits the capacity of
transformer models and explains why rewarding
monotonicity on only one head is beneficial.

These findings are also important in the context
of the work by Voita et al. (2019) who find that
attention heads tend to learn specialized functions.

Having one monotonic attention head could be a
complementary way to encourage more diversity
amongst heads, next to disagreement regulariza-
tion (Li et al., 2018). Indeed, we observe that for
grapheme-to-phoneme conversion and dialect nor-
malization the remaining heads trained without the
monotonicity loss tend to become less monotonic.

Attention Maps

Attention maps are particularly interesting for di-
alect normalization where 1) the transformer base-
line has one of the highest monotonicity losses
of all our models and 2) reordering of source and
target tokens is possible. Figure 6 shows the at-
tention maps for our baseline transformer and the
corresponding model trained with the monotonic-
ity loss. The bottom sentence is an example where
the alignment between the source and the target is
monotonic. Here, the baseline does show tentative
monotonic behavior but with the monotonicity loss,
the attention follows the main diagonal much more
closely. The sentence on the top, on the other hand,
contains a non-monotonic alignment. For a correct
alignment of the past tense of “to be”, the model
needs to peek at the very last token before the full
stop. This is reflected in the baseline attention map
where the attention at the second decoding step is
highest on the third-to-last source position. How-
ever, for our model trained with the monotonicity
loss, the attention follows the main diagonal and
fails to mirror the correct alignment. Occasional
reorderings like this may explain why the mono-
tonicity loss did not work well for this task despite
it being largely monotonic.

6 Conclusion

We propose a model-agnostic loss function that
measures and rewards monotonicity and can eas-
ily be integrated into various attention mechanisms.
To achieve this, we track how monotonically the av-
erage position of the attention shifts over the source
sequence across time steps. We show that this loss
function can be seamlessly integrated into RNNs
as well as transformers. Models trained with our
monotonicity loss learn largely monotonic behav-
ior without any specific changes to the attention
mechanism. While we see some performance gains
in RNNs, our results show that biasing all attention
heads in transformers towards monotonic behavior
is undesirable. However, a bias towards monotonic-
ity may be helpful if applied to only a subset of

4482

Performance heads with LMONO heads without LMONO

G2P WER ↓ PER ↓ %mono LMONO %mono LMONO

baseline 27.79±0.24 7.00±0.09 77.0% 7.26e-02
λ = 0.1, δ = 0.0, h = all: 27.99±0.60 7.11±0.18 84.6% 5.12e-05
λ = 0.1, δ = 0.0, h = 1 : 27.70±0.37 6.96±0.07 84.9% 2.49e-05 75.1% 8.26e-02

Morph. Infl. High ACC ↑ LEV ↓

baseline 95.05±0.03 0.097±0.001 58.1% 1.34
λ = 0.1, δ = 0.1, h = all: 94.98±0.07 0.099±0.002 87.5% 4.49e-4
λ = 0.1, δ = 0.1, h = 1 : 95.00±0.03 0.098±0.000 89.3% 6.49e-5 59.6% 1.35

Morph. Infl. Medium ACC ↑ LEV ↓

baseline 81.33±0.02 0.378±0.001 58.1% 1.35
λ = 0.1, δ = 0.1, h = all: 81.02±0.17 0.383±0.001 85.7% 1.45e-3
λ = 0.1, δ = 0.1, h = 1 : 81.67±0.13 0.366±0.003 88.6% 4.28e-4 59.0% 1.37

Transliteration ACC ↑ MFS ↑

baseline 42.08±0.55 89.63±0.04 69.1% 0.12
λ = 0.1, δ = 0.0, h = all: 41.32±0.53 89.47±0.08 82.2% 7.1e-4
λ = 0.1, δ = 0.0, h = 1 : 41.71±0.37 89.61±0.06 80.4% 1.12e-4 69.6% 0.11

Dialect Normalization BLEU ↑

baseline 32.83±0.20 71.7% 1.23
λ = 0.1, δ = 0.0, h = all: 32.17±0.78 91.1% 0.05
λ = 0.1, δ = 0.0, h = 1 : 31.55±0.71 77.9% 0.01 70.5% 1.64

Table 4: Transformer results for all tasks with monotonicity on all heads vs. only on one head. Monotonicity loss
is computed on all layers. Average over three runs with independent seeds. Our best models are marked in bold.

Figure 6: Transformer attention maps for the sentence
shown in Figure 3; “but it was meant as compliment"
and “we delete this and get to work". Left: base-
line (λ=0), right: with monotonicity loss on all heads
(λ=0.1).

heads.
For the future, we are interested in more sophisti-

cated schedules for the monotonicity loss, possibly
reducing λ over the course of training. This would
help to learn monotonic behavior in the early train-
ing stages but gives the model more flexibility to
deviate from such an attention pattern if needed. In
this context, our loss function could also be used as
an additional pretraining objective for transfer to
very low-resource tasks. We would also like to test
our loss function on tasks where the alignment may
be harder to learn, for example in multimodal mod-
els or for long sequences. Finally, using our loss
function as a way to measure monotonicity could
be an interesting tool for interpretability research.

Acknowledgments

We thank the anonymous reviewers for their feed-
back. This project has received funding from the
Swiss National Science Foundation (project nos.
176727 and 191934).

4483

References
Noëmi Aepli and Simon Clematide. 2018. Parsing

approaches for swiss german. In Proceedings of
the 3rd Swiss Text Analytics Conference, Winterthur,
Switzerland.

Roee Aharoni and Yoav Goldberg. 2017. Morphologi-
cal inflection generation with hard monotonic atten-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2004–2015, Vancouver,
Canada. Association for Computational Linguistics.

Alham Fikri Aji, Nikolay Bogoychev, Kenneth
Heafield, and Rico Sennrich. 2020. In neural ma-
chine translation, what does transfer learning trans-
fer? In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 7701–7710, Online. Association for Compu-
tational Linguistics.

Ali Araabi and Christof Monz. 2020. Optimizing
transformer for low-resource neural machine transla-
tion. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 3429–
3435, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, Chung-Cheng Chiu, Semih Yavuz,
Ruoming Pang, Wei Li, and Colin Raffel. 2019.
Monotonic infinite lookback attention for simulta-
neous machine translation. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 1313–1323, Florence,
Italy. Association for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Chung-Cheng Chiu and Colin Raffel. 2018. Monotonic
chunkwise attention. In 6th International Confer-
ence on Learning Representations, ICLR 2018, Con-
ference Track Proceedings, Vancouver, Canada.

Tonglee Chung, Yongbin Liu, and Bin Xu. 2020.
Monotonic alignments for summarization.
Knowledge-Based Systems, 192:105363.

Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vy-
molova, Kaisheng Yao, Chris Dyer, and Gholamreza
Haffari. 2016. Incorporating structural alignment bi-
ases into an attentional neural translation model. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 876–885, San Diego, California. Association
for Computational Linguistics.

Felix Hieber, Tobias Domhan, Michael Denkowski,
David Vilar, Artem Sokolov, Ann Clifton, and Matt

Post. 2018. The sockeye neural machine translation
toolkit at AMTA 2018. In Proceedings of the 13th
Conference of the Association for Machine Transla-
tion in the Americas (Volume 1: Research Papers),
pages 200–207, Boston, MA. Association for Ma-
chine Translation in the Americas.

Hyunsun Hwang and Changki Lee. 2020. Linear-
time korean morphological analysis using an action-
based local monotonic attention mechanism. ETRI
Journal, 42(1):101–107.

Jian Li, Zhaopeng Tu, Baosong Yang, Michael R. Lyu,
and Tong Zhang. 2018. Multi-head attention with
disagreement regularization. In Proceedings of the
2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2897–2903, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Baiji Liu, Songjun Cao, Sining Sun, Weibin Zhang, and
Long Ma. 2020. Multi-head monotonic chunkwise
attention for online speech recognition. Computing
Research Repository, arXiv:2005.00205.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Xutai Ma, Juan Miguel Pino, James Cross, Liezl Puzon,
and Jiatao Gu. 2020. Monotonic multihead attention.
In International Conference on Learning Represen-
tations ICLR, Addis Ababa, Ethiopia.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J.
Weiss, and Douglas Eck. 2017. Online and linear-
time attention by enforcing monotonic alignments.
In Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 2837–2846.
PMLR.

Terrence J. Sejnowski and Charles R. Rosenberg. 1987.
Parallel networks that learn to pronounce English
text. Complex Systems, 1:145–168.

http://ceur-ws.org/Vol-2226/paper1.pdf
http://ceur-ws.org/Vol-2226/paper1.pdf
https://doi.org/10.18653/v1/P17-1183
https://doi.org/10.18653/v1/P17-1183
https://doi.org/10.18653/v1/P17-1183
https://doi.org/10.18653/v1/2020.acl-main.688
https://doi.org/10.18653/v1/2020.acl-main.688
https://doi.org/10.18653/v1/2020.acl-main.688
https://doi.org/10.18653/v1/2020.coling-main.304
https://doi.org/10.18653/v1/2020.coling-main.304
https://doi.org/10.18653/v1/2020.coling-main.304
https://doi.org/10.18653/v1/P19-1126
https://doi.org/10.18653/v1/P19-1126
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://openreview.net/forum?id=Hko85plCW
https://openreview.net/forum?id=Hko85plCW
https://www.sciencedirect.com/science/article/pii/S0950705119306197
https://doi.org/10.18653/v1/N16-1102
https://doi.org/10.18653/v1/N16-1102
https://www.aclweb.org/anthology/W18-1820
https://www.aclweb.org/anthology/W18-1820
https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.2018-0456
https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.2018-0456
https://onlinelibrary.wiley.com/doi/pdf/10.4218/etrij.2018-0456
https://doi.org/10.18653/v1/D18-1317
https://doi.org/10.18653/v1/D18-1317
http://arxiv.org/abs/2005.00205
http://arxiv.org/abs/2005.00205
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
https://openreview.net/forum?id=Hyg96gBKPS
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
http://proceedings.mlr.press/v70/raffel17a/raffel17a.pdf
http://proceedings.mlr.press/v70/raffel17a/raffel17a.pdf
https://content.wolfram.com/uploads/sites/13/2018/02/01-1-10.pdf
https://content.wolfram.com/uploads/sites/13/2018/02/01-1-10.pdf

4484

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Rico Sennrich and Biao Zhang. 2019. Revisiting low-
resource neural machine translation: A case study.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 211–
221, Florence, Italy. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998–6008.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5797–5808, Florence,
Italy. Association for Computational Linguistics.

Jiewen Wu, Rafael E. Banchs, Luis Fernando D’Haro,
Pavitra Krishnaswamy, and Nancy Chen. 2018a.
Attention-based semantic priming for slot-filling. In
Proceedings of the Seventh Named Entities Work-
shop, pages 22–26, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Shijie Wu and Ryan Cotterell. 2019. Exact hard mono-
tonic attention for character-level transduction. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1530–
1537, Florence, Italy. Association for Computational
Linguistics.

Shijie Wu, Ryan Cotterell, and Mans Hulden. 2021.
Applying the transformer to character-level transduc-
tion. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics, Online. Association for Computa-
tional Linguistics.

Shijie Wu, Pamela Shapiro, and Ryan Cotterell. 2018b.
Hard non-monotonic attention for character-level
transduction. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 4425–4438, Brussels, Belgium.
Association for Computational Linguistics.

Sevinj Yolchuyeva, Géza Németh, and Bálint Gyires-
Tóth. 2019. Transformer based grapheme-to-
phoneme conversion. In Proceedings Interspeech
2019, pages 2095–2099, Graz, Austria. ISCA.

Min Zhang, Haizhou Li, Rafael E. Banchs, and A Ku-
maran. 2015. Whitepaper of NEWS 2015 shared
task on machine transliteration. In Proceedings of

the Fifth Named Entity Workshop, pages 1–9, Bei-
jing, China. Association for Computational Linguis-
tics.

Wangchunshu Zhou, Tao Ge, Furu Wei, Ming Zhou,
and Ke Xu. 2020. Scheduled DropHead: A regu-
larization method for transformer models. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 1971–1980, Online. As-
sociation for Computational Linguistics.

https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P19-1021
https://doi.org/10.18653/v1/P19-1021
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/W18-2404
https://doi.org/10.18653/v1/P19-1148
https://doi.org/10.18653/v1/P19-1148
https://doi.org/10.18653/v1/D18-1473
https://doi.org/10.18653/v1/D18-1473
https://doi.org/10.21437/Interspeech.2019-1954
https://doi.org/10.21437/Interspeech.2019-1954
https://doi.org/10.18653/v1/W15-3901
https://doi.org/10.18653/v1/W15-3901
https://www.aclweb.org/anthology/2020.findings-emnlp.178
https://www.aclweb.org/anthology/2020.findings-emnlp.178

4485

A Appendix

A.1 Character-level Mean F-score (MFS)

LCS(ci, ri) =
1

2
(|ci|+ |ri| − ED(ci, ri))

Ri =
LCS(ci, ri)

|ri|

Pi =
LCS(ci, ri)

|ci|

Fi =
2 ∗Ri ∗ Pi

Ri + Pi

MFS =
1

N

N∑
i=1

Fi

Where ci is the i-th candidate and ri is the corresponding reference transliteration with the smallest edit
distance (ED).

4486

A.2 Hyperparameters

Training Hyperparameters Transformer

G2P MI TR DN
training settings:

batch type sentence word
batch size 400 400/200 400 4096
max-seq-len 20:20 85:85 85:85 200:200
word-min-count 1:1
seed 1, 2, 3

model settings:

encoder transformer
decoder transformer
transformer-positional-embedding-type fixed
transformer-preprocess n
transformer-postprocess dr
num-layers 4:4 5:5
transformer-model-size 256 512
transformer-attention-heads 4 2
num-embed 256:256 512:512
weight-tying-type trg_softmax src_trg
transformer-feed-forward-num-hidden 512/1024 512 512 512

optimization settings:

optimizer adam
optimizer-params beta2:0.98
checkpoint interval 400
max-num-checkpoint-not-improved 10
gradient-clipping-threshold none
learning-rate-scheduler-type fixed-rate-inv-sqrt-t plateau-reduce
optimized-metric PER bleu
label-smoothing 0.1 0.6
initial-learning-rate 0.001 0.0001
learning-rate-warmup 4000 0

initialization settings:

weight-init xavier
weight-init-scale 3.0
weight-init-xavier-factor-type avg

dropout settings:

transformer-dropout-attention 0
embed-dropout 0.3/0.2 0.3 0.3 0.1
transformer-drophead-attention 0.3/0.2 0.3 0.3 0.0/0.1
transformer-dropout-act 0.3/0.2 0.3 0.3 0.3
transformer-dropout-prepost 0.3/0.2 0.3 0.3 0.3

Table 5: Sockeye hyperparameters for transformer models (values with ’:’ = encoder:decoder)

4487

Training Hyperparameters RNN

G2P MI TR DN

training settings:

batch type sentence word
batch size 20 20 50 1000
max-seq-len 20:20 85:85 85:85 200:200
word-min-count 1:1
seeds 1, 2, 3

model settings:

encoder rnn
decoder rnn
rnn-cell-type lstm
num-layers 2:1 1:1
num-embed 200:200 512:512
rnn-num-hidden 400 1024

optimization settings:

learning-rate-scheduler-type plateau-reduce
learning-rate-warmup 0
optimizer adam
optimized-metric PER bleu
checkpoint interval 4000 400
max-num-checkpoint-not-improved 7 10
label-smoothing 0.0 0.2
gradient-clipping-threshold 5 –
initial-learning-rate 0.001 0.0005
learning-rate-reduce-num-not-improved 1 8
learning-rate-reduce-factor 0.5 0.7

initialization settings:

weight-init xavier
weight-init-scale 3.0
weight-init-xavier-factor-type avg

dropout settings:

embed-dropout 0.4 0.5
rnn-decoder-hidden-dropout 0.4 0.5

Table 6: Sockeye hyperparameters for RNN models (values with ’:’ = encoder:decoder)

4488

A.3 Model Size

RNN Models

G2P 4.5M
MI 4.5M
TR 4.5M
DN 25.1M

Transformer Models

G2P
CMUdict (ff = 1024): 7.3M
NETtalk (ff = 512): 5.3M

MI 5.3M
TR 5.3M
DN 23.2M

Table 7: Approximate model size in number of parameters for the different tasks (exact numbers can vary slightly
due to variable vocabulary sizes with different data sets. G2P, MI and TR numbers correspond to the "large"
configuration in Wu et al. (2018a).

