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Abstract

Though word embeddings and topics are com-
plementary representations, several past works
have only used pretrained word embeddings in
(neural) topic modeling to address data spar-
sity in short-text or small collection of docu-
ments. This work presents a novel neural topic
modeling framework using multi-view embed-
ding spaces: (1) pretrained topic-embeddings,
and (2) pretrained word-embeddings (context-
insensitive from Glove and context-sensitive
from BERT models) jointly from one or many
sources to improve topic quality and bet-
ter deal with polysemy. In doing so, we
first build respective pools of pretrained topic
(i.e., TopicPool) and word embeddings (i.e.,
WordPool). We then identify one or more
relevant source domain(s) and transfer knowl-
edge to guide meaningful learning in the
sparse target domain. Within neural topic mod-
eling, we quantify the quality of topics and
document representations via generalization
(perplexity), interpretability (topic coherence)
and information retrieval (IR) using short-text,
long-text, small and large document collec-
tions from news and medical domains. In-
troducing the multi-source multi-view embed-
ding spaces, we have shown state-of-the-art
neural topic modeling using 6 source (high-
resource) and 5 target (low-resource) corpora.

1 Introduction

Probabilistic topic models, such as LDA (Blei et al.,
2003), Replicated Softmax (RSM) (Salakhutdi-
nov and Hinton, 2009) and Document Neural Au-
toregressive Distribution Estimator (DocNADE)
(Larochelle and Lauly, 2012) are often used to
extract topics from text collections and learn la-
tent document representations to perform natural
language processing tasks, such as information re-
trieval (IR). Though they have been shown to be
powerful in modeling large text corpora, the topic

* : equal contribution

Topic Topic Words Topic Label

Z1 (S1)
profit, growth, stocks, apple, fall,

Trading
consumer, buy, billion, shares

Z2(S2)
smartphone, ipad, apple, app,

Product Line
iphone, devices, phone, tablet

Z3 (S3)
microsoft, mac, linux, ibm, ios,

Operating System
apple, xp, windows, software

Z4 (T )
apple, talk, computers, shares,

?
disease, driver, electronics, profit, ios

Table 1: Coherent (Z1-Z3) vs Incoherent (Z4) topics
from high-resource (S1-S3) and low-resource (T ) texts

modeling (TM) still remains challenging especially
in the sparse-data setting, especially for the cases
where word co-occurrence data is insufficient, e.g.,
on short-text or a corpus of few documents. It leads
to a poor quality of topics and representations.

To address data sparsity issues, several works
(Das et al., 2015; Nguyen et al., 2015; Gupta
et al., 2019a, 2020) have introduced external knowl-
edge in traditional topic models, e.g., incorporat-
ing word embeddings obtained from Glove (Pen-
nington et al., 2014) or word2vec (Mikolov et al.,
2013a). However, no prior work in topic modeling
has employed multi-view embedding spaces: (1)
pretrained topics, i.e., topical embeddings obtained
from large document collections, and (2) pretrained
contextualized word embeddings from large-scale
language models like BERT (Devlin et al., 2019).

Though topics and word embeddings are com-
plementary in how they represent the meaning, they
are distinctive in how they learn from word occur-
rences observed in text corpora. A topic model
(Blei et al., 2003) is a statistical tool to infers topic
distributions across a collection of documents and
assigns a topic to each word occurrence, where the
assignment is equally dependent on all other words
appearing in the same document. Therefore, a topic
has a global view representing semantic structures
hidden in document collection. On other hand,
word embeddings have primarily local view in the
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sense that they are learned based on local colloca-
tion pattern in a text corpus, where the representa-
tion of each word often depends on a local context
window (Mikolov et al., 2013b) or is a function of
its sentence(s) (Peters et al., 2018). Consequently,
they are not aware of the thematic structures under-
lying the document collection. Additionally, recent
studies (Peters et al., 2018; Devlin et al., 2019; Liu
et al., 2019) have shown a reasonable success in
several NLP applications by employing pretrained
contextualized word embeddings, where the repre-
sentation of a word is different in different contexts
(i.e., context-sensitive). In context of this work, the
representations due to global and local (context-
sensitive or context-insensitive) views together are
referred as multi-view embeddings.

For example in Table 1, consider four topics
(Z1-Z4) of different domains where the topics (Z1-
Z3) are respectively obtained from three different
high-resource source (S1-S3) domains whereas Z4

from a low-resource target domain T (especially in
the data-sparsity settings). Observe that the topics
about Trading (Z1), Product Line (Z2) and Oper-
ating System (Z3) are coherent and and represent
meaningful semantics at document-level via lists of
topic words. However in sparse-data settings, the
topic Z4 discovered is incoherent (noisy) and it is
difficult to infer meaningful document semantics.

Unlike the topics, word embeddings (context-
insensitive) encode syntactic and semantic relat-
edness in fine-granularity and therefore, do not
capture thematic structures. For instance, the top-5
nearest neighbors (NN) of apple (below) in word
embedding (Mikolov et al., 2013b) space suggest
that it refers to a fruit and do not express any top-
ical information (e.g., Trading, Product Line or
Health) in the corpora. Similarly given the NN of
the word fall, it is difficult to infer its association
with document-level semantics, e.g., Trading as
expressed by Z1 in topic-embedding space.

apple NN
==⇒ apples, pear, fruit, berry, pears, strawberry

fall NN
==⇒ falling, falls, drop, tumble, rise, plummet

Therefore, topic and word embedding spaces
encode complementary semantics. Different to
context-insensitive word embeddings, the word ap-
ple is referring to an organization and contextual-
ized by different topical semantics respectively in
the three sources S1-S3. Thus, it arises the need for
context-sensitive embeddings in topic modeling.

Contribution (1) Multi-view Neural Topic
Modeling using pretrained word and topic em-

Notation Description

LVT, GVT Local-view Transfer, Global-view Transfer
MVT, MST Multi-view Transfer, Multi-source Transfer
T , S A target domain, a set of source domains
v, k, L An input document, kth source, loss
K,D Vocabulary size, document size
E, H Word embedding dimension, #topics

W ∈ RH×K Encoding matrix of DocNADE in T
U ∈ RK×H Decoding matrix of DocNADE

λk Degree of relevance of Ek in T
γk Degree of imitation of Zk by W

Ek ∈ RE×K Word embeddings of kth source
Zk ∈ RH×K Topic embeddings of kth source
Ak ∈ RH×H Topic-alignment in T and Zk

b ∈ RK , c ∈ RH Visible-bias, hidden-bias
DC Document Collection

Table 2: Description of the notations used in this work

beddings: To alleviate the data sparsity issues, it
is the first work in unsupervised neural topic mod-
eling (NTM) within transfer learning paradigm
that employs multi-view embedding spaces via:
(a) Global-view Transfer (GVT): Pretrained topic
embeddings instead of using word embeddings
exclusively, and (b) Multi-view Transfer (MVT):
Pretrained topic and word embeddings (context-
insensitive from Glove (Pennington et al., 2014)
and context-sensitive from large-scale language
models such as BERT (Devlin et al., 2019) jointly
to address data sparsity and polysemy issues.

Contribution (2) Multi-source Multi-view
Neural Topic Modeling: A single source of prior
knowledge is often insufficient due to incomplete
and non-overlapping domain information required
by a target domain. Therefore, there is a need to
leverage multiple sources of prior knowledge, deal-
ing with domain-shifts (Cao et al., 2010) among
the target and sources. In doing so, we first learn
word and topic representations on multiple source
domains to build WordPool and TopicPool,
respectively and then perform multi-view and multi-
source transfer learning in neural topic modeling by
jointly using the complementary representations.

We evaluate the effectiveness of multi-source
neural topic modeling in multi-view embedding
spaces using 7 (5 low-resource and 2 high-resource)
target and 5 (high-resource) source corpora from
news and medical domains, consisting of short-
text, long-text, small and large document col-
lections. We have shown state-of-the-art re-
sults with significant gains quantified by gener-
alization (perplexity), interpretability (topic co-
herence) and text retrieval. The code is avail-
able at https://github.com/YatinChaudhary/

Multi-view-Multi-source-Topic-Modeling.

https://github.com/YatinChaudhary/Multi-view-Multi-source-Topic-Modeling
https://github.com/YatinChaudhary/Multi-view-Multi-source-Topic-Modeling
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Figure 1: (Left) DocNADE (LVT+MST): Multi-source transfer learning in NTM for a document v by introducing
pretrained word embeddings from a WordPool at each autoregressive step i. Double circle→ multinomial (soft-
max) unit (Larochelle and Lauly, 2012). (Right) DocNADE (GVT+MST): Multi-source transfer learning in NTM
by introducing pretrained (latent) topic embeddings from a TopicPool, illustrating topic alignments between
source and target corpora. Each outgoing row from Zk∈RH×K signify a topic embedding of corresponding kth
source corpus, DCk. Here, NTM refers to a DocNADE (Larochelle and Lauly, 2012) based Neural Topic Model.

2 Knowledge-Aware Topic Modeling

Consider a sparse target domain T and a set of
source domains S, we first prepare two knowl-
edge bases (KBs) of representations (or embed-
dings) from document collections of each of the
|S| sources: (1) WordPool: a KB of pretrained
word embeddings matrices {E1, ...,E|S|}, where
Ek ∈ RE×K , and (2) TopicPool: a KB of
pretrained latent topic embeddings {Z1, ...,Z|S|},
where Zk ∈ RH×K encodes a distribution over a
vocabulary of K words. Here, k ∈ [1, ..., |S|] in
superscript indicates knowledge of kth source, and
E and H are word embedding and latent topic di-
mensions, respectively. While topic modeling on
T , we introduce the two types of knowledge trans-
fers from one or many sources: Local (LVT) and
Global (GVT) View Transfer using the two KBs of
pretrained word (i.e., WordPool) and topic (i.e.,
TopicPool) embeddings, respectively. Specially,
we employ a neural autoregressive topic model, i.e.,
DocNADE as backbone in building the pools and
realizing the multi-source multi-view framework.

Table 2 describes the notations used. Notice that
the superscript used in notations indicates a source.

2.1 Neural Autoregressive Topic Models

DocNADE (Larochelle and Lauly, 2012) is an un-
supervised neural-network based generative topic
model that is inspired by the benefits of NADE
(Larochelle and Murray, 2011) and RSM (Salakhut-
dinov and Hinton, 2009) architectures. Specifically,
DocNADE factorizes the joint probability distribu-
tion of words in a document as a product of con-
ditional distributions and efficiently models each

conditional via a feed-forward neural network (ff-
net), following reconstruction mechanism.

DocNADE Formulation: For a document v =
(v1, ..., vD) of size D, each word index vi takes
value in {1, ...,K} of vocabulary size K. Doc-
NADE learns topics in a language modeling fash-
ion (Bengio et al., 2003) and decomposes the joint
distribution p(v)=

∏D
i=1 p(vi|v<i) such that each

autoregressive conditional p(vi|v<i) is modeled by
a ff-net using preceding words v<i in the sequence:

hi(v<i) = g(c+
∑
q<i

W:,vq ) and g = {sigmoid, tanh}

p(vi = w|v<i) =
exp(bw + Uw,:hi(v<i))∑
w′ exp(bw′ + Uw′,:hi(v<i))

for each word i ∈ {1, ..., D} where v<i is the
subvector consisting of all vq such that q < i i.e.,
v<i ∈ {v1, ..., vi−1}, g(·) is a non-linear activation
function, W ∈ RH×K and U ∈ RK×H are weight
matrices, c ∈ RH and b ∈ RK are bias parame-
ter vectors. H is the number of hidden units (the
number of topics to be discovered).

Figure 1 (left) (except WordPool) describes the
DocNADE architecture for the ith autoregressive
step, where the parameter W is shared in the feed-
forward networks and hi encodes latent document-
topic proportion. The value of each unit j in the
hidden vector signifies contribution of the jth topic
in the proportion. Importantly, the topic-word ma-
trix W has a property that the column vector W:,vi

corresponds to embedding of the word vi, whereas
the row vector Wj,: encodes latent features for the
jth topic (i.e., topic-word distribution). We lever-
age this property to introduce external knowledge
via word and topic embeddings.
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Algorithm 1 Computation of log p(v) and Loss L(v)

Input: Source domains S, a target domain T
Input: A training document v from T
Input: WordPool: A KB of pretrained word embedding
matrices {E1, ...,E|S|} from S domains
Input: TopicPool: A KB of pretrained latent topics
{Z1, ...,Z|S|} from S domains
Parameters: Θ = {b, c,W,U,A1, ...,A|S|,P}
Hyper-params: Φ = {λ1, ..., λ|S|, γ1, ..., γ|S|, H}

1: Initialize: a← c and p(v)← 1
2: for word i from 1 to D do
3: Compute ith position-dependent hidden:

hi(v<i)← g(a), where g = {sigmoid, tanh}
4: Compute ith autoregressive conditional:

p(vi = w|v<i)← exp(bw+Uw,:hi(v<i))∑
w′ exp(bw′+Uw′,:hi(v<i))

5: Memorize: p(v)← p(v)p(vi|v<i)
6: Compute pre-activation for word i :

a← a + W:,vi

7: if LVT then
8: Get word-embeddings E from WordPool
9: Introduce prior knowledge E for word i:

scheme (i): a← a +
∑|S|

k=1 λ
k Ek

:,vi

scheme (ii): êi ← concat(E1
:,vi , ...,E

k
:,vi)

a← a + P · êi

10: Loss (negative log-likelihood): L(v)← − log p(v)
11: if GVT then
12: Topic-embedding transfer using TopicPool:

∆←
∑|S|

k=1 γ
k ∑H

j=1 ||A
k
j,:W − Zk

j,:||22
13: Overall loss with controlled topic-imitation:

L(v)← L(v) + ∆

14: Minimize L(v) using stochastic gradient descent

Algorithm 1 (for DocNADE, set both LVT and
GVT to False) demonstrates the computation of
log p(v) and loss (i.e., negative log-likelihood)
L(v) that is minimized using stochastic gradient
descent. Moreover, computing each hi is efficient
(linear complexity) due to NADE architecture that
leverages the pre-activation ai−1 of (i− 1)th step
in computing ai for the ith step (line #6). See
Larochelle and Lauly (2012) for further details.

Why DocNADE backbone: It has shown outper-
forming traditional models such as LDA and RSM.
Additionally, Gupta et al. (2019a,b) have extended
DocNADE on short texts by introducing context-
insensitive word embeddings; however, based on a
single-source transfer. Thus, we adopt DocNADE.

2.2 MVT and MST in Neural Topic Modeling

We describe our transfer learning framework in
topic modeling that jointly exploits the complemen-
tary prior knowledge accumulated in (WordPool,
TopicPool), obtained from large document col-
lections (DCs) from several sources. In doing so,
we first apply the DocNADE to generate a topic-
word matrix for each of the DCs, where its column-
vector and row-vector generate Ek and Zk, respec-

tively for the kth source. See appendix for the me-
chanics of extracting word and topic embeddings
from the topic-word matrix of a source.

LVT+MST Formulation for Multi-source
Word Embedding Transfer: As illustrated in Fig-
ure 1 (left) and Algorithm 1 (with LVT being True,
line #7), we perform transfer learning on a target T
using the WordPool of pretrained word embed-
dings {E1, ...,E|S|} from several sources S (i.e.,
multi-source) under the two schemes:

scheme (i): Using a domain-relevance factor λ
for every source in the WordPool such that the
hidden vector hi encodes document-topic distribu-
tion, augmented with prior knowledge in form of
pretrained word embeddings from several sources:

hi(v<i) = g(c +
∑
q<i

W:,vq +
∑
q<i

|S|∑
k=1

λk Ek
:,vq )

Here, k refers to the kth source and λk is a weight
for Ek that controls the amount of knowledge trans-
ferred in T , based on cross-domain overlap.

scheme (ii): Using a projection matrix P ∈
RH×P with P = E × |S| in order to align word-
embedding spaces of the target and all source do-
mains for all D words in the document v such that:

For q ∈ {i, ...D} : êq = concat(E1
:,vq , ...,E

k
:,vq )

hi(v<i) = g(c +
∑
q<i

W:,vq +
∑
q<i

P · êq)

Unlike scheme (i), the second schema allows us
to automatically determine shifts in the target and
source domains, identify and transfer relevant prior
knowledge from many sources without configuring
λ for every source. To better guide TM, we also
introduce pre-trained contextualized word embed-
ding from BERT, concatenating with êq.

GVT+MST Formulation for Multi-source
Topic Embedding Transfer: Next, we per-
form knowledge transfer exclusively using the
TopicPool of pretrained topic embeddings (e.g.,
Zk) from one or several sources, S . In doing so, we
add a regularization term to the loss function L(v)
and require DocNADE to minimize the overall loss
in a way that the (latent) topic features in W si-
multaneously inherit relevant topical features from
each of the source domains S , and thus, it generates
meaningful representations for the target T in order
to address data-sparsity. The overall loss L(v) due
to GVT+MST configuration in DocNADE is:

L(v) = − log p(v) +

|S|∑
k=1

γk
H∑

j=1

||Ak
j,:W − Zk

j,:||22
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Target Domain Corpora Source Domain Corpora

ID Data Train Val Test K L C ID Data Train Val Test K L C

T 1 20NSshort 1.3k 0.1k 0.5k 1.4k 13.5 20 S1 20NS 7.9k 1.6k 5.2k 2k 107.5 20
T 2 20NSsmall 0.4k 0.2k 0.2k 2k 187.5 20 S2 R21578 7.3k 0.5k 3.0k 2k 128 90
T 3 TMNtitle 22.8k 2.0k 7.8k 2k 4.9 7 S3 TMN 22.8k 2.0k 7.8k 2k 19 7
T 4 R21578title 7.3k 0.5k 3.0k 2k 7.3 90 S4 AGNews 118k 2.0k 7.6k 5k 38 4
T 5 Ohsumedtitle 8.3k 2.1k 12.7k 2k 11.9 23 S5 PubMed 15.0k 2.5k 2.5k 3k 254.8 -
T 6 Ohsumed 8.3k 2.1k 12.7k 3k 159.1 23

Table 3: Data statistics: Short/long texts and/or small/large corpora in target and source
domains. Symbols- K: vocabulary size, L: average text length (#words), C: #classes
and k: thousand. For short-text, L<15. S3 is also used in target. ‘-’: unlabeled data.

T 1 T 2 T 3 T 4 T 5 T 6

S1 I I R D D D
S2 D D D I D D
S3 R R I D D D
S4 R R R D D D
S5 D D D D - -

Table 4: Domain overlap
in source-target corpora.
I: Identical, R: Related
and D: Distant domains.

Here, Ak∈RH×H aligns latent topics in the target
T and kth source, and γk governs the degree of
imitation of topic features Zk by W in T . Conse-
quently, the generative process of learning mean-
ingful topics in W of the target domain T is guided
by relevant topic features {Z}|S|1 ∈ TopicPool.
Algorithm 1 (line #11) describes the computation
of the loss, when GVT = True and LVT = False.

Moreover, Figure 1 (right) illustrates the need
for topic alignments between target and source(s).
Here, j indicates the topic (i.e., row) index in
a topic matrix, e.g., Zk. Observe that the first
topic (gray curve), i.e., Z1

j=1 ∈ Z1 of the first
source aligns with the first row-vector (i.e., topic)
of W (of target). However, the other two topics
Z1
j=2, Z

1
j=3 ∈ Z1 need alignment with the target.

MVT+MST Formulation for Multi-source
Word and Topic Embeddings Transfer: When
LVT and GVT are True (Algorithm 1) for
many sources, the two complementary represen-
tations are jointly used in transfer learning using
WordPool and TopicPool, and therefore, the
name multi-view and multi-source transfers.

Computational complexity of NTM: For Doc-
NADE, the complexity of computing all hidden
layers hi(v<i) is in O(DH) and all p(v|v<i) in
O(KDH). Thus, the overall complexity of Doc-
NADE is in O(DH +KDH).

Within the proposed transfer learning frame-
work, the complexity of computing all hidden lay-
ers (LVT+MST in scheme (i)) and topic-embedding
transfer term (GVT+MST) is in O(DH + |S|DH)
and O(|S|KH), respectively. Since |S|<<H ,
thus the overall complexity of DocNADE with
MVT+MST is in O(DH +KDH +KH).

3 Evaluation and Analysis

Datasets: Table 3 describes the datasets
used in high-resource source and low-and
high-resource target domains for our experi-

Baselines Features
(Related Works) NTM AuR LVT GVT|MVT|MST

LDA
RSM X

DocNADE X X

NVDM X

ProdLDA
Gauss-LDA X

glove-DMM X

DocNADEe X X X

EmbSum-Glove, EmbSum-BERT
doc2vec

this work X X X X X X

Table 5: Baselines (related works) vs this work. Here,
NTM and AuR refer to neural network-based TM and
autoregressive assumption, respectively. DocNADEe
→ DocNADE+Glove embeddings.

ments. The target domain T consists of four
short-text corpora (20NSshort, TMNtitle,
R21578title and Ohsumedtitle), one
small corpus (20NSsmall) and two large cor-
pora (TMN and Ohsumed). However in source S,
we use five large corpora (20NS, R21578, TMN,
AGnews and PubMed) in different label spaces
(i.e, domains). Here, the corpora (T 5, T 6 and S5)
belong to medical and others to news.

Additionally, Table 4 suggests domain overlap
(label match) in the target and source corpora,
where we define 3 types of overlap: I (identical) if
all labels match,R (related) if some labels match,
and D (distant) if a very few or no labels match.
Note, our approaches are completely unsupervised
and do not use the data labels (appendix).

Reproducibility: We follow the experimental
setup similar to DocNADE (Larochelle and Lauly,
2012) and DocNADEe (Gupta et al., 2019a), where
the number of topics (H) is set to 200. While Doc-
NADEe requires the dimension (i.e., E) of word
embeddings be the same as the latent topic (i.e.,H),
we follow scheme (ii) (Algorithm 1) to introduce
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KBs from Model Scores on Target Corpus (in sparse-data and sufficient-data settings)
Source or Transfer 20NSshort TMNtitle R21578title 20NSsmall TMN

Corpus Type PPL COH IR PPL COH IR PPL COH IR PPL COH IR PPL COH

B
as

el
in

es Baseline TM NVDM 1047 .736 .076 973 .740 .190 372 .735 .271 957 .515 .090 833 .673
without Word- ProdLDA 923 .689 .062 1527 .744 .170 480 .742 .200 1181 .394 .062 1519 .577

Embeddings DocNADE 646 .667 .290 706 .709 .521 192 .713 .657 594 .462 .270 584 .636

Pr
op

os
ed

20NS
LVT 630 .673 .298 705 .709 .523 194 .708 .656 594 .455 .288 582 .649
GVT 646 .690 .303 718 .720 .527 184 .698 .660 594 .500 .310 590 .652
MVT 638 .690 .314 714 .718 .528 188 .715 .655 600 .499 .311 588 .650

TMN
LVT 649 .668 .296 655 .731 .548 187 .703 .659 593 .460 .273 - -
GVT 661 .692 .294 689 .728 .555 191 .709 .660 596 .521 .276 - -
MVT 658 .687 .297 663 .747 .553 195 .720 .660 599 .507 .292 - -

R21578
LVT 656 .667 .292 704 .715 .522 186 .715 .676 593 .458 .267 581 .636
GVT 654 .672 .293 716 .719 .526 194 .706 .672 595 .485 .279 591 .646
MVT 650 .670 .296 716 .720 .528 194 .724 .676 599 .490 .280 589 .650

AGnews
LVT 650 .677 .297 682 .723 .533 185 .710 .659 592 .458 .260 564 .668
GVT 667 .695 .300 728 .735 .534 190 .717 .663 598 .563 .282 601 .684
MVT 659 .696 .290 718 .740 .533 189 .727 .659 599 .566 .279 592 .686

MST
LVT 640 .678 .308 663 .732 .547 182 .739 .673 594 .542 .277 568 .674
GVT 658 .705 .305 704 .746 .550 192 .727 .673 599 .585 .326 602 .680
MVT 656 .740 .314 680 .752 .569 188 .745 .685 600 .637 .285 600 .690

Gain%(vs DocNADE) ↑2.48 ↑10.9 ↑8.28 ↑7.22 ↑6.06 ↑9.21 ↑5.20 ↑4.49 ↑4.26 ↑0.34 ↑37.9 ↑20.7 ↑3.42 ↑8.50

Table 6: State-of-the-art comparisons with TMs: Perplexity (PPL), topic coherence (COH) and precision@recall
(IR) at retrieval fraction 0.02. Scores reported on each of the target, given KBs from several sources. LVT and
GVT employ WordPool and TopicPool, respectively. MVT employs both. LVT+MST scores using scheme (i).
Here, Bold→ Best score (in column) and Gain%→ Bold vs DocNADE.

pre-trained word embeddings from Glove, FastText
(E=300) (Bojanowski et al., 2017) and BERT-base
(E=768) models. See appendix for the experimen-
tal setup, hyperparameters and optimal values of
λk ∈ [0.1, 0.5, 1.0] and γk ∈ [0.1, 0.01, 0.001].

Baselines (Related Works): (1) Topic Models
without Transfer Learning that learn topics in isola-
tion using the given target corpus only. We employ
LDA-based variant, i.e., ProdLDA (Srivastava and
Sutton, 2017) and neural network-based variants,
i.e., DocNADE (autoregressive) and NVDM (non-
autoregressive) (Miao et al., 2016).

(2) Topic Models with Transfer Learning that
leverages pre-trained context-insensitive word em-
beddings (Pennington et al., 2014). We consider
topic models based on both LDA, i.e., Gauss-
LDA (Das et al., 2015) and glove-GMM (Nguyen
et al., 2015), and neural networks, i.e., DocNADEe
(Gupta et al., 2019a). They do not leverage pre-
trained topic-embeddings (i.e., GVT), contextual-
ized word-embedding and MST-MVT techniques.

(3) Unsupervised Document Representation to
quantify the quality of document representations.
We use 3 strategies: doc2vec (Le and Mikolov,
2014), EmbSum-Glove and EmbSum-BERT (rep-
resent a document by summing the pre-trained em-
beddings of it’s words from Glove and BERT).

(4) Zero-shot Topic Modeling to demonstrate

transfer learning capabilities of the proposed frame-
work, where we build (train) a TM using all source
corpora and evaluate on the target corpus T , and

(5) Data-augmentation that first augments the
target corpus with all the source corpora and then
builds a TM to evaluate transfer learning on T .

Table 5 summarizes the comparison of this work
with the aforementioned baselines. Tables 6 and
7 employ baseline TMs without and with transfer
learning, respectively.

3.1 Generalization: Perplexity (PPL)
To evaluate generative performance of DocNADE-
based NTM, we compute average held-out perplex-
ity per word: PPL = exp

(
− 1

N

∑N
t=1

1
|vt| log p(vt)

)
,

where N and |vt| are the number of documents
and words in a document vt, respectively.

Tables 6 and 7 quantitatively show PPL scores
on the five target corpora using one or four sources.
In Table 6 using TMN (as a single source) for
LVT, GVT and MVT transfer types on the tar-
get TMNtitle, we see improved (reduced) PPL
scores: (655 vs 706), (689 vs 706) and (663 vs 706)
respectively in comparison to DocNADE. We also
observe gains due to MST+LVT, MST+GVT and
MST+MVT configurations on TMNtitle. Sim-
ilarly in MST+LVT for R21578title, we ob-
serve a gain of 5.2% (182 vs 192), suggesting
that multi-source transfer learning using pretrained
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KBs from Model Scores on Target Corpus (in sparse-data and sufficient-data settings)
Source or Transfer 20NSshort TMNtitle R21578title 20NSsmall TMN

Corpus Type PPL COH IR PPL COH IR PPL COH IR PPL COH IR PPL COH

B
as

el
in

es
doc2vec - - .090 - - .190 - - .518 - - .200 - -

EmbSum-Glove - - .236 - - .513 - - .587 - - .214 - -
EmbSum-BERT - - .261 - - .499 - - .594 - - .262 - -

Baseline TM Gauss-LDA - - .080 - - .408 - - .367 - - .090 - -
with Word- glove-DMM - .512 .183 - .633 .445 - .364 .273 - .578 .090 - .705

Embeddings → DocNADEe 629 .674 .294 680 .719 .540 187 .721 .663 590 .455 .274 572 .664

Pr
op

os
ed

20NS MVT+Glove 630 .721 .320 688 .741 .565 183 .724 .667 597 .561 .306 570 .693
TMN MVT+Glove 640 .731 .295 673 .750 .576 184 .716 .672 599 .594 .261 - -

R21578 MVT+Glove 633 .705 .295 689 .738 .540 185 .737 .691 595 .485 .255 577 .697
AGnews MVT+Glove 642 .734 .302 706 .748 .565 190 .734 .675 598 .573 .284 585 .703

MST
MVT+Glove 644 .739 .304 673 .752 .570 183 .742 .684 598 .631 .282 582 .710

+ FastText 654 .741 .313 673 .751 .578 183 .744 .684 599 .634 .254 582 .711
+ BERT - .744 .322 - .752 .604 - .745 .680 - .640 .282 - .709

Gain% (vs DocNADEe) ↓0.16 ↑10.4 ↑9.5 ↑1.03 ↑4.60 ↑11.9 ↑3.33 ↑3.20 ↑4.22 ↓0.85 ↑40.7 ↑2.92 ↑.35 ↑7.08

Table 7: State-of-the-art comparisons against baseline TMs using context-insensitive word embeddings: PPL,
COH and IR at retrieval fraction 0.02. Scores are reported on each of the target, given the KBs. Here, MVT
→ LVT+GVT, DocNADEe → DocNADE+Glove, Bold → Best score (in column), Underline → Second best
score (in column) and Gain%→ Bold vs DocNADEe. For all the configurations, we apply a projection on ([non-
]contextualized) word embeddings from several sources, i.e., scheme (ii).

word and topic embeddings (jointly) helps im-
proving TM, and it also verifies domain related-
ness (e.g., in TMN-TMNtitle and AGnews-TMN).
Similarly, Table 7 reports gains in PPL (e.g., on
TMNtitle, R21578title, etc.) compared to
the baseline DocNADEe. PPL scores due to BERT
can be not computed since its embeddings are
aware of both preceding and following contexts.

In Table 8, we show PPL scores on 2 medi-
cal target corpora: Ohsumtitle and Ohsumed
using 2 sources: AGnews (news) and PubMed
(medical) to perform cross-domain and in-domain
transfers. We see that using PubMed for LVT on
both the targets improves generalization. Over-
all, we report a gain of 17.3% (1268 vs 1534) on
Ohsumedtitle and 8.55% (1497 vs 1637) on
Ohsumed datasets, compared to DocNADEe.

3.2 Interpretabilty: Topic Coherence (COH)

While PPL is used for model selection, Chang et al.
(2009) showed in some cases humans preferred
TMs (based on the semantic quality of topics) with
higher (worse) perplexities. Therefore, we also
estimate the quality of topics. We follow Röder
et al. (2015) and Gupta et al. (2019a) to compute
COH of the top 10 words in each topic. Essentially,
the higher scores imply the coherent topics.

Tables 6 and 7 (under COH column) demonstrate
that our approaches (GVT, MVT and MST) show
noticeable gains and thus improve topic quality.
For instance in Table 6, when AGnews is used as

a single source for 20NSsmall datatset, we ob-
serve a gain in COH due to GVT (.563 vs .462)
and MVT (.566 vs .462). Additionally, notice-
able gains are reported due to MST+LVT (.542 vs
.462), MST+GVT (.585 vs .462) and MST+MVT
(.637 vs .462), compared to DocNADE. Impor-
tantly, we find a trend MVT>GVT>LVT in COH
scores for both the single-source and multi-source
transfers. Similarly, Table 7 show noticeable gains
(e.g., 40.7%, 10.4%, 7.08%, etc.) in COH due
to MST+MVT+Glove +FastText+BERT setting.
Moreover, Table 8 shows gains in COH due to
GVT on Ohsumedtitle and Ohsumed, using
pretrained knowledge from PubMed. Overall, the
GVT, MVT and MST boost COH for all the five
target corpora compared to the baseline TMs (i.e.,
DocNADE and DocNADEe). The improvements
suggest that the approaches scale across domains.

3.3 Applicability: Information Retrieval (IR)

We further evaluate the quality of document repre-
sentations and perform an IR task using the label
information only to compute precision. We fol-
low the experimental setup similar to Gupta et al.
(2019a). See the details in appendix.

Tables 6 and 7 report precision scores at
retrieval fraction 0.02 where the configuration
MST+MVT outperforms both the DocNADE and
DocNADEe for all 4 targets. We observe large
gains in precision: (a) Table 6: 20.7% (.326 vs
.270) on 20NSsmall, 9.21% (.569 vs .521) on
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Figure 2: (a, b, c, d) Retrieval performance (precision@recall) on 4 datasets: 20NSshort, 20NSsmall, TMNtitle
and R21578title. (e) Precision at recall fraction 0.02, each for a fraction (20%, 40%, 60%, 80%, 100%) of the
training set of TMNtitle. (f) Zero-shot and data-augmentation (DA) for COH on TMNtitle and Ohsumed.

TMNtitle, etc., (b) Table 7: 11.9% (.604 vs
.540) on TMNtitle and 9.5% (.322 vs .294) on
20NSshort, etc., (c) Table 8: 14.4% (.183 vs
.160) on Ohsumedtitle. Additionally, Figures
2a, 2b, 2c and 2d illustrate precision-recall curves
on 20NSshort, 20NSsmall, TMNtitle and
R21578title respectively, where MST+MVT
and MST+GVT consistently outperform the base-
lines at all fractions.

3.4 Zero/Few-shot and Data-augmentation

Figures 2a, 2b, 2c and 2d show precision in the zero-
shot (source-only training) and data-augmentation
(source+target training) configurations. Observe
that the latter helps in learning meaningful repre-
sentations and performs better than zero-shot; how-
ever, it is outperformed by MST+MVT, suggesting
that a naive (data space) augmentation does not
add sufficient prior or relevant information to the
sparse target. Thus, we find that it is beneficial to
augment training data in feature space (e.g., LVT,
GVT and MVT) especially for unsupervised topic
models using WordPool and TopicPool.

Moreover in the few-shot setting, we first split
the training data of TMNtitle into several sets:
20%, 40%, 60%, 80% of the training set and

then retrain DocNADE, DocNADEe and Doc-
NADE+MST+MVT on each as a sparse target.
We demonstrate transfer learning in such sparse-
data settings using the KBs: WordPool and
TopicPool jointly. Figure 2e plots precision at
retrieval fraction 0.02 and validates that the pro-
posed modeling consistently outperforms both the
baselines: DocNADE and DocNADEe.

Beyond IR, we further investigate computing
topic coherence (COH) for the zero-shot and data-
augmentation baselines, where the COH scores in
Figure 2f suggest that MST+MVT outperforms
DocNADEe, zero-shot and data-augmentation.

3.5 Topics and Nearest Neighbors (NN)

For topic level inspection, we first extract topics
using the rows of W of source and target corpora.
Table 9 shows the topics (top-5 words) from source
and target domains. Observe that the target topics
become more coherent after transfer learning (i.e.,
+GVT) from one or more sources. The blue color
signifies that a target topic has imitated certain
topic words from the source. We also show a topic
(the last) improved due to multi-source transfer.

For word level inspection, we extract word rep-
resentations using the columns of W. Table 10
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KBs from Model Scores on Target Corpus
Source or Transfer Ohsumedtitle Ohsumed

Corpus Type PPL COH IR PPL COH IR

baselines

ProdLDA 1121 .734 .080 1677 .646 .080
DocNADE 1321 .728 .160 1706 .662 .184

EmbSum-BioEmb - - .150 - - .148
EmbSum-SciBERT - - .160 - - .165

DocNADEe 1534 .738 .175 1637 .674 .183

AGnews

LVT 1587 .732 .160 1717 .657 .184
GVT 1529 .732 .160 1594 .665 .185
MVT 1528 .734 .160 1598 .666 .184

+ BioEmb 1488 .747 .176 1595 .681 .187

PubMed

LVT 1268 .732 .172 1535 .669 .190
GVT 1392 .740 .173 1718 .671 .192
MVT 1408 .743 .178 1514 .674 .191

+ BioEmb 1364 .753 .182 1633 .689 .191

MST

LVT 1268 .733 .172 1536 .668 .190
GVT 1391 .740 .172 1504 .666 .192
MVT 1399 .744 .177 1607 .679 .191

+ BioEmb 1375 .751 .180 1497 .693 .190
+ BioFastText 1350 .753 .178 1641 .688 .187

+ SciBERT - .753 .183 - .682 .182

Gain% (vs DocNADE) ↑4.01 ↑3.43 ↑14.4 ↑12.3 ↑4.08 ↑4.35
Gain% (vs DocNADEe) ↑17.3 ↑2.03 ↑4.60 ↑8.55 ↑2.22 ↑4.91

Table 8: PPL, COH, and IR at fraction 0.02. BioEmb
and BioFastText (Moen and Ananiadou, 2013): 200-
dimension; SciBERT: Pretrained BERT-variant (Belt-
agy et al., 2019). + BioEmb: MVT+BioEmb

T S Model Topic-words (Top 5)

2
0
N
S
s
h
o
r
t

20NS DocNADE shipping, sale, prices, expensive, price
-GVT sale, price, monitor, site, setup
+GVT shipping, sale, price, expensive, subscribe

AGnews DocNADE microsoft, software, ibm, linux, computer
-GVT apple, modem, side, baud, perform
+GVT microsoft, software, desktop, computer, apple

T
M
N
t
i
t
l
e AGnews DocNADE miners, earthquake, explosion, stormed, quake

TMN DocNADE tsunami, quake, japan, earthquake, radiation
-GVT strike, jackson, kill, earthquake, injures
+GVT earthquake, radiation, explosion, wildfire

Table 9: Source S and target T topics before (-) and
after (+) topic transfer (GVT) from one/more source(s)

shows nearest neighbors (NNs) of the word chip in
20NSshort (target) corpus, before (-) and after
(+) topic knowledge transfer via GVT using three
sources (i.e., MST+GVT). Observe that the NNs
in the target become more meaningful by gaining
knowledge mainly from 20NS source.

4 Conclusion

We have presented a state-of-the-art neural topic
modeling framework using multi-view embed-
ding spaces: pretrained topic-embeddings and
word-embeddings (context-sensitive and context-
insensitive) from one or many sources to improve
quality of topics and document representations.

source corpora target corpus

20NS R21578 AGnews
20NSshort

-GVT +GVT
key chips chips virus chips

encrypted semiconductor chipmaker intel technology
encryption miti processors gosh intel

clipper makers semiconductor crash encryption
keys semiconductors intel chips clipper

Table 10: Five nearest neighbors of the word chip in a
target and three source semantic spaces before (-) and
after (+) transfer via MST+GVT configuration
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A Data Description

In order to evaluate knowledge transfer within un-
supervised neural topic modeling, we use the fol-
lowing seven datasets in the target domain T fol-
lowing the similar experimental setup as in Doc-
NADEe: (1) 20NSshort: We take documents
from 20NewsGroups data, with document size
(number of words) less than 20. (2) 20NSsmall:
We sample 20 document (each having more than
200 words) for training from each class of the 20NS
dataset. For validation and test, 10 document for
each class. Therefore, it is a corpus of few (long)
documents. (3) TMNtitle: Titles of the Tag My
News (TMN) news dataset. (4) R21578title:
Reuters corpus, a collection of new stories from
nltk.corpus. We take titles of the documents.
(5) Ohsumedtitle: Titles of Ohsumed ab-
stracts. Source: disi.unitn.it/moschitti/

corpora.htm. (6) Ohsumed: Ohsumed dataset,
collection of medical abstracts. Source: disi.

unitn.it/moschitti/corpora.htm. (7) TMN:
The Tag My News (TMN) news dataset.

To prepare knowledge base of word embed-
ings (local semantics) and latent topics (global
semantics) features, we use the following six
datasets in the source S: (1) 20NS: 20News-
Groups corpus, a collection of news stories from
nltk.corpus. (2) TMN: The Tag My News
(TMN) news dataset. (3) R21578: Reuters
corpus, a collection of new stories from nltk.

corpus. (4) AGnews: AGnews data sellection.
PubMed: Medical abstracts of randomized con-
trolled trials. Source: https://github.com/

Franck-Dernoncourt/pubmed-rct.
See Table 3 (in paper content) describes each of

the datasets, where a short-text refers to a text doc-
ument having less than 15 words. Notice that each
of the datasets in the target and source domains, we
see overlap in their label spaces. See Table 4 for the
label information for each of the source and target
corpora. Additionally in supplementary, we have
also provided the code and pre-processed datasets
used in our experiments.

B Getting Word and Latent Topic
Representations from Source(s)

Since in DocNADE, the column of W:,vi gives a
word vector of the word vi, therefore the dimension
of word embeddings in each of the Ek is same (i.e.,
H = 200). Thus, we prepare the knowledge base
of word representations Ek from kth source using

data labels / classes
TMN* world, us, sport, business, sci_tech, entertainment, health

AGnews business, sci_tech, sports, world
misc.forsale, comp.graphics, rec.autos, comp.windows.x,

20NS rec.sport.baseball, sci.space, rec.sport.hockey,
20NSshort, soc.religion.christian, rec.motorcycles, comp.sys.mac.hardware,
20NSsmall, talk.religion.misc, sci.electronics, comp.os.ms-windows.misc,

sci.med, comp.sys.ibm.pc.hardware, talk.politics.mideast,
talk.politics.guns, talk.politics.misc, alt.atheism, sci.crypt

trade, grain, crude, corn, rice, rubber, sugar, palm-oil,
veg-oil, ship, coffee, wheat, gold, acq, interest, money-fx,

carcass, livestock, oilseed, soybean, earn, bop, gas, lead, zinc,
R21578title gnp, soy-oil, dlr, yen, nickel, groundnut, heat, sorghum, sunseed,

R21578 cocoa, rapeseed, cotton, money-supply, iron-steel, palladium,
platinum, strategic-metal, reserves, groundnut-oil, lin-oil, meal-feed,
sun-meal, sun-oil, hog, barley, potato, orange, soy-meal, cotton-oil,
fuel, silver, income, wpi, tea, lei, coconut, coconut-oil, copra-cake,

propane, instal-debt, nzdlr, housing, nkr, rye, castor-oil, palmkernel,
tin, copper, cpi, pet-chem, rape-oil, oat, naphtha, cpu, rand, alum

Table 11: Label space of the corpora. TMN*:TMN or
TMNtitle

DocNADE, where each word vector is of H = 200
dimension.

Since the row vector of Wj,: in DocNADE en-
codes jth topic feature, therefore each latent topic
(i.e., row) in feature matrix W is a vector of K
dimension, corresponding the definition of topics
that it is a distribution over vocabulary. H is the
number of latent topics and K is the vocabulary
size, whereK varies across corpora. Thus, we train
DocNADE to learn a feature matrix specific to each
of the source corpora, e.g. Wk ∈ RH×K of kth
source.

For a target corpus of vocabulary size K
′
, the

DocNADE learns a feature matrix WT ∈ RH×K′
.

Similarly, Wk ∈ RH×K for kth source of vocab-
ulary size K. Since in the sparse-data setting for
the target, K ′ << K due to additional word in the
source. To perform GVT, we need the same topic
feature dimensions in the target and source, i.e., K ′

of the target. Therefore, we remove those column
vectors from Wk ∈ RH×K of the kth source for
which there is no corresponding word in the vocab-
ulary of the target domain. As a result, we obtain
Zk as a latent topic feature matrix to be used in
knowledge transfer to the target domain. Follow-
ing the similar steps, we prepare a KB of Zs such
that each latent topic feature matrix from a source
domain gets the same topic feature dimension as
the target.

C Experimental Setup

For DocNADE and DocNADEe in different knowl-
edge transfer configurations, we follow the same ex-
perimental setup as in DocNADE and DocNADEe.
We rerun DocNADE and DocNADEe using the
code released for DocNADEe. For all the hyperpa-

nltk.corpus
disi.unitn.it/moschitti/corpora.htm
disi.unitn.it/moschitti/corpora.htm
disi.unitn.it/moschitti/corpora.htm
disi.unitn.it/moschitti/corpora.htm
nltk.corpus
nltk.corpus
nltk.corpus
https://github.com/Franck-Dernoncourt/pubmed-rct
https://github.com/Franck-Dernoncourt/pubmed-rct
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Hyperparameter Search Space
retrieval fraction [0.02]

learning rate [0.001]
hidden units, H [200]

activation function (g) sigmoid
iterations [100]

λk [1.0, 0.5, 0.1]
γk [0.1, 0.01, 0.001]

Table 12: Hyperparameters in Generalization exper-
iments of DocNADE, DocNADEe, LVT, GVT and
MVT

Hyperparameter Search Space
retrieval fraction [0.02]

learning rate [0.001]
hidden units, H [200]

activation function (g) tanh
iterations [100]

λk [1.0, 0.5, 0.1]
γk [0.1, 0.01, 0.001]

Table 13: Hyperparameters search in the IR task, where
λk and γk are weights for kth source.

rameters, optimal values are selected based on the
performance on development set.

C.1 Experimental Setup for Generalization
We set the maximum number of training passes to
100, topics to 200 and the learning rate to 0.001
with sigmoid hidden activation. Since the baseline
DocNADE and DocNADEe reported better scores
in PPL forH = 200 topics than using 50, therefore
we use H = 200 in our experiments. See Table
12 for hyperparameters used in generalization task,
i.e., computing PPL.

C.2 Experimental Setup for IR Task
We treat all test documents as queries to retrieve
a fraction of the closest documents in the original
training set using cosine similarity between their
document vectors. To compute retrieval precision
for each fraction (e.g., 0.02), we average the num-
ber of retrieved training documents with the same
label as the query.

We set the maximum number of training passes
to 100, topics to 200 and the learning rate to 0.001
with tanh hidden activation. Since the baseline
DocNADE and DocNADEe reported better scores
in precision for the retrieval task for H = 200 top-
ics than using 50, therefore we use H = 200 in
our experiments. We follow the similar experimen-
tal setup as in DocNADEe. For model selection,

Scores on Target Corpus (in sparse-data setting)
20NSshort TMNtitle 20NSsmall

Type PPL COH IR PPL COH IR PPL COH IR

+ MST

LVT 667 .661 .308 670 .730 .535 610 .440 .286
GVT 651 .658 .285 701 .712 .523 602 .460 .273
MVT 667 .660 .309 667 .730 .535 608 .441 .293

+ Glove 662 .677 .296 672 .731 .540 634 .412 .207

× MST

LVT 640 .678 .308 663 .732 .547 596 .442 .277
GVT 658 .705 .305 704 .746 .550 599 .585 .326
MVT 656 .721 .314 680 .752 .556 600 .600 .285

+ Glove 644 .719 .293 687 .752 .538 609 .586 .282

Table 14: {λ, γ} as Parameter (+) vs Hyperparame-
ters (×): Perplexity (PPL), topic coherence (COH) and
precision@recall (IR) at retrieval fraction 0.02, when
λ and γ are (1) learned with backpropagation, and (2)
treated as hyperparameters. Results suggest the superi-
ority of the second configuration.

we used the validation set as the query set and
used the average precision at 0.02 retrieved docu-
ments as the performance measure. Note that the
labels are not used during training. The class labels
are only used to check if the retrieved documents
have the same class label as the query document.
To perform document retrieval, we use the same
train/development/test split of documents as for
PPL setup.

Given DocNADE, the representation of a doc-
ument of size D can be computed by taking the
last hidden vector hD at the autoregressive step
D. Since, the RSM and DocNADE strictly out-
performed LDA, therefore we only compare Doc-
NADE and its recent extension DocNADEe. We
use the same number of topic dimensions (H =
200) across all the source and target in training
DocNADE.

See Table 13 for the hyperparameters in the doc-
ument retrieval task, where λk and γk are weights
for kth source. We use the same grid-search for
all the source domains. We set γk smaller than
λk to control the degree of imitation of the source
domain(s) by the target domain. We use the devel-
opment set of the target corpus to find the optimal
setting in different configurations of knowledge
transfers from several sources.

C.3 {λ, γ} as Parameter vs Hyperparameters

Here, we treat λ and γ as parameters of the model,
instead of hyperparameters and learn them with
backpropagation. We initialize each λk = 0.5 and
γk = 0.01 for each of the sources. We perform
experiments on short-text datasets in MST+LVT,
MST+GVT and MST+MVT configurations. We
evaluate the topic modeling using PPL, topic co-
herence and retrieval accuracy. Table 14 reports
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the scores, when λ and γ are (1) learned with back-
propagation, and (2) treated as hyperparameters.
The experimental results suggest that the second
configuration performs better the former. Thus, we
have reported scores considering {λ, γ} as hyper-
parameters.

C.4 Reproducibility: Optimal Configurations
of λ and γ

As mentioned in Tables 12 and 13, the hyper-
parameter λk takes on values in [1.0, 0.5, 0.1] for
each of the word embeddings matrix Ek and γk

in [0.1, 0.01, 0.001] for each of the latent topic
features Zk, respectively for the kth source domain.
To determine an optimal configuration, we perform
grid-search over the values and use the scores on
the development set to determine the best setting.
We have a common model for PPL and COH scores
due to generalization.

To reproduce scores (best/bold in Table 5,
we mentioned the best settings of (λk, γk) in
MST+MVT configuration for each of the target
and source combinations:

1. Generalization (PPL and COH) in
MST+MVT when target is 20NSshort:
(λ20NS = 1.0, γ20NS = 0.001,
λTMN = 0.1, γTMN = 0.001,
λR21578 = 0.5, γR21578 = 0.001,
λAGnews = 0.1, γAGnews = 0.001

2. Generalization (PPL and COH) in
MST+MVT when target is TMNtitle:
(λ20NS = 0.1, γ20NS = 0.001,
λTMN = 1.0, γTMN = 0.001,
λR21578 = 0.5, γR21578 = 0.001,
λAGnews = 1.0, γAGnews = 0.001

3. Generalization (PPL and COH) in
MST+MVT when target is R21578title:
(λ20NS = 0.1, γ20NS = 0.001,
λTMN = 0.5, γTMN = 0.001,
λR21578 = 1.0, γR21578 = 0.001,
λAGnews = 1.0, γAGnews = 0.001

4. Generalization (PPL and COH) in
MST+MVT when target is 20NSsmall:
(λ20NS = 0.5, γ20NS = 0.001,
λTMN = 0.1, γTMN = 0.001,
λR21578 = 0.1, γR21578 = 0.001,
λAGnews = 0.1, γAGnews = 0.001

5. Generalization (PPL and COH)
in MST+MVT when target is

Ohsumedtitle: (λAGnews = 0.1,
γAGnews = 0.001, λPubMed = 1.0,
γPubMed = 0.001

6. Generalization (PPL and COH) in
MST+MVT when target is Ohsumed:
(λAGnews = 0.1, γAGnews = 0.001,
λPubMed = 1.0, γPubMed = 0.001

7. IR in MST+MVT when target is
20NSshort: (λ20NS = 1.0, γ20NS = 0.1,
λTMN = 0.5, γTMN = 0.01, λR21578 = 0.1,
γR21578 = 0.001, λAGnews = 1.0,
γAGnews = 0.01

8. IR in MST+MVT when target is TMNtitle:
(λ20NS = 0.1, γ20NS = 0.01, λTMN = 1.0,
γTMN = 0.01, λR21578 = 0.1, γR21578 =
0.01, λAGnews = 0.5, γAGnews = 0.001

9. IR in MST+MVT when target is
R21578title: (λ20NS = 0.1,
γ20NS = 0.01, λTMN = 1.0, γTMN = 0.01,
λR21578 = 1.0, γR21578 = 0.01,
λAGnews = 0.5, γAGnews = 0.001

10. IR in MST+GVT when target is
20NSsmall: (γ20NS = 0.01,
γTMN = 0.01, γR21578 = 0.1,
γAGnews = 0.01

11. IR in MST+MVT when target is
Ohsumedtitle: (λAGnews = 0.1,
γAGnews = 0.001, λPubMed = 1.0,
γPubMed = 0.1

12. IR in MST+MVT when target is Ohsumed:
(λAGnews = 0.1, γAGnews = 0.001,
λPubMed = 0.5, γPubMed = 0.1

The hyper-parameters mentioned above also ap-
plies to a single source transfer configuration.


