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Abstract
Hierarchical multi-label text classification
(HMTC) aims to tag each document with a
set of classes from a class hierarchy. Most ex-
isting HMTC methods train classifiers using
massive human-labeled documents, which are
often too costly to obtain in real-world appli-
cations. In this paper, we explore to conduct
HMTC based on only class surface names as
supervision signals. We observe that to per-
form HMTC, human experts typically first pin-
point a few most essential classes for the docu-
ment as its “core classes”, and then check core
classes’ ancestor classes to ensure the coverage.
To mimic human experts, we propose a novel
HMTC framework, named TaxoClass. Specifi-
cally, TaxoClass (1) calculates document-class
similarities using a textual entailment model,
(2) identifies a document’s core classes and uti-
lizes confident core classes to train a taxonomy-
enhanced classifier, and (3) generalizes the
classifier via multi-label self-training. Our ex-
periments on two challenging datasets show
TaxoClass can achieve around 0.71 Example-
F1 using only class names, outperforming the
best previous method by 25%.

1 Introduction

Hierarchical multi-label text classification (HMTC)
aims to assign each text document to a set of rel-
evant classes from a class taxonomy. As a funda-
mental task in NLP, HMTC has many applications
such as product categorization (Goumy and Mejri,
2018), semantic indexing (Li et al., 2019), and fine-
grained entity typing (Xu and Barbosa, 2018).

Most existing methods address HMTC in a super-
vised fashion — they first ask humans to provide
many labeled documents and then train a text clas-
sifier for prediction. Many classifiers have been
developed with different deep learning architec-
tures such as CNN (Kim, 2014), RNN (You et al.,
2019), Attention Network (Huang et al., 2019), and
achieved decent performance when trained on mas-
sive human-labeled documents. Despite such a

Document: When our son was about 4 months old, our doctor 
said we could give him crafted cereal. We bought this product and 
put it in his bottle. He loved this stuff! This cereal digests well and 
didn’t lock up his bowels at all. We highly recommend this cereal.
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Figure 1: An exemplar document tagged with five
classes. Here, if we are able to pinpoint this document’s
most essential classes, crafted cereal and baby cereal,
as core classes, we can check their ancestor classes in
the taxonomy and recover all the true classes.

success, people find that applying these methods
to many real-world scenarios remains challenging
as the human labeling process is often too time-
consuming and expensive.

Recently, more studies have been developed to
address text classification using smaller amount of
labeled data. First, several semi-supervised meth-
ods (Gururangan et al., 2019; Berthelot et al., 2019)
propose to use abundant unlabeled documents to
assist model training on labeled dataset. Although
mitigating the human annotation burden, these
methods still require a labeled dataset that covers
all classes, which could be too expensive to obtain
when we have a large number of classes in HMTC.
Second, some weakly-supervised models exploit
class indicative keywords (Meng et al., 2018; Zeng
et al., 2019; Mekala and Shang, 2020) or class sur-
face names (Meng et al., 2020; Wang et al., 2020)
to derive pseudo-labeled data for model training.
Nevertheless, these models all assume each docu-
ment has only one class and all class surface names
(or class indicative keywords) must appear in the
corpus, which are too restrictive for HMTC.
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In this paper, we study the problem of weakly-
supervised hierarchical multi-label text classifica-
tion where only class surface names, a class tax-
onomy, and an unlabeled corpus are available for
model training. This setting is closer to how hu-
mans resolve the HMTC problem — we perform
classification by understanding each class from its
surface name rather than learning from labeled doc-
uments. We observe that when asked to assign
multiple classes to a document, humans will first
pinpoint most essential “core classes” and then
check whether their ancestor classes in the taxon-
omy should also be tagged. Taking the document
in Fig. 1 as an example, humans can quickly iden-
tify this review text is clearly about “baby cereal”
and “crafted cereal”, which are the core classes.
After assigning these two most essential classes to
the document, people continue to check the core
classes’ ancestor classes and find “feeding” as well
as “baby food” should be tagged.

Motivated by the above human labeling pro-
cess, we propose TaxoClass, a weakly-supervised
HMTC framework including four major steps.
First, we calculate the document-class similarity
using a pre-trained textual entailment model (Yin
et al., 2019). Second, we identify each document’s
core classes by (1) selecting candidate core classes
that are most similar to the document at each level
in a top-down fashion, and (2) choosing 〈document,
candidate core class〉 pairs that are salient across
the whole unlabeled corpus. Third, we derive train-
ing data from document core classes and use them
to train a text classifier. This classifier includes a
document encoder based on pre-trained BERT (De-
vlin et al., 2019), a class encoder capturing class
taxonomy structure, and a text matching network
computing the probability of a document being
tagged with each class. Finally, we generalize this
text classifier using multi-label self-training on all
unlabeled documents.

Contributions. To summarize, our major contri-
butions are as follows: (1) We propose a weakly-
supervised framework TaxoClass that only requires
class surface names to perform hierarchical multi-
label text classification. To the best of our knowl-
edge, TaxoClass is the first weakly-supervised
HMTC method. (2) We develop an unsupervised
method to identify document core classes based
on which a text classifier can be learned. (3) We
conduct extensive experiments to verify the effec-
tiveness of TaxoClass on two real-world datasets.

2 Problem Formulation

In this section, we introduce the notations and
present our task definition.

Notations. A corpus D = {D1, . . . , DN} is a text
collection where each document Di ∈ D is a se-
quence of words. A class taxonomy T = (C,R) is
a directed acyclic graph where each node represents
a class cj and each directed edge 〈cm, cn〉 ∈ R in-
dicates that parent class cm is more general than
the child class cn. In this work, we assume each
class cj has a surface name sj (either a word or a
phrase) that serves as the weak supervision signal.

Task Definition. Given an unlabeled corpus D,
a class hierarchy T = (C,R), and class surface
names S = {sj}|C|j=1, our task is to learn a text
classifier f(·) that maps a new document Dnew to
its target y = [y1, . . . , y|C|] ∈ Y = {0, 1}|C| where
yj equals to 1 if this document is categorized with
class cj and 0 otherwise.

Discussion. When the number of classes |C| is
large (as it is in many HMTC applications), we can
no longer assume all class surface names in S will
explicitly appear in the given corpus D as done in
most previous studies (Meng et al., 2019; Li et al.,
2019; Wang et al., 2020). This is because many
class names are actually summarizing phrases pro-
vided by humans (e.g., “grocery & gourmet food”
in Fig. 1). As a result, we need to design a method
that works under such a scenario.

3 Our TaxoClass Framework

Our TaxoClass framework consists of four major
steps: (1) document-class similarity calculation, (2)
document core class mining, (3) core class guided
classifier training, and (4) multi-label self-training.
Fig. 2 shows our framework overview and below
sections discuss each step in more details.

3.1 Document-Class Similarity Calculation

We take a textual entailment approach (Yin et al.,
2019) to calculate the semantic similarity between
each 〈document, class〉 pair. This approach imi-
tates how humans determine whether a document
is similar to a class or not — we read this docu-
ment, create a hypothesis by filling the class name
into a template (e.g., “this document is about ”),
and ask ourselves to what extent this hypothesis is
correct, given the context document.

In this work, we adopt a pre-trained textual en-
tailment model that inputs a document Di as the
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Figure 2: Our TaxoClass framework overview. We first calculate document-class similarities using a textual
entailment model (Sect. 3.1). Then, we identify document core classes (Sect. 3.2) and train a taxonomy-enhanced
text classifier (Sect. 3.3). Finally, we generalize the classifier via multi-label self-training (Sect. 3.4). The “shared
model parameters” indicates that we do self-training on the same model learned using our identified core classes.

“premise”, a template filled with a class name sj
as the “hypothesis”, and outputs a probability of
how likely this premise can entail the hypothe-
sis. We treat this probability P(Di → cj) as
the document-class similarity sim(Di, cj). More
specifically, we use Roberta-Large-MNLI1 as
our textual entailment model which utilizes the pre-
trained Roberta-Large as its backbone and is
fine-tuned on the MNLI dataset.

3.2 Document Core Class Mining

When asked to tag a document with a set of classes
from a class taxonomy, humans will first pinpoint a
few classes that are most essential to this document.
We refer to those most essential classes as the “core
classes” and identify them in below two steps.

3.2.1 Core Class Candidate Selection

We observe that on average each document is
tagged with a small set of classes from the en-
tire class taxonomy. Therefore, we first reduce
the search space of core classes using a top-down
approach (c.f. Fig. 3). Given a document D, we
start with the “Root” class at level l = 0, find its
two children classes that have the highest similarity
with D, and add them into a queue. Then, for each
class at level l in the queue, we select l + 2 classes
from its children classes that are most similar to D.
After all level l classes are processed, we aggregate
all selected children classes and choose (l + 1)2

classes (at level l + 1) with the highest path score

1https://huggingface.co/
roberta-large-mnli

(ps) defined below:

ps(Root) = 1,

ps(cj) = max
ck∈Par(cj)

{ps(ck) · sim(cj , D)}, (1)

where Par(cj) is class cj’s parent class set. All
chosen classes (at level l + 1) will be pushed into
the queue and we stop this process when no class in
the queue has further children. Finally, all classes
that have entered the queue, except for the “Root”
class, consist of the core class candidate set. We
use Ccand

i to denote the candidate core class set of
document Di.

3.2.2 Confident Core Class Identification
For each document, we identify its core classes
from the above selected candidate set based on two
observations. First, a document usually has higher
similarity with its core class c than with the parent
and sibling classes of c. Take the document D2 in
Fig. 2 as an example, the similarity between D2

and its core class “crib” is 0.95, much higher than
the similarity between D2 and core class’s parent
class “nursery” (0.6) as well as core class’s sibling
classes. Based on this observation, we define the
“confidence score” of a candidate core class c for a
document D as below:

conf(D, c) = sim(D, c)− max
c′∈Par(c)∪Sib(c)

{sim(D, c′)},

(2)

where Sib(c) represents the sibling class set of c.
Our second observation is that the similarity be-

tween a document D and its core class c is salient
from a corpus-wise perspective. Namely, if a class
c is a documentD’s core class, the confidence score

https://huggingface.co/roberta-large-mnli
https://huggingface.co/roberta-large-mnli
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Figure 3: Top-down core class candidate selection.

conf(D, c) is higher than the median confidence
score2 between class c and all documents tagged
with c (denoted as D(c)). Formally, we have:

conf(D, c) ≥ median{conf(D′, c)|D′ ∈ D(c)}. (3)

According to this observation, we check each class
in document Di’s candidate core set Ccand

i and add
classes that satisfy the above criteria into the final
core class set Ci. Note here this core class set Ci

could be empty when document Di does not have
any confident core class.

3.3 Core Class Guided Classifier Training
Based on identified document core classes, we train
one classifier for hierarchical multi-label text clas-
sification. Below we first introduce our classifier
architecture and then present our training method.

3.3.1 Text Classifier Architecture
We design our classifier to have a dual-encoder
architecture: one document encoder maps docu-
ment Di to its representation Di, one class encoder
learns class cj’s representation cj , and one match-
ing network returns the probability of document
Di being tagged with class cj .

Document Encoder. In this work, we instan-
tiate our document encoder gdoc(·) to be a pre-
trained BERT-base-uncased model (Devlin
et al., 2019) and follow previous work (Chang et al.,
2019; Meng et al., 2020) to use the [CLS] token
representation as the document representation.

Class Encoder. For class encoder gclass(·), we fol-
low (Shen et al., 2020) and use a graph neural net-
work (GNN) (Kipf and Welling, 2017) to model
the class taxonomy structure. This taxonomy-
enhanced class encoder can capture both the textual
information from class surface names and struc-
tural information from the class taxonomy.

Given a class cj , we first obtain its ego network
that includes its parent and children classes in the
class taxonomy, as shown in Fig. 4. Then, we in-
put this ego network to a GNN that propagates

2We have also tried using "average" but empirically found
that using “median” is better and more robust to outliers.
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<latexit sha1_base64="ZnSSVpkXnvrhKE8U43cSRu7zTKc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9YP+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atVL+9rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwA4jo3E</latexit>

ck

<latexit sha1_base64="jCxVSrSKyzfOwgVyB/VIWqwsoU4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0wPrjfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqlerXt7XKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gBGMo3N</latexit>

cp

<latexit sha1_base64="xKnFWlRHCCUHSelD/RHSYHCxDHY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0wPpJv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atVL+9rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBNxo3S</latexit>

h(0)
p

<latexit sha1_base64="EhwXFrYIGQcSkyRPtNdB8j5eAf8=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahXsquVPRY9OKxgv2Adi3ZNNuGZpMlyQpl2Z/hxYMiXv013vw3pu0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcjvzO09UaSbFg5nG1I/wSLCQEWys1BsP0jh7TKvueTYoV9yaOwdaJV5OKpCjOSh/9YeSJBEVhnCsdc9zY+OnWBlGOM1K/UTTGJMJHtGepQJHVPvp/OQMnVlliEKpbAmD5urviRRHWk+jwHZG2Iz1sjcT//N6iQmv/ZSJODFUkMWiMOHISDT7Hw2ZosTwqSWYKGZvRWSMFSbGplSyIXjLL6+S9kXNq9cu7+uVxk0eRxFO4BSq4MEVNOAOmtACAhKe4RXeHOO8OO/Ox6K14OQzx/AHzucP07SQ9g==</latexit>

h
(0)
j

<latexit sha1_base64="SUP7GArnhfj/DO1MiN1v1mzlm6Y=">AAAB8nicbVBNSwMxEM36WetX1aOXYBHqpexKRY9FLx4r2A9o15JNs21sNlmSWaEs+zO8eFDEq7/Gm//GtN2Dtj4YeLw3w8y8IBbcgOt+Oyura+sbm4Wt4vbO7t5+6eCwZVSiKWtSJZTuBMQwwSVrAgfBOrFmJAoEawfjm6nffmLacCXvYRIzPyJDyUNOCVipO+qnj9lDWnHPsn6p7FbdGfAy8XJSRjka/dJXb6BoEjEJVBBjup4bg58SDZwKlhV7iWExoWMyZF1LJYmY8dPZyRk+tcoAh0rbkoBn6u+JlETGTKLAdkYERmbRm4r/ed0Ewis/5TJOgEk6XxQmAoPC0//xgGtGQUwsIVRzeyumI6IJBZtS0YbgLb68TFrnVa9WvbirlevXeRwFdIxOUAV56BLV0S1qoCaiSKFn9IreHHBenHfnY9664uQzR+gPnM8fynKQ8A==</latexit>

h
(0)
b

<latexit sha1_base64="hRoI87G7+oHm4+PbwYmN5qvKq2U=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2VXKnosevFYwX5Au5Zsmm1Ds8mSzApl2Z/hxYMiXv013vw3pu0etPXBwOO9GWbmBbHgBlz32ymsrW9sbhW3Szu7e/sH5cOjtlGJpqxFlVC6GxDDBJesBRwE68aakSgQrBNMbmd+54lpw5V8gGnM/IiMJA85JWCl3niQBtljWnXPs0G54tbcOfAq8XJSQTmag/JXf6hoEjEJVBBjep4bg58SDZwKlpX6iWExoRMyYj1LJYmY8dP5yRk+s8oQh0rbkoDn6u+JlETGTKPAdkYExmbZm4n/eb0Ewms/5TJOgEm6WBQmAoPCs//xkGtGQUwtIVRzeyumY6IJBZtSyYbgLb+8StoXNa9eu7yvVxo3eRxFdIJOURV56Ao10B1qohaiSKFn9IreHHBenHfnY9FacPKZY/QHzucPvhqQ6A==</latexit>

h(0)
a

<latexit sha1_base64="GfETx+SRyEC7PXQv5BAvzpybyys=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CRahXsquVPRY9OKxgv2Adi3ZNNuGZpMlyQpl2Z/hxYMiXv013vw3pu0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcjvzO09UaSbFg5nG1I/wSLCQEWys1BsPUpw9plX3PBuUK27NnQOtEi8nFcjRHJS/+kNJkogKQzjWuue5sfFTrAwjnGalfqJpjMkEj2jPUoEjqv10fnKGzqwyRKFUtoRBc/X3RIojradRYDsjbMZ62ZuJ/3m9xITXfspEnBgqyGJRmHBkJJr9j4ZMUWL41BJMFLO3IjLGChNjUyrZELzll1dJ+6Lm1WuX9/VK4yaPowgncApV8OAKGnAHTWgBAQnP8ApvjnFenHfnY9FacPKZY/gD5/MHvI+Q5w==</latexit>

h
(0)
k

<latexit sha1_base64="rGNBAgYEycJJdN1FidwlqiJC8LQ=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2VXKnosevFYwX5Au5Zsmm1Ds8mSzApl2Z/hxYMiXv013vw3pu0etPXBwOO9GWbmBbHgBlz32ymsrW9sbhW3Szu7e/sH5cOjtlGJpqxFlVC6GxDDBJesBRwE68aakSgQrBNMbmd+54lpw5V8gGnM/IiMJA85JWCl3niQTrLHtOqeZ4Nyxa25c+BV4uWkgnI0B+Wv/lDRJGISqCDG9Dw3Bj8lGjgVLCv1E8NiQidkxHqWShIx46fzkzN8ZpUhDpW2JQHP1d8TKYmMmUaB7YwIjM2yNxP/83oJhNd+ymWcAJN0sShMBAaFZ//jIdeMgphaQqjm9lZMx0QTCjalkg3BW355lbQval69dnlfrzRu8jiK6ASdoiry0BVqoDvURC1EkULP6BW9OeC8OO/Ox6K14OQzx+gPnM8fy/2Q8Q==</latexit>

cj

<latexit sha1_base64="SYyFvBz9YexkJXh1potx83G18tc=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxIRZdFNy4r2Ad0hpJJM21sJhOSjFCG/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnlJxp47rfTmltfWNzq7xd2dnd2z+oHh51dJIqQtsk4YnqhVhTzgRtG2Y47UlFcRxy2g0nt7nffaJKs0Q8mKmkQYxHgkWMYGMl34+xGYdRRmaDx0G15tbdOdAq8QpSgwKtQfXLHyYkjakwhGOt+54rTZBhZRjhdFbxU00lJhM8on1LBY6pDrJ55hk6s8oQRYmyTxg0V39vZDjWehqHdjLPqJe9XPzP66cmug4yJmRqqCCLQ1HKkUlQXgAaMkWJ4VNLMFHMZkVkjBUmxtZUsSV4y19eJZ2LuteoX943as2boo4ynMApnIMHV9CEO2hBGwhIeIZXeHNS58V5dz4WoyWn2DmGP3A+fwBjSZHs</latexit>

Hidden Layers
h

(L)
k

<latexit sha1_base64="kP7Wk2QasAj7dXB2hU5vbiBkris=">AAAB8nicbVA9SwNBEJ3zM8avqKXNYhBiE+4komXQxsIigvmAyxn2Nptkyd7usbsnhON+ho2FIrb+Gjv/jZvkCk18MPB4b4aZeWHMmTau++2srK6tb2wWtorbO7t7+6WDw5aWiSK0SSSXqhNiTTkTtGmY4bQTK4qjkNN2OL6Z+u0nqjST4sFMYhpEeCjYgBFsrOSPeuk4e0wrd2dZr1R2q+4MaJl4OSlDjkav9NXtS5JEVBjCsda+58YmSLEyjHCaFbuJpjEmYzykvqUCR1QH6ezkDJ1apY8GUtkSBs3U3xMpjrSeRKHtjLAZ6UVvKv7n+YkZXAUpE3FiqCDzRYOEIyPR9H/UZ4oSwyeWYKKYvRWREVaYGJtS0YbgLb68TFrnVa9WvbivlevXeRwFOIYTqIAHl1CHW2hAEwhIeIZXeHOM8+K8Ox/z1hUnnzmCP3A+fwD2pZEN</latexit>

h(L)
p

<latexit sha1_base64="W/zzKVfv8Rth5rX6IVrdJ/+jXAY=">AAAB8nicbVA9SwNBEJ3zM8avqKXNYhBiE+4komXQxsIigvmAyxn2Nptkyd7usbsnhON+ho2FIrb+Gjv/jZvkCk18MPB4b4aZeWHMmTau++2srK6tb2wWtorbO7t7+6WDw5aWiSK0SSSXqhNiTTkTtGmY4bQTK4qjkNN2OL6Z+u0nqjST4sFMYhpEeCjYgBFsrOSPemmcPaaVu7OsVyq7VXcGtEy8nJQhR6NX+ur2JUkiKgzhWGvfc2MTpFgZRjjNit1E0xiTMR5S31KBI6qDdHZyhk6t0kcDqWwJg2bq74kUR1pPotB2RtiM9KI3Ff/z/MQMroKUiTgxVJD5okHCkZFo+j/qM0WJ4RNLMFHM3orICCtMjE2paEPwFl9eJq3zqlerXtzXyvXrPI4CHMMJVMCDS6jDLTSgCQQkPMMrvDnGeXHenY9564qTzxzBHzifP/5ckRI=</latexit>

h
(L)
j

<latexit sha1_base64="c0YuxbonIgcCGbwMBegO5Wr10/A=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBahXkoiFT0WvXjwUMF+QBrLZrtp126yYXcilJCf4cWDIl79Nd78N27bHLT1wcDjvRlm5vmx4Bps+9sqrKyurW8UN0tb2zu7e+X9g7aWiaKsRaWQqusTzQSPWAs4CNaNFSOhL1jHH19P/c4TU5rL6B4mMfNCMox4wCkBI7mjfvqYPaTV29OsX67YNXsGvEycnFRQjma//NUbSJqELAIqiNauY8fgpUQBp4JlpV6iWUzomAyZa2hEQqa9dHZyhk+MMsCBVKYiwDP190RKQq0noW86QwIjvehNxf88N4Hg0kt5FCfAIjpfFCQCg8TT//GAK0ZBTAwhVHFzK6YjoggFk1LJhOAsvrxM2mc1p147v6tXGld5HEV0hI5RFTnoAjXQDWqiFqJIomf0it4ssF6sd+tj3lqw8plD9AfW5w/1GpEM</latexit>

h
(L)
b

<latexit sha1_base64="dZRLsBVC8xJW9mowo4IYbpKWrqM=">AAAB8nicbVA9SwNBEN3zM8avqKXNYhBiE+4komXQxsIigvmAyxn2Nptkyd7usTsnhON+ho2FIrb+Gjv/jZvkCk18MPB4b4aZeWEsuAHX/XZWVtfWNzYLW8Xtnd29/dLBYcuoRFPWpEoo3QmJYYJL1gQOgnVizUgUCtYOxzdTv/3EtOFKPsAkZkFEhpIPOCVgJX/US8PsMa3cnWW9UtmtujPgZeLlpIxyNHqlr25f0SRiEqggxvieG0OQEg2cCpYVu4lhMaFjMmS+pZJEzATp7OQMn1qljwdK25KAZ+rviZRExkyi0HZGBEZm0ZuK/3l+AoOrIOUyToBJOl80SAQGhaf/4z7XjIKYWEKo5vZWTEdEEwo2paINwVt8eZm0zqterXpxXyvXr/M4CugYnaAK8tAlqqNb1EBNRJFCz+gVvTngvDjvzse8dcXJZ47QHzifP+jCkQQ=</latexit>

h(L)
a

<latexit sha1_base64="omLj2F/QNVJgvB1jVCZLqwHqD7M=">AAAB8nicbVA9SwNBEJ3zM8avqKXNYhBiE+4komXQxsIigvmAyxn2Nptkyd7usbsnhON+ho2FIrb+Gjv/jZvkCk18MPB4b4aZeWHMmTau++2srK6tb2wWtorbO7t7+6WDw5aWiSK0SSSXqhNiTTkTtGmY4bQTK4qjkNN2OL6Z+u0nqjST4sFMYhpEeCjYgBFsrOSPeinOHtPK3VnWK5XdqjsDWiZeTsqQo9ErfXX7kiQRFYZwrLXvubEJUqwMI5xmxW6iaYzJGA+pb6nAEdVBOjs5Q6dW6aOBVLaEQTP190SKI60nUWg7I2xGetGbiv95fmIGV0HKRJwYKsh80SDhyEg0/R/1maLE8IklmChmb0VkhBUmxqZUtCF4iy8vk9Z51atVL+5r5fp1HkcBjuEEKuDBJdThFhrQBAISnuEV3hzjvDjvzse8dcXJZ47gD5zPH+c3kQM=</latexit>

emb(·)

<latexit sha1_base64="R3gWBimIa0F7YUYeBDk+WKMmUZQ=">AAAB8XicbVBNSwMxEM3Wr1q/qh69BItQL2VXKnosevFYwX5gu5RsdrYNzSZLkhXK0n/hxYMiXv033vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRaFFJZeqGxANnAloGWY4dBMFJA44dILx7czvPIHSTIoHM0nAj8lQsIhRYqz0CHFQ7dNQmvNBueLW3DnwKvFyUkE5moPyVz+UNI1BGMqJ1j3PTYyfEWUY5TAt9VMNCaFjMoSepYLEoP1sfvEUn1klxJFUtoTBc/X3REZirSdxYDtjYkZ62ZuJ/3m91ETXfsZEkhoQdLEoSjk2Es/exyFTQA2fWEKoYvZWTEdEEWpsSCUbgrf88ippX9S8eu3yvl5p3ORxFNEJOkVV5KEr1EB3qIlaiCKBntErenO08+K8Ox+L1oKTzxyjP3A+fwDurJBx</latexit>

emb(·)

<latexit sha1_base64="R3gWBimIa0F7YUYeBDk+WKMmUZQ=">AAAB8XicbVBNSwMxEM3Wr1q/qh69BItQL2VXKnosevFYwX5gu5RsdrYNzSZLkhXK0n/hxYMiXv033vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRaFFJZeqGxANnAloGWY4dBMFJA44dILx7czvPIHSTIoHM0nAj8lQsIhRYqz0CHFQ7dNQmvNBueLW3DnwKvFyUkE5moPyVz+UNI1BGMqJ1j3PTYyfEWUY5TAt9VMNCaFjMoSepYLEoP1sfvEUn1klxJFUtoTBc/X3REZirSdxYDtjYkZ62ZuJ/3m91ETXfsZEkhoQdLEoSjk2Es/exyFTQA2fWEKoYvZWTEdEEWpsSCUbgrf88ippX9S8eu3yvl5p3ORxFNEJOkVV5KEr1EB3qIlaiCKBntErenO08+K8Ox+L1oKTzxyjP3A+fwDurJBx</latexit>

emb(·)

<latexit sha1_base64="R3gWBimIa0F7YUYeBDk+WKMmUZQ=">AAAB8XicbVBNSwMxEM3Wr1q/qh69BItQL2VXKnosevFYwX5gu5RsdrYNzSZLkhXK0n/hxYMiXv033vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRaFFJZeqGxANnAloGWY4dBMFJA44dILx7czvPIHSTIoHM0nAj8lQsIhRYqz0CHFQ7dNQmvNBueLW3DnwKvFyUkE5moPyVz+UNI1BGMqJ1j3PTYyfEWUY5TAt9VMNCaFjMoSepYLEoP1sfvEUn1klxJFUtoTBc/X3REZirSdxYDtjYkZ62ZuJ/3m91ETXfsZEkhoQdLEoSjk2Es/exyFTQA2fWEKoYvZWTEdEEWpsSCUbgrf88ippX9S8eu3yvl5p3ORxFNEJOkVV5KEr1EB3qIlaiCKBntErenO08+K8Ox+L1oKTzxyjP3A+fwDurJBx</latexit>

emb(·)

<latexit sha1_base64="R3gWBimIa0F7YUYeBDk+WKMmUZQ=">AAAB8XicbVBNSwMxEM3Wr1q/qh69BItQL2VXKnosevFYwX5gu5RsdrYNzSZLkhXK0n/hxYMiXv033vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRaFFJZeqGxANnAloGWY4dBMFJA44dILx7czvPIHSTIoHM0nAj8lQsIhRYqz0CHFQ7dNQmvNBueLW3DnwKvFyUkE5moPyVz+UNI1BGMqJ1j3PTYyfEWUY5TAt9VMNCaFjMoSepYLEoP1sfvEUn1klxJFUtoTBc/X3REZirSdxYDtjYkZ62ZuJ/3m91ETXfsZEkhoQdLEoSjk2Es/exyFTQA2fWEKoYvZWTEdEEWpsSCUbgrf88ippX9S8eu3yvl5p3ORxFNEJOkVV5KEr1EB3qIlaiCKBntErenO08+K8Ox+L1oKTzxyjP3A+fwDurJBx</latexit>

emb(·)

<latexit sha1_base64="R3gWBimIa0F7YUYeBDk+WKMmUZQ=">AAAB8XicbVBNSwMxEM3Wr1q/qh69BItQL2VXKnosevFYwX5gu5RsdrYNzSZLkhXK0n/hxYMiXv033vw3pu0etPXBwOO9GWbmBQln2rjut1NYW9/Y3Cpul3Z29/YPyodHbS1TRaFFJZeqGxANnAloGWY4dBMFJA44dILx7czvPIHSTIoHM0nAj8lQsIhRYqz0CHFQ7dNQmvNBueLW3DnwKvFyUkE5moPyVz+UNI1BGMqJ1j3PTYyfEWUY5TAt9VMNCaFjMoSepYLEoP1sfvEUn1klxJFUtoTBc/X3REZirSdxYDtjYkZ62ZuJ/3m91ETXfsZEkhoQdLEoSjk2Es/exyFTQA2fWEKoYvZWTEdEEWpsSCUbgrf88ippX9S8eu3yvl5p3ORxFNEJOkVV5KEr1EB3qIlaiCKBntErenO08+K8Ox+L1oKTzxyjP3A+fwDurJBx</latexit>

Class 
Representation

Figure 4: Taxonomy-enhanced class encoder.

node features over the network structure. The node
features are initialized with the pre-trained word
embeddings of class surface names3. The propa-
gation mechanism updates the feature of a node
u by iteratively aggregating representations of its
neighbors and itself. Formally, we define a GNN
with L-layers as follows:

h(l)
u = ReLU

 ∑
v∈N(u)

α(l−1)
uv W(l−1)h(l−1)

v

 , (4)

where l ∈ {1, . . . , L}, N(u) includes node u’s
neighbors and itself, α(l−1)

uv = 1√
|N(u)||N(v)|

is a

normalization constant (same for all layers), and
W(l−1) are learnable parameters.

After obtaining individual node features, we
combine them into a vector representing the whole
ego network G as follows:

hG =
1

|G|
∑
u∈G

h(L)
u . (5)

As this ego network is centered on class cj and
encodes its both textual and structural information,
we treat this final graph representation as the class
representation cj .
Text Matching Network. Based on the document
representation Di and the class representation cj ,
we use a log-bilinear text matching model to com-
pute the probability of document Di being tagged
with class cj as follows:

pij = P(yj = 1|Di) = σ(exp(cTj BDi)), (6)

where σ(·) is the sigmoid function and B is a learn-
able interaction matrix.

3.3.2 Text Classifier Training
We use our discovered document confident core
classes to train a text classifier. One intuitive strat-
egy is to treat each document’s core classes as pos-
itive classes and all the remaining classes as nega-
tive classes. However, this strategy has a high false

3For multi-gram class names, we use their averaged word
embeddings.
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Algorithm 1: TaxoClass Framework.
Input: An unlabeled corpus D, a class taxonomy

T with class names S, an entailment
modelM, total number of batches B.

Output: A trained classifier f(·).
1 Use modelM to compute document-class similarity

(c.f. Sect. 3.1);
2 Obtain document core classes {(Di,Ci) | Di ∈ D }

(c.f. Sect. 3.2);
3 Train classifier f(·) with Eq. (8);
4 for i from 1 to B do
5 if i mod 25 = 0 then
6 Update Q with Eq. (10);
7 Train classifier f(·) with Eq. (9);
8 Return f(·);

negative rate because some non-core classes could
still be relevant to the document (c.f. Fig. 1).

We observe a document’s multiple labeled
classes usually have some ancestor-descendent re-
lations in the class hierarchy T = (C,R). This
implies that given a document’s core class, its par-
ent class and some of its children classes are also
likely to be tagged with this document. Therefore,
we introduce all core classes’ parent classes into
the positive class set and exclude their children
classes from the negative class set. Formally, given
a document Di with its core class set Ci, we define
its positive and negative class set as follows:

Cpos
i =

 ⋃
cj∈Ci

Par(cj)

 ∪ Ci,

Cneg
i = C − Cpos

i −
⋃

cj∈Ci

Chd(cj),

(7)

where Chd(cj) is class cj’s children class set. Fi-
nally, we train our classification model using the
below binary cross entropy (BCE) loss:

L = −
|D|∑
i=1
Ci 6=∅

(
∑

cj∈C
pos
i

log pij +
∑

cj∈C
neg
i

log(1− pij)), (8)

where “∅” indicates an empty set and we exclude
the documents without any confident core class
from the loss calculation.

3.4 Multi-label Self-Training

After training the text classifier based on docu-
ment core classes, we propose to further refine
the model via self-training on the entire unlabeled
corpus D for better generalization. The idea of
self-training (ST) (Xie et al., 2016) is to iteratively
use the model’s current prediction P to compute a

Dataset # Train # Test # Classes

Amazon-531 29,487 19,685 531
DBPedia-298 196,665 49,167 298

Table 1: Dataset statistics. Supervised methods are
trained on the entire training set. Weakly-supervised
methods are trained by treating the training set as unla-
beled data. All methods are evaluated on the test set.

target distribution Q which guides the model for re-
finement. In general, the ST objective is expressed
with the KL divergence loss as below:

LST = KL(Q||P ) =

|D|∑
i=1

|C|∑
j=1

qij log
qij
pij

. (9)

The target distribution Q is constructed by en-
hancing high-confidence predictions while down-
weighting low-confidence ones:

qij =
p2ij/(

∑
i pij)

p2ij/(
∑

i pij) + (1− pij)2/(
∑

i(1− pij))
. (10)

Different from the previous studies (Meng et al.,
2018; Yu et al., 2020), our target distribution Q
can be applied to multi-label classification prob-
lem as it normalizes the current predictions P for
each individual class. Intuitively, this equation can
enhance high-confidence predictions while down-
weighting low-confidence predictions. This is be-
cause if example i is more confidently labeled with
class j than other examples, we will have a large
pij that dominates the

∑
i pij term. Consequently,

Eq 10 computes a large qij , which further pushes
the model to predict class j for example i.

In practice, instead of updating the target distri-
bution Q for every training example, we update it
every 25 batches4 and train the model with Eq. (9),
which makes the self-training process more effi-
cient and robust. We summarize our TaxoClass
framework in Algorithm 1.

4 Experiments

4.1 Datasets

We use two public datasets from different do-
mains to evaluate our method: (1) Amazon-
531 (McAuley and Leskovec, 2013) contains
49,145 product reviews and a three-level class tax-
onomy consisting of 531 classes; and (2) DBPedia-
298 (Lehmann et al., 2015) includes 245,832

4This hyper-parameter controls the update frequency. Em-
pirically, we find our model is insensitive to this hyper-
parameter (in the typical value range of 10-100).
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Wikipedia articles and a three-level class taxon-
omy with 298 classes. Documents in both datasets
are lower-cased and truncated to has maximum 500
tokens. We list the data statistics in Table 1.

4.2 Compared Methods

To the best of our knowledge, we are the first to
study weakly-supervised HMTC problem and there
is no directly comparable baseline under the exact
same setting as ours. Therefore, we choose a wide
range of representative methods that are most re-
lated to TaxoClass and adapt them to our problem
setting, described as follows.

• Hier-doc2vec (Le and Mikolov, 2014)5: This
weakly-supervised method first embeds docu-
ments and classes into a shared semantic space,
and then recursively selects the class of the high-
est embedding similarity with the document in a
top-down fashion. We set the embedding dimen-
sionality to be 100 and use the default value for
all other hyper-parameters.6

• WeSHClass (Meng et al., 2019)7: Another
weakly-supervised method that generates pseudo
documents to pre-train a text classifier and boot-
straps the pre-trained classifier on unlabeled doc-
uments with self-training. The class surface
names are treated as the “class-related keywords”
in this method. For the pseudo document gener-
ation step, we use its internal LSTM language
model. We treat all classes in its returned class
path as the output classes.

• SS-PCEM (Xiao et al., 2019)8: This semi-
supervised method uses a generative model to
generate documents based on a class path sam-
pled from the class taxonomy. Both labeled and
unlabeled documents are used to fit this gener-
ative model via the EM algorithm. Finally, it
uses the posterior probability of a test document
to predict its labeled classes. Among different
base classifiers, we choose their author reported
best variant PCEM in this study. We use 30% of
labeled training documents for this method.

5https://radimrehurek.com/gensim/
models/doc2vec.html

6We also test the Flat-doc2vec variant which directly ranks
all classes in the taxonomy and returns top ranked classes. Its
performance is significantly worse than Hier-doc2vec and thus
we only report Hier-doc2vec results.

7https://github.com/yumeng5/WeSHClass
8https://github.com/HKUST-KnowComp/

PathPredictionForTextClassification

• Hier-0Shot-TC (Yin et al., 2019)9: This zero-
shot method uses a pre-trained textual entailment
model to predict to what extent a document (as
the premise text) can entail a template filled with
the class name (as the hypothesis text). Similar
to Hier-doc2vec, we select the class with the
highest entailment score at each level in a top-
down recursive fashion. For fair comparison,
we change its internal BERT-base-uncased
model to RoBERTa-large-mnli model as is
used in our method.

• TaxoClass10: Our proposed weakly-supervised
framework that identifies document core classes,
leverages core classes to train a taxonomy-
enhanced text classifier, and generalizes the clas-
sifier using multi-label self-training. We also
evaluate two ablations: TaxoClass-NoST which
removes the multi-label self-training step, and
TaxoClass-NoGNN which replaces the GNN-
based class encoder with a simple embedding
layer initialized with pre-trained word embed-
dings (c.f. Sect. 3.3.1).

4.3 Evaluation Metrics

We follow previous studies (Partalas et al., 2015;
Prabhu et al., 2018) and evaluate the multi-label
classification results from different aspects using
various metrics. The first metric is Example-F111

which calculates the average F1 scores for all doc-
uments as follows:

Example-F1 =
1

N

N∑
i=1

2|Ctrue
i ∩ Cpred

i |
|Ctrue

i |+ |Cpred
i |

,

where Ctrue
i (Cpred

i ) is the true (model predicted)
class set of document Di.

Moreover, as many applications formalize the
HMTC as a class ranking problem (Jain et al., 2016;
Guo et al., 2019), we convert predicted class set
Cpred
i into a rank list Rpred

i based on each class’s
model predicted probability and calculate Preci-
sion at k (P@k) as follows:

P@k =
1

N

N∑
i=1

|Ctrue
i ∩ Rpred

i,1:k|
min(k, |Ctrue

i |) ,

9https://github.com/yinwenpeng/
BenchmarkingZeroShot

10https://github.com/mickeystroller/
TaxoClass

11This metric is also called “micro-Dice coefficient”.

https://radimrehurek.com/gensim/models/doc2vec.html
https://radimrehurek.com/gensim/models/doc2vec.html
https://github.com/yumeng5/WeSHClass
https://github.com/HKUST-KnowComp/PathPredictionForTextClassification
https://github.com/HKUST-KnowComp/PathPredictionForTextClassification
https://github.com/yinwenpeng/BenchmarkingZeroShot
https://github.com/yinwenpeng/BenchmarkingZeroShot
https://github.com/mickeystroller/TaxoClass
https://github.com/mickeystroller/TaxoClass
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Method Amazon-531 DBPedia-298
Example-F1 P@1 P@3 MRR Example-F1 P@1 P@3 MRR

Hier-doc2vec (Le and Mikolov, 2014) 0.3157 0.5805 0.3115 N/A 0.1443 0.2635 0.1443 N/A
WeSHClass (Meng et al., 2019) 0.2458 0.5773 0.2517 N/A 0.3047 0.5359 0.3048 N/A

TaxoClass-NoST 0.5431 0.7918 0.5414 0.5911 0.7712 0.8621 0.7712 0.8221
TaxoClass-NoGNN 0.5271 0.7642 0.5213 0.5621 0.7241 0.8154 0.7241 0.7692

TaxoClass 0.5934 0.8120 0.5894 0.6332 0.8156 0.8942 0.8156 0.8762

SS-PCEM (Xiao et al., 2019) 0.2921 0.5369 0.2948 0.3004 0.3845 0.7424 0.3845 0.4032

Hier-0Shot-TC (Yin et al., 2019) 0.4742 0.7144 0.4610 N/A 0.6765 0.7871 0.6765 N/A

Table 2: Evaluation of all compared methods on two datasets. For some methods predicting a class path in a
top-down fashion rather than returning all classes’ probabilities, we cannot compute their MRR scores and indicate
this using “N/A”.

where Rpred
i,1:k is each method predicted top k most

likely classes for Di. Finally, for methods able to
return the probability of a document being tagged
with each class in the taxonomy, we calculate their
Mean Reciprocal Rank (MRR) as follows:

MRR =
1

N

N∑
i=1

1

|Ctrue
i |

∑
cj∈Ctrue

i

1

Rij
,

whereRij is the “rank” of documentDj’s true class
cj in model predicted rank list (over all classes).

4.4 Experiment Settings

For all baseline methods except Hier-doc2vec, we
use the public implementations from their authors
and leave the hyper-parameters unchanged. For
both Hier-0Shot-TC and our method, we adopt the
same public Roberta-Large-MNLI model as
the textual entailment model and use the same hy-
pothesis template: “this product is about .” for
Amazon-531 dataset and “this example is .” for
DBPedia-298 dataset. We use AdamW optimizer
to train our model with batch size 64, learning rate
5e-5 for all parameters in BERT document encoder
and learning rate 4e-3 for all remaining parame-
ters. During the multi-label self-training stage (c.f.
Sect. 3.4), we use learning rate 1e-6 for all param-
eters in the BERT document encoder and 5e-4 for
all remaining parameters.

We run all experiments on a single cluster with
80 CPU cores and a Quadro RTX 8000 GPU.
All deep learning models are moved to the GPU
for faster inference speed. With batch size 64,
the TaxoClass framework consumes about 10GB
GPU memory. In principle, all methods should be
runnable on CPU.

Core Class
Example-F1 P@1 P@3 MRR

Mining Method

Explicit Mention 0.1611 0.2168 0.1564 0.2045
0Shot 0.4793 0.7361 0.4782 N/A

Ours 0.5431 0.7918 0.5414 0.5911
Ours-NoCS 0.3812 0.6254 0.3831 0.4366

Ours-NoConf 0.2603 0.4431 0.2521 0.3014

Table 3: Evaluation of core class mining algorithms
on Amazon-531 dataset. We train the classifier using
different training sets derived from different core class
mining algorithm outputs. Please refer to Section 4.6
for detailed descriptions of each method.

4.5 Overall Performance Comparison

Table 2 presents the overall results of all compared
methods. First, we find most weakly-supervised
and zero-shot method can outperform the semi-
supervised method SS-PCEM even the later has
access to 30% of labeled documents. Second, we
can see that TaxoClass has the overall best perfor-
mance across all the metrics and defeats the sec-
ond best method by a large margin. Comparing
TaxoClass with TaxoClass-NoGNN, we show the
importance of incorporating taxonomy structure
into the class encoder. Moreover, the improvement
of TaxoClass over TaxoClass-NoST demonstrates
the effectiveness of our multi-label self-training.

4.6 Effectiveness of Core Class Mining

We evaluate the effectiveness of our core class min-
ing method as follows. First, we define a set of
rival methods and use them to generate various sets
of “core classes”. Then, we derive pseudo-training
data for each generated core class set and use it
to learn a text classifier with the same architecture
as the one in TaxoClass. Finally, we report each
model’s performance on the test set. Note here we
skip the self-training step to ensure the “core class
based pseudo-training data” is the only variable.
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Method Example-F1 P@1 P@3 MRR

fastText 0.4472 0.7515 0.4521 0.4587
TextCNN 0.4787 0.7694 0.4771 0.4827

TaxoClass-NoGNN 0.5271 0.7642 0.5213 0.5621
TaxoClass 0.5934 0.8120 0.5894 0.6332

Table 4: Performance of different classifiers on Amazon-
531 dataset. All methods use the same training set
derived from our identified document core classes.

Table 3 lists all the results. First, we find that the
“Explicit Mention” method, which treats all classes
with names explicitly appear in the corpus as the
core classes, does not perform well for our HMTC
problem. One reason could be many class names
are human-curated summarizing phrases that do not
appear in the corpus naturally. Second, the “0Shot”
method views the output classes of baseline method
Hier-0Shot-TC as the core classes and trains a new
classifier. Interestingly, this new classifier performs
better than the original Hier-0Shot-TC classifier,
which shows that transferring knowledge from a
general zero-shot classifier to a domain-specific
classifier is a possible and promising direction. Fi-
nally, we compare variants of our own methods.
The “Ours-NoCS” method removes the candidate
core class selection step (c.f. Sect. 3.2.1) and treats
all classes with high confidence scores as core
classes. The “Ours-NoConf” method skips the con-
fident core class identification step (c.f. Sect. 3.2.2)
and views all candidate core classes as the final
output core classes. We can see a significant per-
formance drop on both ablations, which shows the
importance of our two core class mining steps.

4.7 Analysis of Classifier Architecture
We study whether we can use the identified doc-
ument core classes to train other text classifiers
with different architectures such as fastText (Joulin
et al., 2016) and TextCNN (Kim, 2014). As shown
in Table 4, both methods achieve reasonable perfor-
mance. We can also see that TaxoClass with and
without GNN-enhanced class encoder can outper-
form both methods. This shows the effectiveness
of our dual-encoder style classifier architecture.

4.8 Supervision Signals in Class Names
We vary the percentage of labeled documents on
Amazon-531 dataset for training a supervised fast-
Text classifier and present its corresponding per-
formance in Fig. 5. We can see the performance
of our TaxoClass framework is equivalent to that
of supervised fastText learned on roughly 70% of
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Figure 5: Comparison between TaxoClass and super-
vised fastText method on Amazon-531 dataset. We train
the fastText model using on different percentages of
labeled training documents.

labeled documents in the training set (i.e., about
20,000 labeled documents).

5 Related Work

Weakly-supervised Text Classification. There
exist some previous studies that leverage a few
labeled documents or class-indicative keywords as
weak supervision signals for text classification. A
pioneering method is dataless classification (Chang
et al., 2008; Song and Roth, 2014) which embeds
documents and classes into the same semantic
space of Wikipedia concepts and performs clas-
sification using the embedding similarity. Li et al.
(2018, 2019) extend this idea by mining concepts
directly from the corpus rather than using the ex-
ternal Wikipedia. Along another line, Chen et al.
(2015) and Li et al. (2016) propose to apply a
seed-guided topic model to infer class-specific top-
ics from class-indicative keywords and to predict
document classes from posterior class-topic as-
signments. Compared with these methods, our
TaxoClass framework neither restricts document
and class embeddings to live in the same semantic
space nor imposes strong statistical assumptions.

Recently, neural models are applied to weakly-
supervised text classification. Meng et al. (2018,
2019) propose a pretrain-and-refine paradigm
which first generates pseudo documents to pretrain
a neural classifier and then refine this classifier via
self-training. Mekala and Shang (2020); Meng
et al. (2020); Wang et al. (2020) improve the above
methods by introducing contextualized weak super-
vision and using a pre-trained language model to
obtain better text representations. While achieving
inspiring performance, these methods all assume
each document has only one class and all class
names (or class-indicative keywords) must appear
in the corpus for pseudo training data generation. In
this paper, we relax these assumptions and develop
a new method for weakly-supervised hierarchical
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multi-label text classification task.

Zero-shot Text Classification. Zero-shot text clas-
sification learns a text classifier based on training
documents belonging to seen classes and applies
the learned classifier to predict testing documents
belonging to unseen classes (Wang et al., 2019).
Nam et al. (2016) jointly embed documents and
classes into a shared semantic space where knowl-
edge from seen classes can be transferred to unseen
classes. Such an idea is further developed in (Rios
and Kavuluru, 2018; Srivastava et al., 2018; Yin
et al., 2019; Chu et al., 2020) where external re-
sources (e.g., knowledge graphs, natural language
explanations of unseen classes, and open domain
data) are introduced to help learn a better shared
semantic space. Comparing with these methods,
our TaxoClass framework does not require labeled
data for a set of seen classes.

Hierarchical Text Classification. Hierarchical
text classification leverages a class hierarchy to im-
prove the standard text classification performance.
Typical methods can be divided into two categories:
(1) local approaches which learn a text classi-
fier per class (Banerjee et al., 2019), per parent
class (Liu et al., 2005), or per level (Wehrmann
et al., 2018), and (2) global approaches which
incorporate taxonomy structure information into
one single classifier through recursive regulariza-
tion (Gopal and Yang, 2013) or graph neural net-
work (GNN) based encoder (Peng et al., 2018;
Huang et al., 2019; Zhou et al., 2020). Our
TaxoClass framework adopts the second global ap-
proach and uses a GNN-based encoder to obtain
each class’s representation.

6 Conclusions & Future Work

This paper studies the hierarchical multi-label text
classification problem when only class surface
names, instead of massive labeled documents, are
given. We propose a novel TaxoClass framework
which leverages the class taxonomy structure to
derive document core classes and learns taxonomy-
enhanced text classifier for prediction. Exten-
sive experiments demonstrate the effectiveness of
TaxoClass on two real-world datasets from differ-
ent domains. In the future, we plan to explore
how TaxoClass framework can be integrated with
semi-supervised methods and data augmentation
methods, when some class surface names are too
ambiguous to indicate class semantics. Moreover,
we consider extending our multi-label self-training

method to other related NLP tasks such as fine-
grained entity typing.
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